mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	is 'unsigned'. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32279 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			792 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			792 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs loop invariant code motion, attempting to remove as much
 | |
| // code from the body of a loop as possible.  It does this by either hoisting
 | |
| // code into the preheader block, or by sinking code to the exit blocks if it is
 | |
| // safe.  This pass also promotes must-aliased memory locations in the loop to
 | |
| // live in registers, thus hoisting and sinking "invariant" loads and stores.
 | |
| //
 | |
| // This pass uses alias analysis for two purposes:
 | |
| //
 | |
| //  1. Moving loop invariant loads and calls out of loops.  If we can determine
 | |
| //     that a load or call inside of a loop never aliases anything stored to,
 | |
| //     we can hoist it or sink it like any other instruction.
 | |
| //  2. Scalar Promotion of Memory - If there is a store instruction inside of
 | |
| //     the loop, we try to move the store to happen AFTER the loop instead of
 | |
| //     inside of the loop.  This can only happen if a few conditions are true:
 | |
| //       A. The pointer stored through is loop invariant
 | |
| //       B. There are no stores or loads in the loop which _may_ alias the
 | |
| //          pointer.  There are no calls in the loop which mod/ref the pointer.
 | |
| //     If these conditions are true, we can promote the loads and stores in the
 | |
| //     loop of the pointer to use a temporary alloca'd variable.  We then use
 | |
| //     the mem2reg functionality to construct the appropriate SSA form for the
 | |
| //     variable.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "licm"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AliasSetTracker.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   cl::opt<bool>
 | |
|   DisablePromotion("disable-licm-promotion", cl::Hidden,
 | |
|                    cl::desc("Disable memory promotion in LICM pass"));
 | |
| 
 | |
|   Statistic NumSunk("licm", "Number of instructions sunk out of loop");
 | |
|   Statistic NumHoisted("licm", "Number of instructions hoisted out of loop");
 | |
|   Statistic NumMovedLoads("licm", "Number of load insts hoisted or sunk");
 | |
|   Statistic NumMovedCalls("licm", "Number of call insts hoisted or sunk");
 | |
|   Statistic NumPromoted("licm",
 | |
|                           "Number of memory locations promoted to registers");
 | |
| 
 | |
|   struct LICM : public FunctionPass {
 | |
|     virtual bool runOnFunction(Function &F);
 | |
| 
 | |
|     /// This transformation requires natural loop information & requires that
 | |
|     /// loop preheaders be inserted into the CFG...
 | |
|     ///
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     // Various analyses that we use...
 | |
|     AliasAnalysis *AA;       // Current AliasAnalysis information
 | |
|     LoopInfo      *LI;       // Current LoopInfo
 | |
|     DominatorTree *DT;       // Dominator Tree for the current Loop...
 | |
|     DominanceFrontier *DF;   // Current Dominance Frontier
 | |
| 
 | |
|     // State that is updated as we process loops
 | |
|     bool Changed;            // Set to true when we change anything.
 | |
|     BasicBlock *Preheader;   // The preheader block of the current loop...
 | |
|     Loop *CurLoop;           // The current loop we are working on...
 | |
|     AliasSetTracker *CurAST; // AliasSet information for the current loop...
 | |
| 
 | |
|     /// visitLoop - Hoist expressions out of the specified loop...
 | |
|     ///
 | |
|     void visitLoop(Loop *L, AliasSetTracker &AST);
 | |
| 
 | |
|     /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
 | |
|     /// dominated by the specified block, and that are in the current loop) in
 | |
|     /// reverse depth first order w.r.t the DominatorTree.  This allows us to
 | |
|     /// visit uses before definitions, allowing us to sink a loop body in one
 | |
|     /// pass without iteration.
 | |
|     ///
 | |
|     void SinkRegion(DominatorTree::Node *N);
 | |
| 
 | |
|     /// HoistRegion - Walk the specified region of the CFG (defined by all
 | |
|     /// blocks dominated by the specified block, and that are in the current
 | |
|     /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
 | |
|     /// visit definitions before uses, allowing us to hoist a loop body in one
 | |
|     /// pass without iteration.
 | |
|     ///
 | |
|     void HoistRegion(DominatorTree::Node *N);
 | |
| 
 | |
|     /// inSubLoop - Little predicate that returns true if the specified basic
 | |
|     /// block is in a subloop of the current one, not the current one itself.
 | |
|     ///
 | |
|     bool inSubLoop(BasicBlock *BB) {
 | |
|       assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
 | |
|       for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
 | |
|         if ((*I)->contains(BB))
 | |
|           return true;  // A subloop actually contains this block!
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
 | |
|     /// specified exit block of the loop is dominated by the specified block
 | |
|     /// that is in the body of the loop.  We use these constraints to
 | |
|     /// dramatically limit the amount of the dominator tree that needs to be
 | |
|     /// searched.
 | |
|     bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
 | |
|                                            BasicBlock *BlockInLoop) const {
 | |
|       // If the block in the loop is the loop header, it must be dominated!
 | |
|       BasicBlock *LoopHeader = CurLoop->getHeader();
 | |
|       if (BlockInLoop == LoopHeader)
 | |
|         return true;
 | |
| 
 | |
|       DominatorTree::Node *BlockInLoopNode = DT->getNode(BlockInLoop);
 | |
|       DominatorTree::Node *IDom            = DT->getNode(ExitBlock);
 | |
| 
 | |
|       // Because the exit block is not in the loop, we know we have to get _at
 | |
|       // least_ its immediate dominator.
 | |
|       do {
 | |
|         // Get next Immediate Dominator.
 | |
|         IDom = IDom->getIDom();
 | |
| 
 | |
|         // If we have got to the header of the loop, then the instructions block
 | |
|         // did not dominate the exit node, so we can't hoist it.
 | |
|         if (IDom->getBlock() == LoopHeader)
 | |
|           return false;
 | |
| 
 | |
|       } while (IDom != BlockInLoopNode);
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /// sink - When an instruction is found to only be used outside of the loop,
 | |
|     /// this function moves it to the exit blocks and patches up SSA form as
 | |
|     /// needed.
 | |
|     ///
 | |
|     void sink(Instruction &I);
 | |
| 
 | |
|     /// hoist - When an instruction is found to only use loop invariant operands
 | |
|     /// that is safe to hoist, this instruction is called to do the dirty work.
 | |
|     ///
 | |
|     void hoist(Instruction &I);
 | |
| 
 | |
|     /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
 | |
|     /// is not a trapping instruction or if it is a trapping instruction and is
 | |
|     /// guaranteed to execute.
 | |
|     ///
 | |
|     bool isSafeToExecuteUnconditionally(Instruction &I);
 | |
| 
 | |
|     /// pointerInvalidatedByLoop - Return true if the body of this loop may
 | |
|     /// store into the memory location pointed to by V.
 | |
|     ///
 | |
|     bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
 | |
|       // Check to see if any of the basic blocks in CurLoop invalidate *V.
 | |
|       return CurAST->getAliasSetForPointer(V, Size).isMod();
 | |
|     }
 | |
| 
 | |
|     bool canSinkOrHoistInst(Instruction &I);
 | |
|     bool isLoopInvariantInst(Instruction &I);
 | |
|     bool isNotUsedInLoop(Instruction &I);
 | |
| 
 | |
|     /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
 | |
|     /// to scalars as we can.
 | |
|     ///
 | |
|     void PromoteValuesInLoop();
 | |
| 
 | |
|     /// FindPromotableValuesInLoop - Check the current loop for stores to
 | |
|     /// definite pointers, which are not loaded and stored through may aliases.
 | |
|     /// If these are found, create an alloca for the value, add it to the
 | |
|     /// PromotedValues list, and keep track of the mapping from value to
 | |
|     /// alloca...
 | |
|     ///
 | |
|     void FindPromotableValuesInLoop(
 | |
|                    std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
 | |
|                                     std::map<Value*, AllocaInst*> &Val2AlMap);
 | |
|   };
 | |
| 
 | |
|   RegisterPass<LICM> X("licm", "Loop Invariant Code Motion");
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createLICMPass() { return new LICM(); }
 | |
| 
 | |
| /// runOnFunction - For LICM, this simply traverses the loop structure of the
 | |
| /// function, hoisting expressions out of loops if possible.
 | |
| ///
 | |
| bool LICM::runOnFunction(Function &) {
 | |
|   Changed = false;
 | |
| 
 | |
|   // Get our Loop and Alias Analysis information...
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   DF = &getAnalysis<DominanceFrontier>();
 | |
|   DT = &getAnalysis<DominatorTree>();
 | |
| 
 | |
|   // Hoist expressions out of all of the top-level loops.
 | |
|   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
 | |
|     AliasSetTracker AST(*AA);
 | |
|     visitLoop(*I, AST);
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitLoop - Hoist expressions out of the specified loop...
 | |
| ///
 | |
| void LICM::visitLoop(Loop *L, AliasSetTracker &AST) {
 | |
|   // Recurse through all subloops before we process this loop...
 | |
|   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
 | |
|     AliasSetTracker SubAST(*AA);
 | |
|     visitLoop(*I, SubAST);
 | |
| 
 | |
|     // Incorporate information about the subloops into this loop...
 | |
|     AST.add(SubAST);
 | |
|   }
 | |
|   CurLoop = L;
 | |
|   CurAST = &AST;
 | |
| 
 | |
|   // Get the preheader block to move instructions into...
 | |
|   Preheader = L->getLoopPreheader();
 | |
|   assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
 | |
| 
 | |
|   // Loop over the body of this loop, looking for calls, invokes, and stores.
 | |
|   // Because subloops have already been incorporated into AST, we skip blocks in
 | |
|   // subloops.
 | |
|   //
 | |
|   for (std::vector<BasicBlock*>::const_iterator I = L->getBlocks().begin(),
 | |
|          E = L->getBlocks().end(); I != E; ++I)
 | |
|     if (LI->getLoopFor(*I) == L)        // Ignore blocks in subloops...
 | |
|       AST.add(**I);                     // Incorporate the specified basic block
 | |
| 
 | |
|   // We want to visit all of the instructions in this loop... that are not parts
 | |
|   // of our subloops (they have already had their invariants hoisted out of
 | |
|   // their loop, into this loop, so there is no need to process the BODIES of
 | |
|   // the subloops).
 | |
|   //
 | |
|   // Traverse the body of the loop in depth first order on the dominator tree so
 | |
|   // that we are guaranteed to see definitions before we see uses.  This allows
 | |
|   // us to sink instructions in one pass, without iteration.  AFter sinking
 | |
|   // instructions, we perform another pass to hoist them out of the loop.
 | |
|   //
 | |
|   SinkRegion(DT->getNode(L->getHeader()));
 | |
|   HoistRegion(DT->getNode(L->getHeader()));
 | |
| 
 | |
|   // Now that all loop invariants have been removed from the loop, promote any
 | |
|   // memory references to scalars that we can...
 | |
|   if (!DisablePromotion)
 | |
|     PromoteValuesInLoop();
 | |
| 
 | |
|   // Clear out loops state information for the next iteration
 | |
|   CurLoop = 0;
 | |
|   Preheader = 0;
 | |
| }
 | |
| 
 | |
| /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
 | |
| /// dominated by the specified block, and that are in the current loop) in
 | |
| /// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
 | |
| /// uses before definitions, allowing us to sink a loop body in one pass without
 | |
| /// iteration.
 | |
| ///
 | |
| void LICM::SinkRegion(DominatorTree::Node *N) {
 | |
|   assert(N != 0 && "Null dominator tree node?");
 | |
|   BasicBlock *BB = N->getBlock();
 | |
| 
 | |
|   // If this subregion is not in the top level loop at all, exit.
 | |
|   if (!CurLoop->contains(BB)) return;
 | |
| 
 | |
|   // We are processing blocks in reverse dfo, so process children first...
 | |
|   const std::vector<DominatorTree::Node*> &Children = N->getChildren();
 | |
|   for (unsigned i = 0, e = Children.size(); i != e; ++i)
 | |
|     SinkRegion(Children[i]);
 | |
| 
 | |
|   // Only need to process the contents of this block if it is not part of a
 | |
|   // subloop (which would already have been processed).
 | |
|   if (inSubLoop(BB)) return;
 | |
| 
 | |
|   for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
 | |
|     Instruction &I = *--II;
 | |
| 
 | |
|     // Check to see if we can sink this instruction to the exit blocks
 | |
|     // of the loop.  We can do this if the all users of the instruction are
 | |
|     // outside of the loop.  In this case, it doesn't even matter if the
 | |
|     // operands of the instruction are loop invariant.
 | |
|     //
 | |
|     if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
 | |
|       ++II;
 | |
|       sink(I);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// HoistRegion - Walk the specified region of the CFG (defined by all blocks
 | |
| /// dominated by the specified block, and that are in the current loop) in depth
 | |
| /// first order w.r.t the DominatorTree.  This allows us to visit definitions
 | |
| /// before uses, allowing us to hoist a loop body in one pass without iteration.
 | |
| ///
 | |
| void LICM::HoistRegion(DominatorTree::Node *N) {
 | |
|   assert(N != 0 && "Null dominator tree node?");
 | |
|   BasicBlock *BB = N->getBlock();
 | |
| 
 | |
|   // If this subregion is not in the top level loop at all, exit.
 | |
|   if (!CurLoop->contains(BB)) return;
 | |
| 
 | |
|   // Only need to process the contents of this block if it is not part of a
 | |
|   // subloop (which would already have been processed).
 | |
|   if (!inSubLoop(BB))
 | |
|     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
 | |
|       Instruction &I = *II++;
 | |
| 
 | |
|       // Try hoisting the instruction out to the preheader.  We can only do this
 | |
|       // if all of the operands of the instruction are loop invariant and if it
 | |
|       // is safe to hoist the instruction.
 | |
|       //
 | |
|       if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
 | |
|           isSafeToExecuteUnconditionally(I))
 | |
|         hoist(I);
 | |
|       }
 | |
| 
 | |
|   const std::vector<DominatorTree::Node*> &Children = N->getChildren();
 | |
|   for (unsigned i = 0, e = Children.size(); i != e; ++i)
 | |
|     HoistRegion(Children[i]);
 | |
| }
 | |
| 
 | |
| /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
 | |
| /// instruction.
 | |
| ///
 | |
| bool LICM::canSinkOrHoistInst(Instruction &I) {
 | |
|   // Loads have extra constraints we have to verify before we can hoist them.
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
 | |
|     if (LI->isVolatile())
 | |
|       return false;        // Don't hoist volatile loads!
 | |
| 
 | |
|     // Don't hoist loads which have may-aliased stores in loop.
 | |
|     unsigned Size = 0;
 | |
|     if (LI->getType()->isSized())
 | |
|       Size = AA->getTargetData().getTypeSize(LI->getType());
 | |
|     return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
 | |
|   } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
 | |
|     // Handle obvious cases efficiently.
 | |
|     if (Function *Callee = CI->getCalledFunction()) {
 | |
|       AliasAnalysis::ModRefBehavior Behavior =AA->getModRefBehavior(Callee, CI);
 | |
|       if (Behavior == AliasAnalysis::DoesNotAccessMemory)
 | |
|         return true;
 | |
|       else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
 | |
|         // If this call only reads from memory and there are no writes to memory
 | |
|         // in the loop, we can hoist or sink the call as appropriate.
 | |
|         bool FoundMod = false;
 | |
|         for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
 | |
|              I != E; ++I) {
 | |
|           AliasSet &AS = *I;
 | |
|           if (!AS.isForwardingAliasSet() && AS.isMod()) {
 | |
|             FoundMod = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if (!FoundMod) return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // FIXME: This should use mod/ref information to see if we can hoist or sink
 | |
|     // the call.
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise these instructions are hoistable/sinkable
 | |
|   return isa<BinaryOperator>(I) || isa<ShiftInst>(I) || isa<CastInst>(I) ||
 | |
|          isa<SelectInst>(I) || isa<GetElementPtrInst>(I);
 | |
| }
 | |
| 
 | |
| /// isNotUsedInLoop - Return true if the only users of this instruction are
 | |
| /// outside of the loop.  If this is true, we can sink the instruction to the
 | |
| /// exit blocks of the loop.
 | |
| ///
 | |
| bool LICM::isNotUsedInLoop(Instruction &I) {
 | |
|   for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | |
|       // PHI node uses occur in predecessor blocks!
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         if (PN->getIncomingValue(i) == &I)
 | |
|           if (CurLoop->contains(PN->getIncomingBlock(i)))
 | |
|             return false;
 | |
|     } else if (CurLoop->contains(User->getParent())) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isLoopInvariantInst - Return true if all operands of this instruction are
 | |
| /// loop invariant.  We also filter out non-hoistable instructions here just for
 | |
| /// efficiency.
 | |
| ///
 | |
| bool LICM::isLoopInvariantInst(Instruction &I) {
 | |
|   // The instruction is loop invariant if all of its operands are loop-invariant
 | |
|   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
 | |
|     if (!CurLoop->isLoopInvariant(I.getOperand(i)))
 | |
|       return false;
 | |
| 
 | |
|   // If we got this far, the instruction is loop invariant!
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// sink - When an instruction is found to only be used outside of the loop,
 | |
| /// this function moves it to the exit blocks and patches up SSA form as needed.
 | |
| /// This method is guaranteed to remove the original instruction from its
 | |
| /// position, and may either delete it or move it to outside of the loop.
 | |
| ///
 | |
| void LICM::sink(Instruction &I) {
 | |
|   DOUT << "LICM sinking instruction: " << I;
 | |
| 
 | |
|   std::vector<BasicBlock*> ExitBlocks;
 | |
|   CurLoop->getExitBlocks(ExitBlocks);
 | |
| 
 | |
|   if (isa<LoadInst>(I)) ++NumMovedLoads;
 | |
|   else if (isa<CallInst>(I)) ++NumMovedCalls;
 | |
|   ++NumSunk;
 | |
|   Changed = true;
 | |
| 
 | |
|   // The case where there is only a single exit node of this loop is common
 | |
|   // enough that we handle it as a special (more efficient) case.  It is more
 | |
|   // efficient to handle because there are no PHI nodes that need to be placed.
 | |
|   if (ExitBlocks.size() == 1) {
 | |
|     if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
 | |
|       // Instruction is not used, just delete it.
 | |
|       CurAST->deleteValue(&I);
 | |
|       if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
 | |
|         I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | |
|       I.eraseFromParent();
 | |
|     } else {
 | |
|       // Move the instruction to the start of the exit block, after any PHI
 | |
|       // nodes in it.
 | |
|       I.removeFromParent();
 | |
| 
 | |
|       BasicBlock::iterator InsertPt = ExitBlocks[0]->begin();
 | |
|       while (isa<PHINode>(InsertPt)) ++InsertPt;
 | |
|       ExitBlocks[0]->getInstList().insert(InsertPt, &I);
 | |
|     }
 | |
|   } else if (ExitBlocks.size() == 0) {
 | |
|     // The instruction is actually dead if there ARE NO exit blocks.
 | |
|     CurAST->deleteValue(&I);
 | |
|     if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
 | |
|       I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | |
|     I.eraseFromParent();
 | |
|   } else {
 | |
|     // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
 | |
|     // do all of the hard work of inserting PHI nodes as necessary.  We convert
 | |
|     // the value into a stack object to get it to do this.
 | |
| 
 | |
|     // Firstly, we create a stack object to hold the value...
 | |
|     AllocaInst *AI = 0;
 | |
| 
 | |
|     if (I.getType() != Type::VoidTy)
 | |
|       AI = new AllocaInst(I.getType(), 0, I.getName(),
 | |
|                           I.getParent()->getParent()->front().begin());
 | |
| 
 | |
|     // Secondly, insert load instructions for each use of the instruction
 | |
|     // outside of the loop.
 | |
|     while (!I.use_empty()) {
 | |
|       Instruction *U = cast<Instruction>(I.use_back());
 | |
| 
 | |
|       // If the user is a PHI Node, we actually have to insert load instructions
 | |
|       // in all predecessor blocks, not in the PHI block itself!
 | |
|       if (PHINode *UPN = dyn_cast<PHINode>(U)) {
 | |
|         // Only insert into each predecessor once, so that we don't have
 | |
|         // different incoming values from the same block!
 | |
|         std::map<BasicBlock*, Value*> InsertedBlocks;
 | |
|         for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
 | |
|           if (UPN->getIncomingValue(i) == &I) {
 | |
|             BasicBlock *Pred = UPN->getIncomingBlock(i);
 | |
|             Value *&PredVal = InsertedBlocks[Pred];
 | |
|             if (!PredVal) {
 | |
|               // Insert a new load instruction right before the terminator in
 | |
|               // the predecessor block.
 | |
|               PredVal = new LoadInst(AI, "", Pred->getTerminator());
 | |
|             }
 | |
| 
 | |
|             UPN->setIncomingValue(i, PredVal);
 | |
|           }
 | |
| 
 | |
|       } else {
 | |
|         LoadInst *L = new LoadInst(AI, "", U);
 | |
|         U->replaceUsesOfWith(&I, L);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Thirdly, insert a copy of the instruction in each exit block of the loop
 | |
|     // that is dominated by the instruction, storing the result into the memory
 | |
|     // location.  Be careful not to insert the instruction into any particular
 | |
|     // basic block more than once.
 | |
|     std::set<BasicBlock*> InsertedBlocks;
 | |
|     BasicBlock *InstOrigBB = I.getParent();
 | |
| 
 | |
|     for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | |
|       BasicBlock *ExitBlock = ExitBlocks[i];
 | |
| 
 | |
|       if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
 | |
|         // If we haven't already processed this exit block, do so now.
 | |
|         if (InsertedBlocks.insert(ExitBlock).second) {
 | |
|           // Insert the code after the last PHI node...
 | |
|           BasicBlock::iterator InsertPt = ExitBlock->begin();
 | |
|           while (isa<PHINode>(InsertPt)) ++InsertPt;
 | |
| 
 | |
|           // If this is the first exit block processed, just move the original
 | |
|           // instruction, otherwise clone the original instruction and insert
 | |
|           // the copy.
 | |
|           Instruction *New;
 | |
|           if (InsertedBlocks.size() == 1) {
 | |
|             I.removeFromParent();
 | |
|             ExitBlock->getInstList().insert(InsertPt, &I);
 | |
|             New = &I;
 | |
|           } else {
 | |
|             New = I.clone();
 | |
|             CurAST->copyValue(&I, New);
 | |
|             if (!I.getName().empty())
 | |
|               New->setName(I.getName()+".le");
 | |
|             ExitBlock->getInstList().insert(InsertPt, New);
 | |
|           }
 | |
| 
 | |
|           // Now that we have inserted the instruction, store it into the alloca
 | |
|           if (AI) new StoreInst(New, AI, InsertPt);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the instruction doesn't dominate any exit blocks, it must be dead.
 | |
|     if (InsertedBlocks.empty()) {
 | |
|       CurAST->deleteValue(&I);
 | |
|       I.eraseFromParent();
 | |
|     }
 | |
| 
 | |
|     // Finally, promote the fine value to SSA form.
 | |
|     if (AI) {
 | |
|       std::vector<AllocaInst*> Allocas;
 | |
|       Allocas.push_back(AI);
 | |
|       PromoteMemToReg(Allocas, *DT, *DF, AA->getTargetData(), CurAST);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// hoist - When an instruction is found to only use loop invariant operands
 | |
| /// that is safe to hoist, this instruction is called to do the dirty work.
 | |
| ///
 | |
| void LICM::hoist(Instruction &I) {
 | |
|   DOUT << "LICM hoisting to " << Preheader->getName() << ": " << I;
 | |
| 
 | |
|   // Remove the instruction from its current basic block... but don't delete the
 | |
|   // instruction.
 | |
|   I.removeFromParent();
 | |
| 
 | |
|   // Insert the new node in Preheader, before the terminator.
 | |
|   Preheader->getInstList().insert(Preheader->getTerminator(), &I);
 | |
| 
 | |
|   if (isa<LoadInst>(I)) ++NumMovedLoads;
 | |
|   else if (isa<CallInst>(I)) ++NumMovedCalls;
 | |
|   ++NumHoisted;
 | |
|   Changed = true;
 | |
| }
 | |
| 
 | |
| /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
 | |
| /// not a trapping instruction or if it is a trapping instruction and is
 | |
| /// guaranteed to execute.
 | |
| ///
 | |
| bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
 | |
|   // If it is not a trapping instruction, it is always safe to hoist.
 | |
|   if (!Inst.isTrapping()) return true;
 | |
| 
 | |
|   // Otherwise we have to check to make sure that the instruction dominates all
 | |
|   // of the exit blocks.  If it doesn't, then there is a path out of the loop
 | |
|   // which does not execute this instruction, so we can't hoist it.
 | |
| 
 | |
|   // If the instruction is in the header block for the loop (which is very
 | |
|   // common), it is always guaranteed to dominate the exit blocks.  Since this
 | |
|   // is a common case, and can save some work, check it now.
 | |
|   if (Inst.getParent() == CurLoop->getHeader())
 | |
|     return true;
 | |
| 
 | |
|   // It's always safe to load from a global or alloca.
 | |
|   if (isa<LoadInst>(Inst))
 | |
|     if (isa<AllocationInst>(Inst.getOperand(0)) ||
 | |
|         isa<GlobalVariable>(Inst.getOperand(0)))
 | |
|       return true;
 | |
| 
 | |
|   // Get the exit blocks for the current loop.
 | |
|   std::vector<BasicBlock*> ExitBlocks;
 | |
|   CurLoop->getExitBlocks(ExitBlocks);
 | |
| 
 | |
|   // For each exit block, get the DT node and walk up the DT until the
 | |
|   // instruction's basic block is found or we exit the loop.
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | |
|     if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
 | |
| /// stores out of the loop and moving loads to before the loop.  We do this by
 | |
| /// looping over the stores in the loop, looking for stores to Must pointers
 | |
| /// which are loop invariant.  We promote these memory locations to use allocas
 | |
| /// instead.  These allocas can easily be raised to register values by the
 | |
| /// PromoteMem2Reg functionality.
 | |
| ///
 | |
| void LICM::PromoteValuesInLoop() {
 | |
|   // PromotedValues - List of values that are promoted out of the loop.  Each
 | |
|   // value has an alloca instruction for it, and a canonical version of the
 | |
|   // pointer.
 | |
|   std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
 | |
|   std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
 | |
| 
 | |
|   FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
 | |
|   if (ValueToAllocaMap.empty()) return;   // If there are values to promote.
 | |
| 
 | |
|   Changed = true;
 | |
|   NumPromoted += PromotedValues.size();
 | |
| 
 | |
|   std::vector<Value*> PointerValueNumbers;
 | |
| 
 | |
|   // Emit a copy from the value into the alloca'd value in the loop preheader
 | |
|   TerminatorInst *LoopPredInst = Preheader->getTerminator();
 | |
|   for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
 | |
|     Value *Ptr = PromotedValues[i].second;
 | |
| 
 | |
|     // If we are promoting a pointer value, update alias information for the
 | |
|     // inserted load.
 | |
|     Value *LoadValue = 0;
 | |
|     if (isa<PointerType>(cast<PointerType>(Ptr->getType())->getElementType())) {
 | |
|       // Locate a load or store through the pointer, and assign the same value
 | |
|       // to LI as we are loading or storing.  Since we know that the value is
 | |
|       // stored in this loop, this will always succeed.
 | |
|       for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
 | |
|            UI != E; ++UI)
 | |
|         if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
 | |
|           LoadValue = LI;
 | |
|           break;
 | |
|         } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
 | |
|           if (SI->getOperand(1) == Ptr) {
 | |
|             LoadValue = SI->getOperand(0);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       assert(LoadValue && "No store through the pointer found!");
 | |
|       PointerValueNumbers.push_back(LoadValue);  // Remember this for later.
 | |
|     }
 | |
| 
 | |
|     // Load from the memory we are promoting.
 | |
|     LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);
 | |
| 
 | |
|     if (LoadValue) CurAST->copyValue(LoadValue, LI);
 | |
| 
 | |
|     // Store into the temporary alloca.
 | |
|     new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
 | |
|   }
 | |
| 
 | |
|   // Scan the basic blocks in the loop, replacing uses of our pointers with
 | |
|   // uses of the allocas in question.
 | |
|   //
 | |
|   const std::vector<BasicBlock*> &LoopBBs = CurLoop->getBlocks();
 | |
|   for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
 | |
|          E = LoopBBs.end(); I != E; ++I) {
 | |
|     // Rewrite all loads and stores in the block of the pointer...
 | |
|     for (BasicBlock::iterator II = (*I)->begin(), E = (*I)->end();
 | |
|          II != E; ++II) {
 | |
|       if (LoadInst *L = dyn_cast<LoadInst>(II)) {
 | |
|         std::map<Value*, AllocaInst*>::iterator
 | |
|           I = ValueToAllocaMap.find(L->getOperand(0));
 | |
|         if (I != ValueToAllocaMap.end())
 | |
|           L->setOperand(0, I->second);    // Rewrite load instruction...
 | |
|       } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
 | |
|         std::map<Value*, AllocaInst*>::iterator
 | |
|           I = ValueToAllocaMap.find(S->getOperand(1));
 | |
|         if (I != ValueToAllocaMap.end())
 | |
|           S->setOperand(1, I->second);    // Rewrite store instruction...
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that the body of the loop uses the allocas instead of the original
 | |
|   // memory locations, insert code to copy the alloca value back into the
 | |
|   // original memory location on all exits from the loop.  Note that we only
 | |
|   // want to insert one copy of the code in each exit block, though the loop may
 | |
|   // exit to the same block more than once.
 | |
|   //
 | |
|   std::set<BasicBlock*> ProcessedBlocks;
 | |
| 
 | |
|   std::vector<BasicBlock*> ExitBlocks;
 | |
|   CurLoop->getExitBlocks(ExitBlocks);
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | |
|     if (ProcessedBlocks.insert(ExitBlocks[i]).second) {
 | |
|       // Copy all of the allocas into their memory locations.
 | |
|       BasicBlock::iterator BI = ExitBlocks[i]->begin();
 | |
|       while (isa<PHINode>(*BI))
 | |
|         ++BI;             // Skip over all of the phi nodes in the block.
 | |
|       Instruction *InsertPos = BI;
 | |
|       unsigned PVN = 0;
 | |
|       for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
 | |
|         // Load from the alloca.
 | |
|         LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
 | |
| 
 | |
|         // If this is a pointer type, update alias info appropriately.
 | |
|         if (isa<PointerType>(LI->getType()))
 | |
|           CurAST->copyValue(PointerValueNumbers[PVN++], LI);
 | |
| 
 | |
|         // Store into the memory we promoted.
 | |
|         new StoreInst(LI, PromotedValues[i].second, InsertPos);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Now that we have done the deed, use the mem2reg functionality to promote
 | |
|   // all of the new allocas we just created into real SSA registers.
 | |
|   //
 | |
|   std::vector<AllocaInst*> PromotedAllocas;
 | |
|   PromotedAllocas.reserve(PromotedValues.size());
 | |
|   for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
 | |
|     PromotedAllocas.push_back(PromotedValues[i].first);
 | |
|   PromoteMemToReg(PromotedAllocas, *DT, *DF, AA->getTargetData(), CurAST);
 | |
| }
 | |
| 
 | |
| /// FindPromotableValuesInLoop - Check the current loop for stores to definite
 | |
| /// pointers, which are not loaded and stored through may aliases.  If these are
 | |
| /// found, create an alloca for the value, add it to the PromotedValues list,
 | |
| /// and keep track of the mapping from value to alloca.
 | |
| ///
 | |
| void LICM::FindPromotableValuesInLoop(
 | |
|                    std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
 | |
|                              std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
 | |
|   Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
 | |
| 
 | |
|   // Loop over all of the alias sets in the tracker object.
 | |
|   for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
 | |
|        I != E; ++I) {
 | |
|     AliasSet &AS = *I;
 | |
|     // We can promote this alias set if it has a store, if it is a "Must" alias
 | |
|     // set, if the pointer is loop invariant, and if we are not eliminating any
 | |
|     // volatile loads or stores.
 | |
|     if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias() &&
 | |
|         !AS.isVolatile() && CurLoop->isLoopInvariant(AS.begin()->first)) {
 | |
|       assert(AS.begin() != AS.end() &&
 | |
|              "Must alias set should have at least one pointer element in it!");
 | |
|       Value *V = AS.begin()->first;
 | |
| 
 | |
|       // Check that all of the pointers in the alias set have the same type.  We
 | |
|       // cannot (yet) promote a memory location that is loaded and stored in
 | |
|       // different sizes.
 | |
|       bool PointerOk = true;
 | |
|       for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
 | |
|         if (V->getType() != I->first->getType()) {
 | |
|           PointerOk = false;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       if (PointerOk) {
 | |
|         const Type *Ty = cast<PointerType>(V->getType())->getElementType();
 | |
|         AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
 | |
|         PromotedValues.push_back(std::make_pair(AI, V));
 | |
| 
 | |
|         // Update the AST and alias analysis.
 | |
|         CurAST->copyValue(V, AI);
 | |
| 
 | |
|         for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
 | |
|           ValueToAllocaMap.insert(std::make_pair(I->first, AI));
 | |
| 
 | |
|         DOUT << "LICM: Promoting value: " << *V << "\n";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 |