mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 02:36:06 +00:00
0b8c9a80f2
into their new header subdirectory: include/llvm/IR. This matches the directory structure of lib, and begins to correct a long standing point of file layout clutter in LLVM. There are still more header files to move here, but I wanted to handle them in separate commits to make tracking what files make sense at each layer easier. The only really questionable files here are the target intrinsic tablegen files. But that's a battle I'd rather not fight today. I've updated both CMake and Makefile build systems (I think, and my tests think, but I may have missed something). I've also re-sorted the includes throughout the project. I'll be committing updates to Clang, DragonEgg, and Polly momentarily. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
768 lines
26 KiB
C++
768 lines
26 KiB
C++
//===-- Type.cpp - Implement the Type class -------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Type class for the IR library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Type.h"
|
|
#include "LLVMContextImpl.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include <algorithm>
|
|
#include <cstdarg>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Class Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
|
|
switch (IDNumber) {
|
|
case VoidTyID : return getVoidTy(C);
|
|
case HalfTyID : return getHalfTy(C);
|
|
case FloatTyID : return getFloatTy(C);
|
|
case DoubleTyID : return getDoubleTy(C);
|
|
case X86_FP80TyID : return getX86_FP80Ty(C);
|
|
case FP128TyID : return getFP128Ty(C);
|
|
case PPC_FP128TyID : return getPPC_FP128Ty(C);
|
|
case LabelTyID : return getLabelTy(C);
|
|
case MetadataTyID : return getMetadataTy(C);
|
|
case X86_MMXTyID : return getX86_MMXTy(C);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/// getScalarType - If this is a vector type, return the element type,
|
|
/// otherwise return this.
|
|
Type *Type::getScalarType() {
|
|
if (VectorType *VTy = dyn_cast<VectorType>(this))
|
|
return VTy->getElementType();
|
|
return this;
|
|
}
|
|
|
|
const Type *Type::getScalarType() const {
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(this))
|
|
return VTy->getElementType();
|
|
return this;
|
|
}
|
|
|
|
/// isIntegerTy - Return true if this is an IntegerType of the specified width.
|
|
bool Type::isIntegerTy(unsigned Bitwidth) const {
|
|
return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
|
|
}
|
|
|
|
// canLosslesslyBitCastTo - Return true if this type can be converted to
|
|
// 'Ty' without any reinterpretation of bits. For example, i8* to i32*.
|
|
//
|
|
bool Type::canLosslesslyBitCastTo(Type *Ty) const {
|
|
// Identity cast means no change so return true
|
|
if (this == Ty)
|
|
return true;
|
|
|
|
// They are not convertible unless they are at least first class types
|
|
if (!this->isFirstClassType() || !Ty->isFirstClassType())
|
|
return false;
|
|
|
|
// Vector -> Vector conversions are always lossless if the two vector types
|
|
// have the same size, otherwise not. Also, 64-bit vector types can be
|
|
// converted to x86mmx.
|
|
if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
|
|
if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
|
|
return thisPTy->getBitWidth() == thatPTy->getBitWidth();
|
|
if (Ty->getTypeID() == Type::X86_MMXTyID &&
|
|
thisPTy->getBitWidth() == 64)
|
|
return true;
|
|
}
|
|
|
|
if (this->getTypeID() == Type::X86_MMXTyID)
|
|
if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
|
|
if (thatPTy->getBitWidth() == 64)
|
|
return true;
|
|
|
|
// At this point we have only various mismatches of the first class types
|
|
// remaining and ptr->ptr. Just select the lossless conversions. Everything
|
|
// else is not lossless.
|
|
if (this->isPointerTy())
|
|
return Ty->isPointerTy();
|
|
return false; // Other types have no identity values
|
|
}
|
|
|
|
bool Type::isEmptyTy() const {
|
|
const ArrayType *ATy = dyn_cast<ArrayType>(this);
|
|
if (ATy) {
|
|
unsigned NumElements = ATy->getNumElements();
|
|
return NumElements == 0 || ATy->getElementType()->isEmptyTy();
|
|
}
|
|
|
|
const StructType *STy = dyn_cast<StructType>(this);
|
|
if (STy) {
|
|
unsigned NumElements = STy->getNumElements();
|
|
for (unsigned i = 0; i < NumElements; ++i)
|
|
if (!STy->getElementType(i)->isEmptyTy())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned Type::getPrimitiveSizeInBits() const {
|
|
switch (getTypeID()) {
|
|
case Type::HalfTyID: return 16;
|
|
case Type::FloatTyID: return 32;
|
|
case Type::DoubleTyID: return 64;
|
|
case Type::X86_FP80TyID: return 80;
|
|
case Type::FP128TyID: return 128;
|
|
case Type::PPC_FP128TyID: return 128;
|
|
case Type::X86_MMXTyID: return 64;
|
|
case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
|
|
case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
/// getScalarSizeInBits - If this is a vector type, return the
|
|
/// getPrimitiveSizeInBits value for the element type. Otherwise return the
|
|
/// getPrimitiveSizeInBits value for this type.
|
|
unsigned Type::getScalarSizeInBits() {
|
|
return getScalarType()->getPrimitiveSizeInBits();
|
|
}
|
|
|
|
/// getFPMantissaWidth - Return the width of the mantissa of this type. This
|
|
/// is only valid on floating point types. If the FP type does not
|
|
/// have a stable mantissa (e.g. ppc long double), this method returns -1.
|
|
int Type::getFPMantissaWidth() const {
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(this))
|
|
return VTy->getElementType()->getFPMantissaWidth();
|
|
assert(isFloatingPointTy() && "Not a floating point type!");
|
|
if (getTypeID() == HalfTyID) return 11;
|
|
if (getTypeID() == FloatTyID) return 24;
|
|
if (getTypeID() == DoubleTyID) return 53;
|
|
if (getTypeID() == X86_FP80TyID) return 64;
|
|
if (getTypeID() == FP128TyID) return 113;
|
|
assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
|
|
return -1;
|
|
}
|
|
|
|
/// isSizedDerivedType - Derived types like structures and arrays are sized
|
|
/// iff all of the members of the type are sized as well. Since asking for
|
|
/// their size is relatively uncommon, move this operation out of line.
|
|
bool Type::isSizedDerivedType() const {
|
|
if (this->isIntegerTy())
|
|
return true;
|
|
|
|
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
|
|
return ATy->getElementType()->isSized();
|
|
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(this))
|
|
return VTy->getElementType()->isSized();
|
|
|
|
if (!this->isStructTy())
|
|
return false;
|
|
|
|
return cast<StructType>(this)->isSized();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Subclass Helper Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
unsigned Type::getIntegerBitWidth() const {
|
|
return cast<IntegerType>(this)->getBitWidth();
|
|
}
|
|
|
|
bool Type::isFunctionVarArg() const {
|
|
return cast<FunctionType>(this)->isVarArg();
|
|
}
|
|
|
|
Type *Type::getFunctionParamType(unsigned i) const {
|
|
return cast<FunctionType>(this)->getParamType(i);
|
|
}
|
|
|
|
unsigned Type::getFunctionNumParams() const {
|
|
return cast<FunctionType>(this)->getNumParams();
|
|
}
|
|
|
|
StringRef Type::getStructName() const {
|
|
return cast<StructType>(this)->getName();
|
|
}
|
|
|
|
unsigned Type::getStructNumElements() const {
|
|
return cast<StructType>(this)->getNumElements();
|
|
}
|
|
|
|
Type *Type::getStructElementType(unsigned N) const {
|
|
return cast<StructType>(this)->getElementType(N);
|
|
}
|
|
|
|
Type *Type::getSequentialElementType() const {
|
|
return cast<SequentialType>(this)->getElementType();
|
|
}
|
|
|
|
uint64_t Type::getArrayNumElements() const {
|
|
return cast<ArrayType>(this)->getNumElements();
|
|
}
|
|
|
|
unsigned Type::getVectorNumElements() const {
|
|
return cast<VectorType>(this)->getNumElements();
|
|
}
|
|
|
|
unsigned Type::getPointerAddressSpace() const {
|
|
return cast<PointerType>(getScalarType())->getAddressSpace();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Primitive 'Type' data
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
|
|
Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
|
|
Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
|
|
Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
|
|
Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
|
|
Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
|
|
Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
|
|
Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
|
|
Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
|
|
Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
|
|
|
|
IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
|
|
IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
|
|
IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
|
|
IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
|
|
IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
|
|
|
|
IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
|
|
return IntegerType::get(C, N);
|
|
}
|
|
|
|
PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
|
|
return getHalfTy(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
|
|
return getFloatTy(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
|
|
return getDoubleTy(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getX86_FP80Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getFP128Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getPPC_FP128Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
|
|
return getX86_MMXTy(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
|
|
return getIntNTy(C, N)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getInt1Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getInt8Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getInt16Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getInt32Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
|
|
return getInt64Ty(C)->getPointerTo(AS);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntegerType Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
|
|
assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
|
|
assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
|
|
|
|
// Check for the built-in integer types
|
|
switch (NumBits) {
|
|
case 1: return cast<IntegerType>(Type::getInt1Ty(C));
|
|
case 8: return cast<IntegerType>(Type::getInt8Ty(C));
|
|
case 16: return cast<IntegerType>(Type::getInt16Ty(C));
|
|
case 32: return cast<IntegerType>(Type::getInt32Ty(C));
|
|
case 64: return cast<IntegerType>(Type::getInt64Ty(C));
|
|
default:
|
|
break;
|
|
}
|
|
|
|
IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
|
|
|
|
if (Entry == 0)
|
|
Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
|
|
|
|
return Entry;
|
|
}
|
|
|
|
bool IntegerType::isPowerOf2ByteWidth() const {
|
|
unsigned BitWidth = getBitWidth();
|
|
return (BitWidth > 7) && isPowerOf2_32(BitWidth);
|
|
}
|
|
|
|
APInt IntegerType::getMask() const {
|
|
return APInt::getAllOnesValue(getBitWidth());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FunctionType Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
|
|
bool IsVarArgs)
|
|
: Type(Result->getContext(), FunctionTyID) {
|
|
Type **SubTys = reinterpret_cast<Type**>(this+1);
|
|
assert(isValidReturnType(Result) && "invalid return type for function");
|
|
setSubclassData(IsVarArgs);
|
|
|
|
SubTys[0] = const_cast<Type*>(Result);
|
|
|
|
for (unsigned i = 0, e = Params.size(); i != e; ++i) {
|
|
assert(isValidArgumentType(Params[i]) &&
|
|
"Not a valid type for function argument!");
|
|
SubTys[i+1] = Params[i];
|
|
}
|
|
|
|
ContainedTys = SubTys;
|
|
NumContainedTys = Params.size() + 1; // + 1 for result type
|
|
}
|
|
|
|
// FunctionType::get - The factory function for the FunctionType class.
|
|
FunctionType *FunctionType::get(Type *ReturnType,
|
|
ArrayRef<Type*> Params, bool isVarArg) {
|
|
LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
|
|
FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
|
|
LLVMContextImpl::FunctionTypeMap::iterator I =
|
|
pImpl->FunctionTypes.find_as(Key);
|
|
FunctionType *FT;
|
|
|
|
if (I == pImpl->FunctionTypes.end()) {
|
|
FT = (FunctionType*) pImpl->TypeAllocator.
|
|
Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
|
|
AlignOf<FunctionType>::Alignment);
|
|
new (FT) FunctionType(ReturnType, Params, isVarArg);
|
|
pImpl->FunctionTypes[FT] = true;
|
|
} else {
|
|
FT = I->first;
|
|
}
|
|
|
|
return FT;
|
|
}
|
|
|
|
FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
|
|
return get(Result, ArrayRef<Type *>(), isVarArg);
|
|
}
|
|
|
|
/// isValidReturnType - Return true if the specified type is valid as a return
|
|
/// type.
|
|
bool FunctionType::isValidReturnType(Type *RetTy) {
|
|
return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
|
|
!RetTy->isMetadataTy();
|
|
}
|
|
|
|
/// isValidArgumentType - Return true if the specified type is valid as an
|
|
/// argument type.
|
|
bool FunctionType::isValidArgumentType(Type *ArgTy) {
|
|
return ArgTy->isFirstClassType();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StructType Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Primitive Constructors.
|
|
|
|
StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
|
|
bool isPacked) {
|
|
LLVMContextImpl *pImpl = Context.pImpl;
|
|
AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
|
|
LLVMContextImpl::StructTypeMap::iterator I =
|
|
pImpl->AnonStructTypes.find_as(Key);
|
|
StructType *ST;
|
|
|
|
if (I == pImpl->AnonStructTypes.end()) {
|
|
// Value not found. Create a new type!
|
|
ST = new (Context.pImpl->TypeAllocator) StructType(Context);
|
|
ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
|
|
ST->setBody(ETypes, isPacked);
|
|
Context.pImpl->AnonStructTypes[ST] = true;
|
|
} else {
|
|
ST = I->first;
|
|
}
|
|
|
|
return ST;
|
|
}
|
|
|
|
void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
|
|
assert(isOpaque() && "Struct body already set!");
|
|
|
|
setSubclassData(getSubclassData() | SCDB_HasBody);
|
|
if (isPacked)
|
|
setSubclassData(getSubclassData() | SCDB_Packed);
|
|
|
|
unsigned NumElements = Elements.size();
|
|
Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements);
|
|
memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements);
|
|
|
|
ContainedTys = Elts;
|
|
NumContainedTys = NumElements;
|
|
}
|
|
|
|
void StructType::setName(StringRef Name) {
|
|
if (Name == getName()) return;
|
|
|
|
StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
|
|
typedef StringMap<StructType *>::MapEntryTy EntryTy;
|
|
|
|
// If this struct already had a name, remove its symbol table entry. Don't
|
|
// delete the data yet because it may be part of the new name.
|
|
if (SymbolTableEntry)
|
|
SymbolTable.remove((EntryTy *)SymbolTableEntry);
|
|
|
|
// If this is just removing the name, we're done.
|
|
if (Name.empty()) {
|
|
if (SymbolTableEntry) {
|
|
// Delete the old string data.
|
|
((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
|
|
SymbolTableEntry = 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Look up the entry for the name.
|
|
EntryTy *Entry = &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
|
|
|
|
// While we have a name collision, try a random rename.
|
|
if (Entry->getValue()) {
|
|
SmallString<64> TempStr(Name);
|
|
TempStr.push_back('.');
|
|
raw_svector_ostream TmpStream(TempStr);
|
|
unsigned NameSize = Name.size();
|
|
|
|
do {
|
|
TempStr.resize(NameSize + 1);
|
|
TmpStream.resync();
|
|
TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
|
|
|
|
Entry = &getContext().pImpl->
|
|
NamedStructTypes.GetOrCreateValue(TmpStream.str());
|
|
} while (Entry->getValue());
|
|
}
|
|
|
|
// Okay, we found an entry that isn't used. It's us!
|
|
Entry->setValue(this);
|
|
|
|
// Delete the old string data.
|
|
if (SymbolTableEntry)
|
|
((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
|
|
SymbolTableEntry = Entry;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StructType Helper functions.
|
|
|
|
StructType *StructType::create(LLVMContext &Context, StringRef Name) {
|
|
StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
|
|
if (!Name.empty())
|
|
ST->setName(Name);
|
|
return ST;
|
|
}
|
|
|
|
StructType *StructType::get(LLVMContext &Context, bool isPacked) {
|
|
return get(Context, llvm::ArrayRef<Type*>(), isPacked);
|
|
}
|
|
|
|
StructType *StructType::get(Type *type, ...) {
|
|
assert(type != 0 && "Cannot create a struct type with no elements with this");
|
|
LLVMContext &Ctx = type->getContext();
|
|
va_list ap;
|
|
SmallVector<llvm::Type*, 8> StructFields;
|
|
va_start(ap, type);
|
|
while (type) {
|
|
StructFields.push_back(type);
|
|
type = va_arg(ap, llvm::Type*);
|
|
}
|
|
return llvm::StructType::get(Ctx, StructFields);
|
|
}
|
|
|
|
StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
|
|
StringRef Name, bool isPacked) {
|
|
StructType *ST = create(Context, Name);
|
|
ST->setBody(Elements, isPacked);
|
|
return ST;
|
|
}
|
|
|
|
StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
|
|
return create(Context, Elements, StringRef());
|
|
}
|
|
|
|
StructType *StructType::create(LLVMContext &Context) {
|
|
return create(Context, StringRef());
|
|
}
|
|
|
|
StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
|
|
bool isPacked) {
|
|
assert(!Elements.empty() &&
|
|
"This method may not be invoked with an empty list");
|
|
return create(Elements[0]->getContext(), Elements, Name, isPacked);
|
|
}
|
|
|
|
StructType *StructType::create(ArrayRef<Type*> Elements) {
|
|
assert(!Elements.empty() &&
|
|
"This method may not be invoked with an empty list");
|
|
return create(Elements[0]->getContext(), Elements, StringRef());
|
|
}
|
|
|
|
StructType *StructType::create(StringRef Name, Type *type, ...) {
|
|
assert(type != 0 && "Cannot create a struct type with no elements with this");
|
|
LLVMContext &Ctx = type->getContext();
|
|
va_list ap;
|
|
SmallVector<llvm::Type*, 8> StructFields;
|
|
va_start(ap, type);
|
|
while (type) {
|
|
StructFields.push_back(type);
|
|
type = va_arg(ap, llvm::Type*);
|
|
}
|
|
return llvm::StructType::create(Ctx, StructFields, Name);
|
|
}
|
|
|
|
bool StructType::isSized() const {
|
|
if ((getSubclassData() & SCDB_IsSized) != 0)
|
|
return true;
|
|
if (isOpaque())
|
|
return false;
|
|
|
|
// Okay, our struct is sized if all of the elements are, but if one of the
|
|
// elements is opaque, the struct isn't sized *yet*, but may become sized in
|
|
// the future, so just bail out without caching.
|
|
for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
|
|
if (!(*I)->isSized())
|
|
return false;
|
|
|
|
// Here we cheat a bit and cast away const-ness. The goal is to memoize when
|
|
// we find a sized type, as types can only move from opaque to sized, not the
|
|
// other way.
|
|
const_cast<StructType*>(this)->setSubclassData(
|
|
getSubclassData() | SCDB_IsSized);
|
|
return true;
|
|
}
|
|
|
|
StringRef StructType::getName() const {
|
|
assert(!isLiteral() && "Literal structs never have names");
|
|
if (SymbolTableEntry == 0) return StringRef();
|
|
|
|
return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
|
|
}
|
|
|
|
void StructType::setBody(Type *type, ...) {
|
|
assert(type != 0 && "Cannot create a struct type with no elements with this");
|
|
va_list ap;
|
|
SmallVector<llvm::Type*, 8> StructFields;
|
|
va_start(ap, type);
|
|
while (type) {
|
|
StructFields.push_back(type);
|
|
type = va_arg(ap, llvm::Type*);
|
|
}
|
|
setBody(StructFields);
|
|
}
|
|
|
|
bool StructType::isValidElementType(Type *ElemTy) {
|
|
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
|
|
!ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
|
|
}
|
|
|
|
/// isLayoutIdentical - Return true if this is layout identical to the
|
|
/// specified struct.
|
|
bool StructType::isLayoutIdentical(StructType *Other) const {
|
|
if (this == Other) return true;
|
|
|
|
if (isPacked() != Other->isPacked() ||
|
|
getNumElements() != Other->getNumElements())
|
|
return false;
|
|
|
|
return std::equal(element_begin(), element_end(), Other->element_begin());
|
|
}
|
|
|
|
/// getTypeByName - Return the type with the specified name, or null if there
|
|
/// is none by that name.
|
|
StructType *Module::getTypeByName(StringRef Name) const {
|
|
StringMap<StructType*>::iterator I =
|
|
getContext().pImpl->NamedStructTypes.find(Name);
|
|
if (I != getContext().pImpl->NamedStructTypes.end())
|
|
return I->second;
|
|
return 0;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CompositeType Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Type *CompositeType::getTypeAtIndex(const Value *V) {
|
|
if (StructType *STy = dyn_cast<StructType>(this)) {
|
|
unsigned Idx =
|
|
(unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
|
|
assert(indexValid(Idx) && "Invalid structure index!");
|
|
return STy->getElementType(Idx);
|
|
}
|
|
|
|
return cast<SequentialType>(this)->getElementType();
|
|
}
|
|
Type *CompositeType::getTypeAtIndex(unsigned Idx) {
|
|
if (StructType *STy = dyn_cast<StructType>(this)) {
|
|
assert(indexValid(Idx) && "Invalid structure index!");
|
|
return STy->getElementType(Idx);
|
|
}
|
|
|
|
return cast<SequentialType>(this)->getElementType();
|
|
}
|
|
bool CompositeType::indexValid(const Value *V) const {
|
|
if (const StructType *STy = dyn_cast<StructType>(this)) {
|
|
// Structure indexes require (vectors of) 32-bit integer constants. In the
|
|
// vector case all of the indices must be equal.
|
|
if (!V->getType()->getScalarType()->isIntegerTy(32))
|
|
return false;
|
|
const Constant *C = dyn_cast<Constant>(V);
|
|
if (C && V->getType()->isVectorTy())
|
|
C = C->getSplatValue();
|
|
const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
|
|
return CU && CU->getZExtValue() < STy->getNumElements();
|
|
}
|
|
|
|
// Sequential types can be indexed by any integer.
|
|
return V->getType()->isIntOrIntVectorTy();
|
|
}
|
|
|
|
bool CompositeType::indexValid(unsigned Idx) const {
|
|
if (const StructType *STy = dyn_cast<StructType>(this))
|
|
return Idx < STy->getNumElements();
|
|
// Sequential types can be indexed by any integer.
|
|
return true;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ArrayType Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
|
|
: SequentialType(ArrayTyID, ElType) {
|
|
NumElements = NumEl;
|
|
}
|
|
|
|
ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
|
|
Type *ElementType = const_cast<Type*>(elementType);
|
|
assert(isValidElementType(ElementType) && "Invalid type for array element!");
|
|
|
|
LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
|
|
ArrayType *&Entry =
|
|
pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
|
|
|
|
if (Entry == 0)
|
|
Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
|
|
return Entry;
|
|
}
|
|
|
|
bool ArrayType::isValidElementType(Type *ElemTy) {
|
|
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
|
|
!ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VectorType Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
VectorType::VectorType(Type *ElType, unsigned NumEl)
|
|
: SequentialType(VectorTyID, ElType) {
|
|
NumElements = NumEl;
|
|
}
|
|
|
|
VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
|
|
Type *ElementType = const_cast<Type*>(elementType);
|
|
assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
|
|
assert(isValidElementType(ElementType) &&
|
|
"Elements of a VectorType must be a primitive type");
|
|
|
|
LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
|
|
VectorType *&Entry = ElementType->getContext().pImpl
|
|
->VectorTypes[std::make_pair(ElementType, NumElements)];
|
|
|
|
if (Entry == 0)
|
|
Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
|
|
return Entry;
|
|
}
|
|
|
|
bool VectorType::isValidElementType(Type *ElemTy) {
|
|
return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
|
|
ElemTy->isPointerTy();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PointerType Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
|
|
assert(EltTy && "Can't get a pointer to <null> type!");
|
|
assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
|
|
|
|
LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
|
|
|
|
// Since AddressSpace #0 is the common case, we special case it.
|
|
PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
|
|
: CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
|
|
|
|
if (Entry == 0)
|
|
Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
|
|
return Entry;
|
|
}
|
|
|
|
|
|
PointerType::PointerType(Type *E, unsigned AddrSpace)
|
|
: SequentialType(PointerTyID, E) {
|
|
#ifndef NDEBUG
|
|
const unsigned oldNCT = NumContainedTys;
|
|
#endif
|
|
setSubclassData(AddrSpace);
|
|
// Check for miscompile. PR11652.
|
|
assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
|
|
}
|
|
|
|
PointerType *Type::getPointerTo(unsigned addrs) {
|
|
return PointerType::get(this, addrs);
|
|
}
|
|
|
|
bool PointerType::isValidElementType(Type *ElemTy) {
|
|
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
|
|
!ElemTy->isMetadataTy();
|
|
}
|