mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	is 'unsigned'. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32279 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1369 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1369 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopStrengthReduce.cpp - Strength Reduce GEPs in Loops -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Nate Begeman and is distributed under the
 | |
| // University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs a strength reduction on array references inside loops that
 | |
| // have as one or more of their components the loop induction variable.  This is
 | |
| // accomplished by creating a new Value to hold the initial value of the array
 | |
| // access for the first iteration, and then creating a new GEP instruction in
 | |
| // the loop to increment the value by the appropriate amount.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "loop-reduce"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include <algorithm>
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic NumReduced ("loop-reduce", "Number of GEPs strength reduced");
 | |
|   Statistic NumInserted("loop-reduce", "Number of PHIs inserted");
 | |
|   Statistic NumVariable("loop-reduce","Number of PHIs with variable strides");
 | |
| 
 | |
|   /// IVStrideUse - Keep track of one use of a strided induction variable, where
 | |
|   /// the stride is stored externally.  The Offset member keeps track of the 
 | |
|   /// offset from the IV, User is the actual user of the operand, and 'Operand'
 | |
|   /// is the operand # of the User that is the use.
 | |
|   struct IVStrideUse {
 | |
|     SCEVHandle Offset;
 | |
|     Instruction *User;
 | |
|     Value *OperandValToReplace;
 | |
| 
 | |
|     // isUseOfPostIncrementedValue - True if this should use the
 | |
|     // post-incremented version of this IV, not the preincremented version.
 | |
|     // This can only be set in special cases, such as the terminating setcc
 | |
|     // instruction for a loop or uses dominated by the loop.
 | |
|     bool isUseOfPostIncrementedValue;
 | |
|     
 | |
|     IVStrideUse(const SCEVHandle &Offs, Instruction *U, Value *O)
 | |
|       : Offset(Offs), User(U), OperandValToReplace(O),
 | |
|         isUseOfPostIncrementedValue(false) {}
 | |
|   };
 | |
|   
 | |
|   /// IVUsersOfOneStride - This structure keeps track of all instructions that
 | |
|   /// have an operand that is based on the trip count multiplied by some stride.
 | |
|   /// The stride for all of these users is common and kept external to this
 | |
|   /// structure.
 | |
|   struct IVUsersOfOneStride {
 | |
|     /// Users - Keep track of all of the users of this stride as well as the
 | |
|     /// initial value and the operand that uses the IV.
 | |
|     std::vector<IVStrideUse> Users;
 | |
|     
 | |
|     void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand) {
 | |
|       Users.push_back(IVStrideUse(Offset, User, Operand));
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// IVInfo - This structure keeps track of one IV expression inserted during
 | |
|   /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
 | |
|   /// well as the PHI node and increment value created for rewrite.
 | |
|   struct IVExpr {
 | |
|     SCEVHandle  Stride;
 | |
|     SCEVHandle  Base;
 | |
|     PHINode    *PHI;
 | |
|     Value      *IncV;
 | |
| 
 | |
|     IVExpr()
 | |
|       : Stride(SCEVUnknown::getIntegerSCEV(0, Type::UIntTy)),
 | |
|         Base  (SCEVUnknown::getIntegerSCEV(0, Type::UIntTy)) {}
 | |
|     IVExpr(const SCEVHandle &stride, const SCEVHandle &base, PHINode *phi,
 | |
|            Value *incv)
 | |
|       : Stride(stride), Base(base), PHI(phi), IncV(incv) {}
 | |
|   };
 | |
| 
 | |
|   /// IVsOfOneStride - This structure keeps track of all IV expression inserted
 | |
|   /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
 | |
|   struct IVsOfOneStride {
 | |
|     std::vector<IVExpr> IVs;
 | |
| 
 | |
|     void addIV(const SCEVHandle &Stride, const SCEVHandle &Base, PHINode *PHI,
 | |
|                Value *IncV) {
 | |
|       IVs.push_back(IVExpr(Stride, Base, PHI, IncV));
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   class VISIBILITY_HIDDEN LoopStrengthReduce : public FunctionPass {
 | |
|     LoopInfo *LI;
 | |
|     ETForest *EF;
 | |
|     ScalarEvolution *SE;
 | |
|     const TargetData *TD;
 | |
|     const Type *UIntPtrTy;
 | |
|     bool Changed;
 | |
| 
 | |
|     /// IVUsesByStride - Keep track of all uses of induction variables that we
 | |
|     /// are interested in.  The key of the map is the stride of the access.
 | |
|     std::map<SCEVHandle, IVUsersOfOneStride> IVUsesByStride;
 | |
| 
 | |
|     /// IVsByStride - Keep track of all IVs that have been inserted for a
 | |
|     /// particular stride.
 | |
|     std::map<SCEVHandle, IVsOfOneStride> IVsByStride;
 | |
| 
 | |
|     /// StrideOrder - An ordering of the keys in IVUsesByStride that is stable:
 | |
|     /// We use this to iterate over the IVUsesByStride collection without being
 | |
|     /// dependent on random ordering of pointers in the process.
 | |
|     std::vector<SCEVHandle> StrideOrder;
 | |
| 
 | |
|     /// CastedValues - As we need to cast values to uintptr_t, this keeps track
 | |
|     /// of the casted version of each value.  This is accessed by
 | |
|     /// getCastedVersionOf.
 | |
|     std::map<Value*, Value*> CastedPointers;
 | |
| 
 | |
|     /// DeadInsts - Keep track of instructions we may have made dead, so that
 | |
|     /// we can remove them after we are done working.
 | |
|     std::set<Instruction*> DeadInsts;
 | |
| 
 | |
|     /// TLI - Keep a pointer of a TargetLowering to consult for determining
 | |
|     /// transformation profitability.
 | |
|     const TargetLowering *TLI;
 | |
| 
 | |
|   public:
 | |
|     LoopStrengthReduce(const TargetLowering *tli = NULL)
 | |
|       : TLI(tli) {
 | |
|     }
 | |
| 
 | |
|     virtual bool runOnFunction(Function &) {
 | |
|       LI = &getAnalysis<LoopInfo>();
 | |
|       EF = &getAnalysis<ETForest>();
 | |
|       SE = &getAnalysis<ScalarEvolution>();
 | |
|       TD = &getAnalysis<TargetData>();
 | |
|       UIntPtrTy = TD->getIntPtrType();
 | |
|       Changed = false;
 | |
| 
 | |
|       for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
 | |
|         runOnLoop(*I);
 | |
|       
 | |
|       return Changed;
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       // We split critical edges, so we change the CFG.  However, we do update
 | |
|       // many analyses if they are around.
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|       AU.addPreserved<LoopInfo>();
 | |
|       AU.addPreserved<DominatorSet>();
 | |
|       AU.addPreserved<ETForest>();
 | |
|       AU.addPreserved<ImmediateDominators>();
 | |
|       AU.addPreserved<DominanceFrontier>();
 | |
|       AU.addPreserved<DominatorTree>();
 | |
| 
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addRequired<ETForest>();
 | |
|       AU.addRequired<TargetData>();
 | |
|       AU.addRequired<ScalarEvolution>();
 | |
|     }
 | |
|     
 | |
|     /// getCastedVersionOf - Return the specified value casted to uintptr_t.
 | |
|     ///
 | |
|     Value *getCastedVersionOf(Value *V);
 | |
| private:
 | |
|     void runOnLoop(Loop *L);
 | |
|     bool AddUsersIfInteresting(Instruction *I, Loop *L,
 | |
|                                std::set<Instruction*> &Processed);
 | |
|     SCEVHandle GetExpressionSCEV(Instruction *E, Loop *L);
 | |
| 
 | |
|     void OptimizeIndvars(Loop *L);
 | |
| 
 | |
|     unsigned CheckForIVReuse(const SCEVHandle&, IVExpr&, const Type*);
 | |
| 
 | |
|     void StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
 | |
|                                       IVUsersOfOneStride &Uses,
 | |
|                                       Loop *L, bool isOnlyStride);
 | |
|     void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
 | |
|   };
 | |
|   RegisterPass<LoopStrengthReduce> X("loop-reduce", "Loop Strength Reduction");
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
 | |
|   return new LoopStrengthReduce(TLI);
 | |
| }
 | |
| 
 | |
| /// getCastedVersionOf - Return the specified value casted to uintptr_t.
 | |
| ///
 | |
| Value *LoopStrengthReduce::getCastedVersionOf(Value *V) {
 | |
|   if (V->getType() == UIntPtrTy) return V;
 | |
|   if (Constant *CB = dyn_cast<Constant>(V))
 | |
|     return ConstantExpr::getCast(CB, UIntPtrTy);
 | |
| 
 | |
|   Value *&New = CastedPointers[V];
 | |
|   if (New) return New;
 | |
|   
 | |
|   New = SCEVExpander::InsertCastOfTo(V, UIntPtrTy);
 | |
|   DeadInsts.insert(cast<Instruction>(New));
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// DeleteTriviallyDeadInstructions - If any of the instructions is the
 | |
| /// specified set are trivially dead, delete them and see if this makes any of
 | |
| /// their operands subsequently dead.
 | |
| void LoopStrengthReduce::
 | |
| DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
 | |
|   while (!Insts.empty()) {
 | |
|     Instruction *I = *Insts.begin();
 | |
|     Insts.erase(Insts.begin());
 | |
|     if (isInstructionTriviallyDead(I)) {
 | |
|       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|         if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|           Insts.insert(U);
 | |
|       SE->deleteInstructionFromRecords(I);
 | |
|       I->eraseFromParent();
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GetExpressionSCEV - Compute and return the SCEV for the specified
 | |
| /// instruction.
 | |
| SCEVHandle LoopStrengthReduce::GetExpressionSCEV(Instruction *Exp, Loop *L) {
 | |
|   // Scalar Evolutions doesn't know how to compute SCEV's for GEP instructions.
 | |
|   // If this is a GEP that SE doesn't know about, compute it now and insert it.
 | |
|   // If this is not a GEP, or if we have already done this computation, just let
 | |
|   // SE figure it out.
 | |
|   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Exp);
 | |
|   if (!GEP || SE->hasSCEV(GEP))
 | |
|     return SE->getSCEV(Exp);
 | |
|     
 | |
|   // Analyze all of the subscripts of this getelementptr instruction, looking
 | |
|   // for uses that are determined by the trip count of L.  First, skip all
 | |
|   // operands the are not dependent on the IV.
 | |
| 
 | |
|   // Build up the base expression.  Insert an LLVM cast of the pointer to
 | |
|   // uintptr_t first.
 | |
|   SCEVHandle GEPVal = SCEVUnknown::get(getCastedVersionOf(GEP->getOperand(0)));
 | |
| 
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|   
 | |
|   for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
 | |
|     // If this is a use of a recurrence that we can analyze, and it comes before
 | |
|     // Op does in the GEP operand list, we will handle this when we process this
 | |
|     // operand.
 | |
|     if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|       const StructLayout *SL = TD->getStructLayout(STy);
 | |
|       unsigned Idx = cast<ConstantInt>(GEP->getOperand(i))->getZExtValue();
 | |
|       uint64_t Offset = SL->MemberOffsets[Idx];
 | |
|       GEPVal = SCEVAddExpr::get(GEPVal,
 | |
|                                 SCEVUnknown::getIntegerSCEV(Offset, UIntPtrTy));
 | |
|     } else {
 | |
|       Value *OpVal = getCastedVersionOf(GEP->getOperand(i));
 | |
|       SCEVHandle Idx = SE->getSCEV(OpVal);
 | |
| 
 | |
|       uint64_t TypeSize = TD->getTypeSize(GTI.getIndexedType());
 | |
|       if (TypeSize != 1)
 | |
|         Idx = SCEVMulExpr::get(Idx,
 | |
|                                SCEVConstant::get(ConstantInt::get(UIntPtrTy,
 | |
|                                                                    TypeSize)));
 | |
|       GEPVal = SCEVAddExpr::get(GEPVal, Idx);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SE->setSCEV(GEP, GEPVal);
 | |
|   return GEPVal;
 | |
| }
 | |
| 
 | |
| /// getSCEVStartAndStride - Compute the start and stride of this expression,
 | |
| /// returning false if the expression is not a start/stride pair, or true if it
 | |
| /// is.  The stride must be a loop invariant expression, but the start may be
 | |
| /// a mix of loop invariant and loop variant expressions.
 | |
| static bool getSCEVStartAndStride(const SCEVHandle &SH, Loop *L,
 | |
|                                   SCEVHandle &Start, SCEVHandle &Stride) {
 | |
|   SCEVHandle TheAddRec = Start;   // Initialize to zero.
 | |
| 
 | |
|   // If the outer level is an AddExpr, the operands are all start values except
 | |
|   // for a nested AddRecExpr.
 | |
|   if (SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(SH)) {
 | |
|     for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i)
 | |
|       if (SCEVAddRecExpr *AddRec =
 | |
|              dyn_cast<SCEVAddRecExpr>(AE->getOperand(i))) {
 | |
|         if (AddRec->getLoop() == L)
 | |
|           TheAddRec = SCEVAddExpr::get(AddRec, TheAddRec);
 | |
|         else
 | |
|           return false;  // Nested IV of some sort?
 | |
|       } else {
 | |
|         Start = SCEVAddExpr::get(Start, AE->getOperand(i));
 | |
|       }
 | |
|         
 | |
|   } else if (isa<SCEVAddRecExpr>(SH)) {
 | |
|     TheAddRec = SH;
 | |
|   } else {
 | |
|     return false;  // not analyzable.
 | |
|   }
 | |
|   
 | |
|   SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(TheAddRec);
 | |
|   if (!AddRec || AddRec->getLoop() != L) return false;
 | |
|   
 | |
|   // FIXME: Generalize to non-affine IV's.
 | |
|   if (!AddRec->isAffine()) return false;
 | |
| 
 | |
|   Start = SCEVAddExpr::get(Start, AddRec->getOperand(0));
 | |
|   
 | |
|   if (!isa<SCEVConstant>(AddRec->getOperand(1)))
 | |
|     DOUT << "[" << L->getHeader()->getName()
 | |
|          << "] Variable stride: " << *AddRec << "\n";
 | |
| 
 | |
|   Stride = AddRec->getOperand(1);
 | |
|   // Check that all constant strides are the unsigned type, we don't want to
 | |
|   // have two IV's one of signed stride 4 and one of unsigned stride 4 to not be
 | |
|   // merged.
 | |
|   assert((!isa<SCEVConstant>(Stride) || Stride->getType()->isUnsigned()) &&
 | |
|          "Constants should be canonicalized to unsigned!");
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
 | |
| /// and now we need to decide whether the user should use the preinc or post-inc
 | |
| /// value.  If this user should use the post-inc version of the IV, return true.
 | |
| ///
 | |
| /// Choosing wrong here can break dominance properties (if we choose to use the
 | |
| /// post-inc value when we cannot) or it can end up adding extra live-ranges to
 | |
| /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
 | |
| /// should use the post-inc value).
 | |
| static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV,
 | |
|                                        Loop *L, ETForest *EF, Pass *P) {
 | |
|   // If the user is in the loop, use the preinc value.
 | |
|   if (L->contains(User->getParent())) return false;
 | |
|   
 | |
|   BasicBlock *LatchBlock = L->getLoopLatch();
 | |
|   
 | |
|   // Ok, the user is outside of the loop.  If it is dominated by the latch
 | |
|   // block, use the post-inc value.
 | |
|   if (EF->dominates(LatchBlock, User->getParent()))
 | |
|     return true;
 | |
| 
 | |
|   // There is one case we have to be careful of: PHI nodes.  These little guys
 | |
|   // can live in blocks that do not dominate the latch block, but (since their
 | |
|   // uses occur in the predecessor block, not the block the PHI lives in) should
 | |
|   // still use the post-inc value.  Check for this case now.
 | |
|   PHINode *PN = dyn_cast<PHINode>(User);
 | |
|   if (!PN) return false;  // not a phi, not dominated by latch block.
 | |
|   
 | |
|   // Look at all of the uses of IV by the PHI node.  If any use corresponds to
 | |
|   // a block that is not dominated by the latch block, give up and use the
 | |
|   // preincremented value.
 | |
|   unsigned NumUses = 0;
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|     if (PN->getIncomingValue(i) == IV) {
 | |
|       ++NumUses;
 | |
|       if (!EF->dominates(LatchBlock, PN->getIncomingBlock(i)))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|   // Okay, all uses of IV by PN are in predecessor blocks that really are
 | |
|   // dominated by the latch block.  Split the critical edges and use the
 | |
|   // post-incremented value.
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|     if (PN->getIncomingValue(i) == IV) {
 | |
|       SplitCriticalEdge(PN->getIncomingBlock(i), PN->getParent(), P,
 | |
|                         true);
 | |
|       // Splitting the critical edge can reduce the number of entries in this
 | |
|       // PHI.
 | |
|       e = PN->getNumIncomingValues();
 | |
|       if (--NumUses == 0) break;
 | |
|     }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
|   
 | |
| 
 | |
| /// AddUsersIfInteresting - Inspect the specified instruction.  If it is a
 | |
| /// reducible SCEV, recursively add its users to the IVUsesByStride set and
 | |
| /// return true.  Otherwise, return false.
 | |
| bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L,
 | |
|                                             std::set<Instruction*> &Processed) {
 | |
|   if (!I->getType()->isInteger() && !isa<PointerType>(I->getType()))
 | |
|       return false;   // Void and FP expressions cannot be reduced.
 | |
|   if (!Processed.insert(I).second)
 | |
|     return true;    // Instruction already handled.
 | |
|   
 | |
|   // Get the symbolic expression for this instruction.
 | |
|   SCEVHandle ISE = GetExpressionSCEV(I, L);
 | |
|   if (isa<SCEVCouldNotCompute>(ISE)) return false;
 | |
|   
 | |
|   // Get the start and stride for this expression.
 | |
|   SCEVHandle Start = SCEVUnknown::getIntegerSCEV(0, ISE->getType());
 | |
|   SCEVHandle Stride = Start;
 | |
|   if (!getSCEVStartAndStride(ISE, L, Start, Stride))
 | |
|     return false;  // Non-reducible symbolic expression, bail out.
 | |
|   
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;++UI){
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Do not infinitely recurse on PHI nodes.
 | |
|     if (isa<PHINode>(User) && Processed.count(User))
 | |
|       continue;
 | |
| 
 | |
|     // If this is an instruction defined in a nested loop, or outside this loop,
 | |
|     // don't recurse into it.
 | |
|     bool AddUserToIVUsers = false;
 | |
|     if (LI->getLoopFor(User->getParent()) != L) {
 | |
|       DOUT << "FOUND USER in other loop: " << *User
 | |
|            << "   OF SCEV: " << *ISE << "\n";
 | |
|       AddUserToIVUsers = true;
 | |
|     } else if (!AddUsersIfInteresting(User, L, Processed)) {
 | |
|       DOUT << "FOUND USER: " << *User
 | |
|            << "   OF SCEV: " << *ISE << "\n";
 | |
|       AddUserToIVUsers = true;
 | |
|     }
 | |
| 
 | |
|     if (AddUserToIVUsers) {
 | |
|       IVUsersOfOneStride &StrideUses = IVUsesByStride[Stride];
 | |
|       if (StrideUses.Users.empty())     // First occurance of this stride?
 | |
|         StrideOrder.push_back(Stride);
 | |
|       
 | |
|       // Okay, we found a user that we cannot reduce.  Analyze the instruction
 | |
|       // and decide what to do with it.  If we are a use inside of the loop, use
 | |
|       // the value before incrementation, otherwise use it after incrementation.
 | |
|       if (IVUseShouldUsePostIncValue(User, I, L, EF, this)) {
 | |
|         // The value used will be incremented by the stride more than we are
 | |
|         // expecting, so subtract this off.
 | |
|         SCEVHandle NewStart = SCEV::getMinusSCEV(Start, Stride);
 | |
|         StrideUses.addUser(NewStart, User, I);
 | |
|         StrideUses.Users.back().isUseOfPostIncrementedValue = true;
 | |
|         DOUT << "   USING POSTINC SCEV, START=" << *NewStart<< "\n";
 | |
|       } else {        
 | |
|         StrideUses.addUser(Start, User, I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// BasedUser - For a particular base value, keep information about how we've
 | |
|   /// partitioned the expression so far.
 | |
|   struct BasedUser {
 | |
|     /// Base - The Base value for the PHI node that needs to be inserted for
 | |
|     /// this use.  As the use is processed, information gets moved from this
 | |
|     /// field to the Imm field (below).  BasedUser values are sorted by this
 | |
|     /// field.
 | |
|     SCEVHandle Base;
 | |
|     
 | |
|     /// Inst - The instruction using the induction variable.
 | |
|     Instruction *Inst;
 | |
| 
 | |
|     /// OperandValToReplace - The operand value of Inst to replace with the
 | |
|     /// EmittedBase.
 | |
|     Value *OperandValToReplace;
 | |
| 
 | |
|     /// Imm - The immediate value that should be added to the base immediately
 | |
|     /// before Inst, because it will be folded into the imm field of the
 | |
|     /// instruction.
 | |
|     SCEVHandle Imm;
 | |
| 
 | |
|     /// EmittedBase - The actual value* to use for the base value of this
 | |
|     /// operation.  This is null if we should just use zero so far.
 | |
|     Value *EmittedBase;
 | |
| 
 | |
|     // isUseOfPostIncrementedValue - True if this should use the
 | |
|     // post-incremented version of this IV, not the preincremented version.
 | |
|     // This can only be set in special cases, such as the terminating setcc
 | |
|     // instruction for a loop and uses outside the loop that are dominated by
 | |
|     // the loop.
 | |
|     bool isUseOfPostIncrementedValue;
 | |
|     
 | |
|     BasedUser(IVStrideUse &IVSU)
 | |
|       : Base(IVSU.Offset), Inst(IVSU.User), 
 | |
|         OperandValToReplace(IVSU.OperandValToReplace), 
 | |
|         Imm(SCEVUnknown::getIntegerSCEV(0, Base->getType())), EmittedBase(0),
 | |
|         isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue) {}
 | |
| 
 | |
|     // Once we rewrite the code to insert the new IVs we want, update the
 | |
|     // operands of Inst to use the new expression 'NewBase', with 'Imm' added
 | |
|     // to it.
 | |
|     void RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
 | |
|                                         SCEVExpander &Rewriter, Loop *L,
 | |
|                                         Pass *P);
 | |
|     
 | |
|     Value *InsertCodeForBaseAtPosition(const SCEVHandle &NewBase, 
 | |
|                                        SCEVExpander &Rewriter,
 | |
|                                        Instruction *IP, Loop *L);
 | |
|     void dump() const;
 | |
|   };
 | |
| }
 | |
| 
 | |
| void BasedUser::dump() const {
 | |
|   llvm_cerr << " Base=" << *Base;
 | |
|   llvm_cerr << " Imm=" << *Imm;
 | |
|   if (EmittedBase)
 | |
|     llvm_cerr << "  EB=" << *EmittedBase;
 | |
| 
 | |
|   llvm_cerr << "   Inst: " << *Inst;
 | |
| }
 | |
| 
 | |
| Value *BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle &NewBase, 
 | |
|                                               SCEVExpander &Rewriter,
 | |
|                                               Instruction *IP, Loop *L) {
 | |
|   // Figure out where we *really* want to insert this code.  In particular, if
 | |
|   // the user is inside of a loop that is nested inside of L, we really don't
 | |
|   // want to insert this expression before the user, we'd rather pull it out as
 | |
|   // many loops as possible.
 | |
|   LoopInfo &LI = Rewriter.getLoopInfo();
 | |
|   Instruction *BaseInsertPt = IP;
 | |
|   
 | |
|   // Figure out the most-nested loop that IP is in.
 | |
|   Loop *InsertLoop = LI.getLoopFor(IP->getParent());
 | |
|   
 | |
|   // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
 | |
|   // the preheader of the outer-most loop where NewBase is not loop invariant.
 | |
|   while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) {
 | |
|     BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator();
 | |
|     InsertLoop = InsertLoop->getParentLoop();
 | |
|   }
 | |
|   
 | |
|   // If there is no immediate value, skip the next part.
 | |
|   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
 | |
|     if (SC->getValue()->isNullValue())
 | |
|       return Rewriter.expandCodeFor(NewBase, BaseInsertPt,
 | |
|                                     OperandValToReplace->getType());
 | |
| 
 | |
|   Value *Base = Rewriter.expandCodeFor(NewBase, BaseInsertPt);
 | |
|   
 | |
|   // Always emit the immediate (if non-zero) into the same block as the user.
 | |
|   SCEVHandle NewValSCEV = SCEVAddExpr::get(SCEVUnknown::get(Base), Imm);
 | |
|   return Rewriter.expandCodeFor(NewValSCEV, IP,
 | |
|                                 OperandValToReplace->getType());
 | |
| }
 | |
| 
 | |
| 
 | |
| // Once we rewrite the code to insert the new IVs we want, update the
 | |
| // operands of Inst to use the new expression 'NewBase', with 'Imm' added
 | |
| // to it.
 | |
| void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
 | |
|                                                SCEVExpander &Rewriter,
 | |
|                                                Loop *L, Pass *P) {
 | |
|   if (!isa<PHINode>(Inst)) {
 | |
|     Value *NewVal = InsertCodeForBaseAtPosition(NewBase, Rewriter, Inst, L);
 | |
|     // Replace the use of the operand Value with the new Phi we just created.
 | |
|     Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
 | |
|     DOUT << "    CHANGED: IMM =" << *Imm << "  Inst = " << *Inst;
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // PHI nodes are more complex.  We have to insert one copy of the NewBase+Imm
 | |
|   // expression into each operand block that uses it.  Note that PHI nodes can
 | |
|   // have multiple entries for the same predecessor.  We use a map to make sure
 | |
|   // that a PHI node only has a single Value* for each predecessor (which also
 | |
|   // prevents us from inserting duplicate code in some blocks).
 | |
|   std::map<BasicBlock*, Value*> InsertedCode;
 | |
|   PHINode *PN = cast<PHINode>(Inst);
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     if (PN->getIncomingValue(i) == OperandValToReplace) {
 | |
|       // If this is a critical edge, split the edge so that we do not insert the
 | |
|       // code on all predecessor/successor paths.  We do this unless this is the
 | |
|       // canonical backedge for this loop, as this can make some inserted code
 | |
|       // be in an illegal position.
 | |
|       BasicBlock *PHIPred = PN->getIncomingBlock(i);
 | |
|       if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
 | |
|           (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
 | |
|         
 | |
|         // First step, split the critical edge.
 | |
|         SplitCriticalEdge(PHIPred, PN->getParent(), P, true);
 | |
|             
 | |
|         // Next step: move the basic block.  In particular, if the PHI node
 | |
|         // is outside of the loop, and PredTI is in the loop, we want to
 | |
|         // move the block to be immediately before the PHI block, not
 | |
|         // immediately after PredTI.
 | |
|         if (L->contains(PHIPred) && !L->contains(PN->getParent())) {
 | |
|           BasicBlock *NewBB = PN->getIncomingBlock(i);
 | |
|           NewBB->moveBefore(PN->getParent());
 | |
|         }
 | |
|         
 | |
|         // Splitting the edge can reduce the number of PHI entries we have.
 | |
|         e = PN->getNumIncomingValues();
 | |
|       }
 | |
| 
 | |
|       Value *&Code = InsertedCode[PN->getIncomingBlock(i)];
 | |
|       if (!Code) {
 | |
|         // Insert the code into the end of the predecessor block.
 | |
|         Instruction *InsertPt = PN->getIncomingBlock(i)->getTerminator();
 | |
|         Code = InsertCodeForBaseAtPosition(NewBase, Rewriter, InsertPt, L);
 | |
|       }
 | |
|       
 | |
|       // Replace the use of the operand Value with the new Phi we just created.
 | |
|       PN->setIncomingValue(i, Code);
 | |
|       Rewriter.clear();
 | |
|     }
 | |
|   }
 | |
|   DOUT << "    CHANGED: IMM =" << *Imm << "  Inst = " << *Inst;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isTargetConstant - Return true if the following can be referenced by the
 | |
| /// immediate field of a target instruction.
 | |
| static bool isTargetConstant(const SCEVHandle &V, const TargetLowering *TLI) {
 | |
|   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
 | |
|     int64_t V = SC->getValue()->getSExtValue();
 | |
|     if (TLI)
 | |
|       return TLI->isLegalAddressImmediate(V);
 | |
|     else
 | |
|       // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
 | |
|       return (V > -(1 << 16) && V < (1 << 16)-1);
 | |
|   }
 | |
| 
 | |
|   if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(SU->getValue()))
 | |
|       if (CE->getOpcode() == Instruction::PtrToInt) {
 | |
|         Constant *Op0 = CE->getOperand(0);
 | |
|         if (isa<GlobalValue>(Op0) && TLI &&
 | |
|             TLI->isLegalAddressImmediate(cast<GlobalValue>(Op0)))
 | |
|           return true;
 | |
|       }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MoveLoopVariantsToImediateField - Move any subexpressions from Val that are
 | |
| /// loop varying to the Imm operand.
 | |
| static void MoveLoopVariantsToImediateField(SCEVHandle &Val, SCEVHandle &Imm,
 | |
|                                             Loop *L) {
 | |
|   if (Val->isLoopInvariant(L)) return;  // Nothing to do.
 | |
|   
 | |
|   if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
 | |
|     std::vector<SCEVHandle> NewOps;
 | |
|     NewOps.reserve(SAE->getNumOperands());
 | |
|     
 | |
|     for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
 | |
|       if (!SAE->getOperand(i)->isLoopInvariant(L)) {
 | |
|         // If this is a loop-variant expression, it must stay in the immediate
 | |
|         // field of the expression.
 | |
|         Imm = SCEVAddExpr::get(Imm, SAE->getOperand(i));
 | |
|       } else {
 | |
|         NewOps.push_back(SAE->getOperand(i));
 | |
|       }
 | |
| 
 | |
|     if (NewOps.empty())
 | |
|       Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
 | |
|     else
 | |
|       Val = SCEVAddExpr::get(NewOps);
 | |
|   } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
 | |
|     // Try to pull immediates out of the start value of nested addrec's.
 | |
|     SCEVHandle Start = SARE->getStart();
 | |
|     MoveLoopVariantsToImediateField(Start, Imm, L);
 | |
|     
 | |
|     std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
 | |
|     Ops[0] = Start;
 | |
|     Val = SCEVAddRecExpr::get(Ops, SARE->getLoop());
 | |
|   } else {
 | |
|     // Otherwise, all of Val is variant, move the whole thing over.
 | |
|     Imm = SCEVAddExpr::get(Imm, Val);
 | |
|     Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// MoveImmediateValues - Look at Val, and pull out any additions of constants
 | |
| /// that can fit into the immediate field of instructions in the target.
 | |
| /// Accumulate these immediate values into the Imm value.
 | |
| static void MoveImmediateValues(const TargetLowering *TLI,
 | |
|                                 SCEVHandle &Val, SCEVHandle &Imm,
 | |
|                                 bool isAddress, Loop *L) {
 | |
|   if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
 | |
|     std::vector<SCEVHandle> NewOps;
 | |
|     NewOps.reserve(SAE->getNumOperands());
 | |
|     
 | |
|     for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
 | |
|       SCEVHandle NewOp = SAE->getOperand(i);
 | |
|       MoveImmediateValues(TLI, NewOp, Imm, isAddress, L);
 | |
|       
 | |
|       if (!NewOp->isLoopInvariant(L)) {
 | |
|         // If this is a loop-variant expression, it must stay in the immediate
 | |
|         // field of the expression.
 | |
|         Imm = SCEVAddExpr::get(Imm, NewOp);
 | |
|       } else {
 | |
|         NewOps.push_back(NewOp);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (NewOps.empty())
 | |
|       Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
 | |
|     else
 | |
|       Val = SCEVAddExpr::get(NewOps);
 | |
|     return;
 | |
|   } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
 | |
|     // Try to pull immediates out of the start value of nested addrec's.
 | |
|     SCEVHandle Start = SARE->getStart();
 | |
|     MoveImmediateValues(TLI, Start, Imm, isAddress, L);
 | |
|     
 | |
|     if (Start != SARE->getStart()) {
 | |
|       std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
 | |
|       Ops[0] = Start;
 | |
|       Val = SCEVAddRecExpr::get(Ops, SARE->getLoop());
 | |
|     }
 | |
|     return;
 | |
|   } else if (SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
 | |
|     // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
 | |
|     if (isAddress && isTargetConstant(SME->getOperand(0), TLI) &&
 | |
|         SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
 | |
| 
 | |
|       SCEVHandle SubImm = SCEVUnknown::getIntegerSCEV(0, Val->getType());
 | |
|       SCEVHandle NewOp = SME->getOperand(1);
 | |
|       MoveImmediateValues(TLI, NewOp, SubImm, isAddress, L);
 | |
|       
 | |
|       // If we extracted something out of the subexpressions, see if we can 
 | |
|       // simplify this!
 | |
|       if (NewOp != SME->getOperand(1)) {
 | |
|         // Scale SubImm up by "8".  If the result is a target constant, we are
 | |
|         // good.
 | |
|         SubImm = SCEVMulExpr::get(SubImm, SME->getOperand(0));
 | |
|         if (isTargetConstant(SubImm, TLI)) {
 | |
|           // Accumulate the immediate.
 | |
|           Imm = SCEVAddExpr::get(Imm, SubImm);
 | |
|           
 | |
|           // Update what is left of 'Val'.
 | |
|           Val = SCEVMulExpr::get(SME->getOperand(0), NewOp);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Loop-variant expressions must stay in the immediate field of the
 | |
|   // expression.
 | |
|   if ((isAddress && isTargetConstant(Val, TLI)) ||
 | |
|       !Val->isLoopInvariant(L)) {
 | |
|     Imm = SCEVAddExpr::get(Imm, Val);
 | |
|     Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, no immediates to move.
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
 | |
| /// added together.  This is used to reassociate common addition subexprs
 | |
| /// together for maximal sharing when rewriting bases.
 | |
| static void SeparateSubExprs(std::vector<SCEVHandle> &SubExprs,
 | |
|                              SCEVHandle Expr) {
 | |
|   if (SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
 | |
|     for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
 | |
|       SeparateSubExprs(SubExprs, AE->getOperand(j));
 | |
|   } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
 | |
|     SCEVHandle Zero = SCEVUnknown::getIntegerSCEV(0, Expr->getType());
 | |
|     if (SARE->getOperand(0) == Zero) {
 | |
|       SubExprs.push_back(Expr);
 | |
|     } else {
 | |
|       // Compute the addrec with zero as its base.
 | |
|       std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
 | |
|       Ops[0] = Zero;   // Start with zero base.
 | |
|       SubExprs.push_back(SCEVAddRecExpr::get(Ops, SARE->getLoop()));
 | |
|       
 | |
| 
 | |
|       SeparateSubExprs(SubExprs, SARE->getOperand(0));
 | |
|     }
 | |
|   } else if (!isa<SCEVConstant>(Expr) ||
 | |
|              !cast<SCEVConstant>(Expr)->getValue()->isNullValue()) {
 | |
|     // Do not add zero.
 | |
|     SubExprs.push_back(Expr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// RemoveCommonExpressionsFromUseBases - Look through all of the uses in Bases,
 | |
| /// removing any common subexpressions from it.  Anything truly common is
 | |
| /// removed, accumulated, and returned.  This looks for things like (a+b+c) and
 | |
| /// (a+c+d) -> (a+c).  The common expression is *removed* from the Bases.
 | |
| static SCEVHandle 
 | |
| RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses) {
 | |
|   unsigned NumUses = Uses.size();
 | |
| 
 | |
|   // Only one use?  Use its base, regardless of what it is!
 | |
|   SCEVHandle Zero = SCEVUnknown::getIntegerSCEV(0, Uses[0].Base->getType());
 | |
|   SCEVHandle Result = Zero;
 | |
|   if (NumUses == 1) {
 | |
|     std::swap(Result, Uses[0].Base);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   // To find common subexpressions, count how many of Uses use each expression.
 | |
|   // If any subexpressions are used Uses.size() times, they are common.
 | |
|   std::map<SCEVHandle, unsigned> SubExpressionUseCounts;
 | |
|   
 | |
|   // UniqueSubExprs - Keep track of all of the subexpressions we see in the
 | |
|   // order we see them.
 | |
|   std::vector<SCEVHandle> UniqueSubExprs;
 | |
| 
 | |
|   std::vector<SCEVHandle> SubExprs;
 | |
|   for (unsigned i = 0; i != NumUses; ++i) {
 | |
|     // If the base is zero (which is common), return zero now, there are no
 | |
|     // CSEs we can find.
 | |
|     if (Uses[i].Base == Zero) return Zero;
 | |
| 
 | |
|     // Split the expression into subexprs.
 | |
|     SeparateSubExprs(SubExprs, Uses[i].Base);
 | |
|     // Add one to SubExpressionUseCounts for each subexpr present.
 | |
|     for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
 | |
|       if (++SubExpressionUseCounts[SubExprs[j]] == 1)
 | |
|         UniqueSubExprs.push_back(SubExprs[j]);
 | |
|     SubExprs.clear();
 | |
|   }
 | |
| 
 | |
|   // Now that we know how many times each is used, build Result.  Iterate over
 | |
|   // UniqueSubexprs so that we have a stable ordering.
 | |
|   for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
 | |
|     std::map<SCEVHandle, unsigned>::iterator I = 
 | |
|        SubExpressionUseCounts.find(UniqueSubExprs[i]);
 | |
|     assert(I != SubExpressionUseCounts.end() && "Entry not found?");
 | |
|     if (I->second == NumUses) {  // Found CSE!
 | |
|       Result = SCEVAddExpr::get(Result, I->first);
 | |
|     } else {
 | |
|       // Remove non-cse's from SubExpressionUseCounts.
 | |
|       SubExpressionUseCounts.erase(I);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If we found no CSE's, return now.
 | |
|   if (Result == Zero) return Result;
 | |
|   
 | |
|   // Otherwise, remove all of the CSE's we found from each of the base values.
 | |
|   for (unsigned i = 0; i != NumUses; ++i) {
 | |
|     // Split the expression into subexprs.
 | |
|     SeparateSubExprs(SubExprs, Uses[i].Base);
 | |
| 
 | |
|     // Remove any common subexpressions.
 | |
|     for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
 | |
|       if (SubExpressionUseCounts.count(SubExprs[j])) {
 | |
|         SubExprs.erase(SubExprs.begin()+j);
 | |
|         --j; --e;
 | |
|       }
 | |
|     
 | |
|     // Finally, the non-shared expressions together.
 | |
|     if (SubExprs.empty())
 | |
|       Uses[i].Base = Zero;
 | |
|     else
 | |
|       Uses[i].Base = SCEVAddExpr::get(SubExprs);
 | |
|     SubExprs.clear();
 | |
|   }
 | |
|  
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// isZero - returns true if the scalar evolution expression is zero.
 | |
| ///
 | |
| static bool isZero(SCEVHandle &V) {
 | |
|   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V))
 | |
|     return SC->getValue()->getZExtValue() == 0;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CheckForIVReuse - Returns the multiple if the stride is the multiple
 | |
| /// of a previous stride and it is a legal value for the target addressing
 | |
| /// mode scale component. This allows the users of this stride to be rewritten
 | |
| /// as prev iv * factor. It returns 0 if no reuse is possible.
 | |
| unsigned LoopStrengthReduce::CheckForIVReuse(const SCEVHandle &Stride,
 | |
|                                              IVExpr &IV, const Type *Ty) {
 | |
|   if (!TLI) return 0;
 | |
| 
 | |
|   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
 | |
|     int64_t SInt = SC->getValue()->getSExtValue();
 | |
|     if (SInt == 1) return 0;
 | |
| 
 | |
|     for (TargetLowering::legal_am_scale_iterator
 | |
|            I = TLI->legal_am_scale_begin(), E = TLI->legal_am_scale_end();
 | |
|          I != E; ++I) {
 | |
|       unsigned Scale = *I;
 | |
|       if (unsigned(abs(SInt)) < Scale || (SInt % Scale) != 0)
 | |
|         continue;
 | |
|       std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
 | |
|         IVsByStride.find(SCEVUnknown::getIntegerSCEV(SInt/Scale, Type::UIntTy));
 | |
|       if (SI == IVsByStride.end())
 | |
|         continue;
 | |
|       for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
 | |
|              IE = SI->second.IVs.end(); II != IE; ++II)
 | |
|         // FIXME: Only handle base == 0 for now.
 | |
|         // Only reuse previous IV if it would not require a type conversion.
 | |
|         if (isZero(II->Base) &&
 | |
|             II->Base->getType()->canLosslesslyBitCastTo(Ty)) {
 | |
|           IV = *II;
 | |
|           return Scale;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
 | |
| /// returns true if Val's isUseOfPostIncrementedValue is true.
 | |
| static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
 | |
|   return Val.isUseOfPostIncrementedValue;
 | |
| }
 | |
| 
 | |
| /// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
 | |
| /// stride of IV.  All of the users may have different starting values, and this
 | |
| /// may not be the only stride (we know it is if isOnlyStride is true).
 | |
| void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
 | |
|                                                       IVUsersOfOneStride &Uses,
 | |
|                                                       Loop *L,
 | |
|                                                       bool isOnlyStride) {
 | |
|   // Transform our list of users and offsets to a bit more complex table.  In
 | |
|   // this new vector, each 'BasedUser' contains 'Base' the base of the
 | |
|   // strided accessas well as the old information from Uses.  We progressively
 | |
|   // move information from the Base field to the Imm field, until we eventually
 | |
|   // have the full access expression to rewrite the use.
 | |
|   std::vector<BasedUser> UsersToProcess;
 | |
|   UsersToProcess.reserve(Uses.Users.size());
 | |
|   for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i) {
 | |
|     UsersToProcess.push_back(Uses.Users[i]);
 | |
|     
 | |
|     // Move any loop invariant operands from the offset field to the immediate
 | |
|     // field of the use, so that we don't try to use something before it is
 | |
|     // computed.
 | |
|     MoveLoopVariantsToImediateField(UsersToProcess.back().Base,
 | |
|                                     UsersToProcess.back().Imm, L);
 | |
|     assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
 | |
|            "Base value is not loop invariant!");
 | |
|   }
 | |
| 
 | |
|   // We now have a whole bunch of uses of like-strided induction variables, but
 | |
|   // they might all have different bases.  We want to emit one PHI node for this
 | |
|   // stride which we fold as many common expressions (between the IVs) into as
 | |
|   // possible.  Start by identifying the common expressions in the base values 
 | |
|   // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
 | |
|   // "A+B"), emit it to the preheader, then remove the expression from the
 | |
|   // UsersToProcess base values.
 | |
|   SCEVHandle CommonExprs =
 | |
|     RemoveCommonExpressionsFromUseBases(UsersToProcess);
 | |
|   
 | |
|   // Check if it is possible to reuse a IV with stride that is factor of this
 | |
|   // stride. And the multiple is a number that can be encoded in the scale
 | |
|   // field of the target addressing mode.
 | |
|   PHINode *NewPHI = NULL;
 | |
|   Value   *IncV   = NULL;
 | |
|   IVExpr   ReuseIV;
 | |
|   unsigned RewriteFactor = CheckForIVReuse(Stride, ReuseIV,
 | |
|                                            CommonExprs->getType());
 | |
|   if (RewriteFactor != 0) {
 | |
|     DOUT << "BASED ON IV of STRIDE " << *ReuseIV.Stride
 | |
|          << " and BASE " << *ReuseIV.Base << " :\n";
 | |
|     NewPHI = ReuseIV.PHI;
 | |
|     IncV   = ReuseIV.IncV;
 | |
|   }
 | |
| 
 | |
|   // Next, figure out what we can represent in the immediate fields of
 | |
|   // instructions.  If we can represent anything there, move it to the imm
 | |
|   // fields of the BasedUsers.  We do this so that it increases the commonality
 | |
|   // of the remaining uses.
 | |
|   for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
 | |
|     // If the user is not in the current loop, this means it is using the exit
 | |
|     // value of the IV.  Do not put anything in the base, make sure it's all in
 | |
|     // the immediate field to allow as much factoring as possible.
 | |
|     if (!L->contains(UsersToProcess[i].Inst->getParent())) {
 | |
|       UsersToProcess[i].Imm = SCEVAddExpr::get(UsersToProcess[i].Imm,
 | |
|                                                UsersToProcess[i].Base);
 | |
|       UsersToProcess[i].Base = 
 | |
|         SCEVUnknown::getIntegerSCEV(0, UsersToProcess[i].Base->getType());
 | |
|     } else {
 | |
|       
 | |
|       // Addressing modes can be folded into loads and stores.  Be careful that
 | |
|       // the store is through the expression, not of the expression though.
 | |
|       bool isAddress = isa<LoadInst>(UsersToProcess[i].Inst);
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(UsersToProcess[i].Inst))
 | |
|         if (SI->getOperand(1) == UsersToProcess[i].OperandValToReplace)
 | |
|           isAddress = true;
 | |
|       
 | |
|       MoveImmediateValues(TLI, UsersToProcess[i].Base, UsersToProcess[i].Imm,
 | |
|                           isAddress, L);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that we know what we need to do, insert the PHI node itself.
 | |
|   //
 | |
|   DOUT << "INSERTING IV of STRIDE " << *Stride << " and BASE "
 | |
|        << *CommonExprs << " :\n";
 | |
| 
 | |
|   SCEVExpander Rewriter(*SE, *LI);
 | |
|   SCEVExpander PreheaderRewriter(*SE, *LI);
 | |
|   
 | |
|   BasicBlock  *Preheader = L->getLoopPreheader();
 | |
|   Instruction *PreInsertPt = Preheader->getTerminator();
 | |
|   Instruction *PhiInsertBefore = L->getHeader()->begin();
 | |
|   
 | |
|   BasicBlock *LatchBlock = L->getLoopLatch();
 | |
| 
 | |
|   const Type *ReplacedTy = CommonExprs->getType();
 | |
| 
 | |
|   // Emit the initial base value into the loop preheader.
 | |
|   Value *CommonBaseV
 | |
|     = PreheaderRewriter.expandCodeFor(CommonExprs, PreInsertPt,
 | |
|                                       ReplacedTy);
 | |
| 
 | |
|   if (RewriteFactor == 0) {
 | |
|     // Create a new Phi for this base, and stick it in the loop header.
 | |
|     NewPHI = new PHINode(ReplacedTy, "iv.", PhiInsertBefore);
 | |
|     ++NumInserted;
 | |
|   
 | |
|     // Add common base to the new Phi node.
 | |
|     NewPHI->addIncoming(CommonBaseV, Preheader);
 | |
| 
 | |
|     // Insert the stride into the preheader.
 | |
|     Value *StrideV = PreheaderRewriter.expandCodeFor(Stride, PreInsertPt,
 | |
|                                                      ReplacedTy);
 | |
|     if (!isa<ConstantInt>(StrideV)) ++NumVariable;
 | |
| 
 | |
|     // Emit the increment of the base value before the terminator of the loop
 | |
|     // latch block, and add it to the Phi node.
 | |
|     SCEVHandle IncExp = SCEVAddExpr::get(SCEVUnknown::get(NewPHI),
 | |
|                                          SCEVUnknown::get(StrideV));
 | |
|   
 | |
|     IncV = Rewriter.expandCodeFor(IncExp, LatchBlock->getTerminator(),
 | |
|                                   ReplacedTy);
 | |
|     IncV->setName(NewPHI->getName()+".inc");
 | |
|     NewPHI->addIncoming(IncV, LatchBlock);
 | |
| 
 | |
|     // Remember this in case a later stride is multiple of this.
 | |
|     IVsByStride[Stride].addIV(Stride, CommonExprs, NewPHI, IncV);
 | |
|   } else {
 | |
|     Constant *C = dyn_cast<Constant>(CommonBaseV);
 | |
|     if (!C ||
 | |
|         (!C->isNullValue() &&
 | |
|          !isTargetConstant(SCEVUnknown::get(CommonBaseV), TLI)))
 | |
|       // We want the common base emitted into the preheader! This is just
 | |
|       // using cast as a copy so BitCast (no-op cast) is appropriate
 | |
|       CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(), 
 | |
|                                     "commonbase", PreInsertPt);
 | |
|   }
 | |
| 
 | |
|   // We want to emit code for users inside the loop first.  To do this, we
 | |
|   // rearrange BasedUser so that the entries at the end have
 | |
|   // isUseOfPostIncrementedValue = false, because we pop off the end of the
 | |
|   // vector (so we handle them first).
 | |
|   std::partition(UsersToProcess.begin(), UsersToProcess.end(),
 | |
|                  PartitionByIsUseOfPostIncrementedValue);
 | |
|   
 | |
|   // Sort this by base, so that things with the same base are handled
 | |
|   // together.  By partitioning first and stable-sorting later, we are
 | |
|   // guaranteed that within each base we will pop off users from within the
 | |
|   // loop before users outside of the loop with a particular base.
 | |
|   //
 | |
|   // We would like to use stable_sort here, but we can't.  The problem is that
 | |
|   // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so
 | |
|   // we don't have anything to do a '<' comparison on.  Because we think the
 | |
|   // number of uses is small, do a horrible bubble sort which just relies on
 | |
|   // ==.
 | |
|   for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
 | |
|     // Get a base value.
 | |
|     SCEVHandle Base = UsersToProcess[i].Base;
 | |
|     
 | |
|     // Compact everything with this base to be consequetive with this one.
 | |
|     for (unsigned j = i+1; j != e; ++j) {
 | |
|       if (UsersToProcess[j].Base == Base) {
 | |
|         std::swap(UsersToProcess[i+1], UsersToProcess[j]);
 | |
|         ++i;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Process all the users now.  This outer loop handles all bases, the inner
 | |
|   // loop handles all users of a particular base.
 | |
|   while (!UsersToProcess.empty()) {
 | |
|     SCEVHandle Base = UsersToProcess.back().Base;
 | |
| 
 | |
|     DOUT << "  INSERTING code for BASE = " << *Base << ":\n";
 | |
|    
 | |
|     // Emit the code for Base into the preheader.
 | |
|     Value *BaseV = PreheaderRewriter.expandCodeFor(Base, PreInsertPt,
 | |
|                                                    ReplacedTy);
 | |
|     
 | |
|     // If BaseV is a constant other than 0, make sure that it gets inserted into
 | |
|     // the preheader, instead of being forward substituted into the uses.  We do
 | |
|     // this by forcing a BitCast (noop cast) to be inserted into the preheader 
 | |
|     // in this case.
 | |
|     if (Constant *C = dyn_cast<Constant>(BaseV)) {
 | |
|       if (!C->isNullValue() && !isTargetConstant(Base, TLI)) {
 | |
|         // We want this constant emitted into the preheader! This is just
 | |
|         // using cast as a copy so BitCast (no-op cast) is appropriate
 | |
|         BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
 | |
|                              PreInsertPt);       
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Emit the code to add the immediate offset to the Phi value, just before
 | |
|     // the instructions that we identified as using this stride and base.
 | |
|     do {
 | |
|       // FIXME: Use emitted users to emit other users.
 | |
|       BasedUser &User = UsersToProcess.back();
 | |
| 
 | |
|       // If this instruction wants to use the post-incremented value, move it
 | |
|       // after the post-inc and use its value instead of the PHI.
 | |
|       Value *RewriteOp = NewPHI;
 | |
|       if (User.isUseOfPostIncrementedValue) {
 | |
|         RewriteOp = IncV;
 | |
| 
 | |
|         // If this user is in the loop, make sure it is the last thing in the
 | |
|         // loop to ensure it is dominated by the increment.
 | |
|         if (L->contains(User.Inst->getParent()))
 | |
|           User.Inst->moveBefore(LatchBlock->getTerminator());
 | |
|       }
 | |
|       if (RewriteOp->getType() != ReplacedTy)
 | |
|         RewriteOp = SCEVExpander::InsertCastOfTo(RewriteOp, ReplacedTy);
 | |
| 
 | |
|       SCEVHandle RewriteExpr = SCEVUnknown::get(RewriteOp);
 | |
| 
 | |
|       // Clear the SCEVExpander's expression map so that we are guaranteed
 | |
|       // to have the code emitted where we expect it.
 | |
|       Rewriter.clear();
 | |
| 
 | |
|       // If we are reusing the iv, then it must be multiplied by a constant
 | |
|       // factor take advantage of addressing mode scale component.
 | |
|       if (RewriteFactor != 0) {
 | |
|         RewriteExpr =
 | |
|           SCEVMulExpr::get(SCEVUnknown::getIntegerSCEV(RewriteFactor,
 | |
|                                                        RewriteExpr->getType()),
 | |
|                            RewriteExpr);
 | |
| 
 | |
|         // The common base is emitted in the loop preheader. But since we
 | |
|         // are reusing an IV, it has not been used to initialize the PHI node.
 | |
|         // Add it to the expression used to rewrite the uses.
 | |
|         if (!isa<ConstantInt>(CommonBaseV) ||
 | |
|             !cast<ConstantInt>(CommonBaseV)->isNullValue())
 | |
|           RewriteExpr = SCEVAddExpr::get(RewriteExpr,
 | |
|                                          SCEVUnknown::get(CommonBaseV));
 | |
|       }
 | |
| 
 | |
|       // Now that we know what we need to do, insert code before User for the
 | |
|       // immediate and any loop-variant expressions.
 | |
|       if (!isa<ConstantInt>(BaseV) || !cast<ConstantInt>(BaseV)->isNullValue())
 | |
|         // Add BaseV to the PHI value if needed.
 | |
|         RewriteExpr = SCEVAddExpr::get(RewriteExpr, SCEVUnknown::get(BaseV));
 | |
| 
 | |
|       User.RewriteInstructionToUseNewBase(RewriteExpr, Rewriter, L, this);
 | |
| 
 | |
|       // Mark old value we replaced as possibly dead, so that it is elminated
 | |
|       // if we just replaced the last use of that value.
 | |
|       DeadInsts.insert(cast<Instruction>(User.OperandValToReplace));
 | |
| 
 | |
|       UsersToProcess.pop_back();
 | |
|       ++NumReduced;
 | |
| 
 | |
|       // If there are any more users to process with the same base, process them
 | |
|       // now.  We sorted by base above, so we just have to check the last elt.
 | |
|     } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
 | |
|     // TODO: Next, find out which base index is the most common, pull it out.
 | |
|   }
 | |
| 
 | |
|   // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
 | |
|   // different starting values, into different PHIs.
 | |
| }
 | |
| 
 | |
| // OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
 | |
| // uses in the loop, look to see if we can eliminate some, in favor of using
 | |
| // common indvars for the different uses.
 | |
| void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
 | |
|   // TODO: implement optzns here.
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|   // Finally, get the terminating condition for the loop if possible.  If we
 | |
|   // can, we want to change it to use a post-incremented version of its
 | |
|   // induction variable, to allow coalescing the live ranges for the IV into
 | |
|   // one register value.
 | |
|   PHINode *SomePHI = cast<PHINode>(L->getHeader()->begin());
 | |
|   BasicBlock  *Preheader = L->getLoopPreheader();
 | |
|   BasicBlock *LatchBlock =
 | |
|    SomePHI->getIncomingBlock(SomePHI->getIncomingBlock(0) == Preheader);
 | |
|   BranchInst *TermBr = dyn_cast<BranchInst>(LatchBlock->getTerminator());
 | |
|   if (!TermBr || TermBr->isUnconditional() ||
 | |
|       !isa<SetCondInst>(TermBr->getCondition()))
 | |
|     return;
 | |
|   SetCondInst *Cond = cast<SetCondInst>(TermBr->getCondition());
 | |
| 
 | |
|   // Search IVUsesByStride to find Cond's IVUse if there is one.
 | |
|   IVStrideUse *CondUse = 0;
 | |
|   const SCEVHandle *CondStride = 0;
 | |
| 
 | |
|   for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e && !CondUse;
 | |
|        ++Stride) {
 | |
|     std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI = 
 | |
|       IVUsesByStride.find(StrideOrder[Stride]);
 | |
|     assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
 | |
|     
 | |
|     for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
 | |
|            E = SI->second.Users.end(); UI != E; ++UI)
 | |
|       if (UI->User == Cond) {
 | |
|         CondUse = &*UI;
 | |
|         CondStride = &SI->first;
 | |
|         // NOTE: we could handle setcc instructions with multiple uses here, but
 | |
|         // InstCombine does it as well for simple uses, it's not clear that it
 | |
|         // occurs enough in real life to handle.
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
|   if (!CondUse) return;  // setcc doesn't use the IV.
 | |
| 
 | |
|   // It's possible for the setcc instruction to be anywhere in the loop, and
 | |
|   // possible for it to have multiple users.  If it is not immediately before
 | |
|   // the latch block branch, move it.
 | |
|   if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
 | |
|     if (Cond->hasOneUse()) {   // Condition has a single use, just move it.
 | |
|       Cond->moveBefore(TermBr);
 | |
|     } else {
 | |
|       // Otherwise, clone the terminating condition and insert into the loopend.
 | |
|       Cond = cast<SetCondInst>(Cond->clone());
 | |
|       Cond->setName(L->getHeader()->getName() + ".termcond");
 | |
|       LatchBlock->getInstList().insert(TermBr, Cond);
 | |
|       
 | |
|       // Clone the IVUse, as the old use still exists!
 | |
|       IVUsesByStride[*CondStride].addUser(CondUse->Offset, Cond,
 | |
|                                          CondUse->OperandValToReplace);
 | |
|       CondUse = &IVUsesByStride[*CondStride].Users.back();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we get to here, we know that we can transform the setcc instruction to
 | |
|   // use the post-incremented version of the IV, allowing us to coalesce the
 | |
|   // live ranges for the IV correctly.
 | |
|   CondUse->Offset = SCEV::getMinusSCEV(CondUse->Offset, *CondStride);
 | |
|   CondUse->isUseOfPostIncrementedValue = true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   // Constant strides come first which in turns are sorted by their absolute
 | |
|   // values. If absolute values are the same, then positive strides comes first.
 | |
|   // e.g.
 | |
|   // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
 | |
|   struct StrideCompare {
 | |
|     bool operator()(const SCEVHandle &LHS, const SCEVHandle &RHS) {
 | |
|       SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
 | |
|       SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
 | |
|       if (LHSC && RHSC) {
 | |
|         int64_t  LV = LHSC->getValue()->getSExtValue();
 | |
|         int64_t  RV = RHSC->getValue()->getSExtValue();
 | |
|         uint64_t ALV = (LV < 0) ? -LV : LV;
 | |
|         uint64_t ARV = (RV < 0) ? -RV : RV;
 | |
|         if (ALV == ARV)
 | |
|           return LV > RV;
 | |
|         else
 | |
|           return ALV < ARV;
 | |
|       }
 | |
|       return (LHSC && !RHSC);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| void LoopStrengthReduce::runOnLoop(Loop *L) {
 | |
|   // First step, transform all loops nesting inside of this loop.
 | |
|   for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | |
|     runOnLoop(*I);
 | |
| 
 | |
|   // Next, find all uses of induction variables in this loop, and catagorize
 | |
|   // them by stride.  Start by finding all of the PHI nodes in the header for
 | |
|   // this loop.  If they are induction variables, inspect their uses.
 | |
|   std::set<Instruction*> Processed;   // Don't reprocess instructions.
 | |
|   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
 | |
|     AddUsersIfInteresting(I, L, Processed);
 | |
| 
 | |
|   // If we have nothing to do, return.
 | |
|   if (IVUsesByStride.empty()) return;
 | |
| 
 | |
|   // Optimize induction variables.  Some indvar uses can be transformed to use
 | |
|   // strides that will be needed for other purposes.  A common example of this
 | |
|   // is the exit test for the loop, which can often be rewritten to use the
 | |
|   // computation of some other indvar to decide when to terminate the loop.
 | |
|   OptimizeIndvars(L);
 | |
| 
 | |
| 
 | |
|   // FIXME: We can widen subreg IV's here for RISC targets.  e.g. instead of
 | |
|   // doing computation in byte values, promote to 32-bit values if safe.
 | |
| 
 | |
|   // FIXME: Attempt to reuse values across multiple IV's.  In particular, we
 | |
|   // could have something like "for(i) { foo(i*8); bar(i*16) }", which should be
 | |
|   // codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.  Need
 | |
|   // to be careful that IV's are all the same type.  Only works for intptr_t
 | |
|   // indvars.
 | |
| 
 | |
|   // If we only have one stride, we can more aggressively eliminate some things.
 | |
|   bool HasOneStride = IVUsesByStride.size() == 1;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   DOUT << "\nLSR on ";
 | |
|   DEBUG(L->dump());
 | |
| #endif
 | |
| 
 | |
|   // IVsByStride keeps IVs for one particular loop.
 | |
|   IVsByStride.clear();
 | |
| 
 | |
|   // Sort the StrideOrder so we process larger strides first.
 | |
|   std::stable_sort(StrideOrder.begin(), StrideOrder.end(), StrideCompare());
 | |
| 
 | |
|   // Note: this processes each stride/type pair individually.  All users passed
 | |
|   // into StrengthReduceStridedIVUsers have the same type AND stride.  Also,
 | |
|   // node that we iterate over IVUsesByStride indirectly by using StrideOrder.
 | |
|   // This extra layer of indirection makes the ordering of strides deterministic
 | |
|   // - not dependent on map order.
 | |
|   for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) {
 | |
|     std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI = 
 | |
|       IVUsesByStride.find(StrideOrder[Stride]);
 | |
|     assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
 | |
|     StrengthReduceStridedIVUsers(SI->first, SI->second, L, HasOneStride);
 | |
|   }
 | |
| 
 | |
|   // Clean up after ourselves
 | |
|   if (!DeadInsts.empty()) {
 | |
|     DeleteTriviallyDeadInstructions(DeadInsts);
 | |
| 
 | |
|     BasicBlock::iterator I = L->getHeader()->begin();
 | |
|     PHINode *PN;
 | |
|     while ((PN = dyn_cast<PHINode>(I))) {
 | |
|       ++I;  // Preincrement iterator to avoid invalidating it when deleting PN.
 | |
|       
 | |
|       // At this point, we know that we have killed one or more GEP
 | |
|       // instructions.  It is worth checking to see if the cann indvar is also
 | |
|       // dead, so that we can remove it as well.  The requirements for the cann
 | |
|       // indvar to be considered dead are:
 | |
|       // 1. the cann indvar has one use
 | |
|       // 2. the use is an add instruction
 | |
|       // 3. the add has one use
 | |
|       // 4. the add is used by the cann indvar
 | |
|       // If all four cases above are true, then we can remove both the add and
 | |
|       // the cann indvar.
 | |
|       // FIXME: this needs to eliminate an induction variable even if it's being
 | |
|       // compared against some value to decide loop termination.
 | |
|       if (PN->hasOneUse()) {
 | |
|         BinaryOperator *BO = dyn_cast<BinaryOperator>(*(PN->use_begin()));
 | |
|         if (BO && BO->hasOneUse()) {
 | |
|           if (PN == *(BO->use_begin())) {
 | |
|             DeadInsts.insert(BO);
 | |
|             // Break the cycle, then delete the PHI.
 | |
|             PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
 | |
|             SE->deleteInstructionFromRecords(PN);
 | |
|             PN->eraseFromParent();
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     DeleteTriviallyDeadInstructions(DeadInsts);
 | |
|   }
 | |
| 
 | |
|   CastedPointers.clear();
 | |
|   IVUsesByStride.clear();
 | |
|   StrideOrder.clear();
 | |
|   return;
 | |
| }
 |