llvm-6502/utils/TableGen/CodeGenDAGPatterns.h

859 lines
32 KiB
C++

//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the CodeGenDAGPatterns class, which is used to read and
// represent the patterns present in a .td file for instructions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
#define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
#include "CodeGenIntrinsics.h"
#include "CodeGenTarget.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <map>
#include <set>
#include <vector>
namespace llvm {
class Record;
class Init;
class ListInit;
class DagInit;
class SDNodeInfo;
class TreePattern;
class TreePatternNode;
class CodeGenDAGPatterns;
class ComplexPattern;
/// EEVT::DAGISelGenValueType - These are some extended forms of
/// MVT::SimpleValueType that we use as lattice values during type inference.
/// The existing MVT iAny, fAny and vAny types suffice to represent
/// arbitrary integer, floating-point, and vector types, so only an unknown
/// value is needed.
namespace EEVT {
/// TypeSet - This is either empty if it's completely unknown, or holds a set
/// of types. It is used during type inference because register classes can
/// have multiple possible types and we don't know which one they get until
/// type inference is complete.
///
/// TypeSet can have three states:
/// Vector is empty: The type is completely unknown, it can be any valid
/// target type.
/// Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one
/// of those types only.
/// Vector has one concrete type: The type is completely known.
///
class TypeSet {
SmallVector<MVT::SimpleValueType, 4> TypeVec;
public:
TypeSet() {}
TypeSet(MVT::SimpleValueType VT, TreePattern &TP);
TypeSet(ArrayRef<MVT::SimpleValueType> VTList);
bool isCompletelyUnknown() const { return TypeVec.empty(); }
bool isConcrete() const {
if (TypeVec.size() != 1) return false;
unsigned char T = TypeVec[0]; (void)T;
assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny);
return true;
}
MVT::SimpleValueType getConcrete() const {
assert(isConcrete() && "Type isn't concrete yet");
return (MVT::SimpleValueType)TypeVec[0];
}
bool isDynamicallyResolved() const {
return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny;
}
const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const {
assert(!TypeVec.empty() && "Not a type list!");
return TypeVec;
}
bool isVoid() const {
return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid;
}
/// hasIntegerTypes - Return true if this TypeSet contains any integer value
/// types.
bool hasIntegerTypes() const;
/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
/// a floating point value type.
bool hasFloatingPointTypes() const;
/// hasScalarTypes - Return true if this TypeSet contains a scalar value
/// type.
bool hasScalarTypes() const;
/// hasVectorTypes - Return true if this TypeSet contains a vector value
/// type.
bool hasVectorTypes() const;
/// getName() - Return this TypeSet as a string.
std::string getName() const;
/// MergeInTypeInfo - This merges in type information from the specified
/// argument. If 'this' changes, it returns true. If the two types are
/// contradictory (e.g. merge f32 into i32) then this flags an error.
bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP);
bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) {
return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP);
}
/// Force this type list to only contain integer types.
bool EnforceInteger(TreePattern &TP);
/// Force this type list to only contain floating point types.
bool EnforceFloatingPoint(TreePattern &TP);
/// EnforceScalar - Remove all vector types from this type list.
bool EnforceScalar(TreePattern &TP);
/// EnforceVector - Remove all non-vector types from this type list.
bool EnforceVector(TreePattern &TP);
/// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
/// this an other based on this information.
bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP);
/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
/// whose element is VT.
bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
/// whose element is VT.
bool EnforceVectorEltTypeIs(MVT::SimpleValueType VT, TreePattern &TP);
/// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to
/// be a vector type VT.
bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
/// EnforceVectorSameNumElts - 'this' is now constrainted to
/// be a vector with same num elements as VT.
bool EnforceVectorSameNumElts(EEVT::TypeSet &VT, TreePattern &TP);
bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; }
bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; }
private:
/// FillWithPossibleTypes - Set to all legal types and return true, only
/// valid on completely unknown type sets. If Pred is non-null, only MVTs
/// that pass the predicate are added.
bool FillWithPossibleTypes(TreePattern &TP,
bool (*Pred)(MVT::SimpleValueType) = nullptr,
const char *PredicateName = nullptr);
};
}
/// Set type used to track multiply used variables in patterns
typedef std::set<std::string> MultipleUseVarSet;
/// SDTypeConstraint - This is a discriminated union of constraints,
/// corresponding to the SDTypeConstraint tablegen class in Target.td.
struct SDTypeConstraint {
SDTypeConstraint(Record *R);
unsigned OperandNo; // The operand # this constraint applies to.
enum {
SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs
} ConstraintType;
union { // The discriminated union.
struct {
MVT::SimpleValueType VT;
} SDTCisVT_Info;
struct {
unsigned OtherOperandNum;
} SDTCisSameAs_Info;
struct {
unsigned OtherOperandNum;
} SDTCisVTSmallerThanOp_Info;
struct {
unsigned BigOperandNum;
} SDTCisOpSmallerThanOp_Info;
struct {
unsigned OtherOperandNum;
} SDTCisEltOfVec_Info;
struct {
unsigned OtherOperandNum;
} SDTCisSubVecOfVec_Info;
struct {
MVT::SimpleValueType VT;
} SDTCVecEltisVT_Info;
struct {
unsigned OtherOperandNum;
} SDTCisSameNumEltsAs_Info;
} x;
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
/// constraint to the nodes operands. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, an error
/// is flagged.
bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
TreePattern &TP) const;
};
/// SDNodeInfo - One of these records is created for each SDNode instance in
/// the target .td file. This represents the various dag nodes we will be
/// processing.
class SDNodeInfo {
Record *Def;
std::string EnumName;
std::string SDClassName;
unsigned Properties;
unsigned NumResults;
int NumOperands;
std::vector<SDTypeConstraint> TypeConstraints;
public:
SDNodeInfo(Record *R); // Parse the specified record.
unsigned getNumResults() const { return NumResults; }
/// getNumOperands - This is the number of operands required or -1 if
/// variadic.
int getNumOperands() const { return NumOperands; }
Record *getRecord() const { return Def; }
const std::string &getEnumName() const { return EnumName; }
const std::string &getSDClassName() const { return SDClassName; }
const std::vector<SDTypeConstraint> &getTypeConstraints() const {
return TypeConstraints;
}
/// getKnownType - If the type constraints on this node imply a fixed type
/// (e.g. all stores return void, etc), then return it as an
/// MVT::SimpleValueType. Otherwise, return MVT::Other.
MVT::SimpleValueType getKnownType(unsigned ResNo) const;
/// hasProperty - Return true if this node has the specified property.
///
bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
/// ApplyTypeConstraints - Given a node in a pattern, apply the type
/// constraints for this node to the operands of the node. This returns
/// true if it makes a change, false otherwise. If a type contradiction is
/// found, an error is flagged.
bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
bool MadeChange = false;
for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
return MadeChange;
}
};
/// TreePredicateFn - This is an abstraction that represents the predicates on
/// a PatFrag node. This is a simple one-word wrapper around a pointer to
/// provide nice accessors.
class TreePredicateFn {
/// PatFragRec - This is the TreePattern for the PatFrag that we
/// originally came from.
TreePattern *PatFragRec;
public:
/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
TreePredicateFn(TreePattern *N);
TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
/// isAlwaysTrue - Return true if this is a noop predicate.
bool isAlwaysTrue() const;
bool isImmediatePattern() const { return !getImmCode().empty(); }
/// getImmediatePredicateCode - Return the code that evaluates this pattern if
/// this is an immediate predicate. It is an error to call this on a
/// non-immediate pattern.
std::string getImmediatePredicateCode() const {
std::string Result = getImmCode();
assert(!Result.empty() && "Isn't an immediate pattern!");
return Result;
}
bool operator==(const TreePredicateFn &RHS) const {
return PatFragRec == RHS.PatFragRec;
}
bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
/// Return the name to use in the generated code to reference this, this is
/// "Predicate_foo" if from a pattern fragment "foo".
std::string getFnName() const;
/// getCodeToRunOnSDNode - Return the code for the function body that
/// evaluates this predicate. The argument is expected to be in "Node",
/// not N. This handles casting and conversion to a concrete node type as
/// appropriate.
std::string getCodeToRunOnSDNode() const;
private:
std::string getPredCode() const;
std::string getImmCode() const;
};
/// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
/// patterns), and as such should be ref counted. We currently just leak all
/// TreePatternNode objects!
class TreePatternNode {
/// The type of each node result. Before and during type inference, each
/// result may be a set of possible types. After (successful) type inference,
/// each is a single concrete type.
SmallVector<EEVT::TypeSet, 1> Types;
/// Operator - The Record for the operator if this is an interior node (not
/// a leaf).
Record *Operator;
/// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
///
Init *Val;
/// Name - The name given to this node with the :$foo notation.
///
std::string Name;
/// PredicateFns - The predicate functions to execute on this node to check
/// for a match. If this list is empty, no predicate is involved.
std::vector<TreePredicateFn> PredicateFns;
/// TransformFn - The transformation function to execute on this node before
/// it can be substituted into the resulting instruction on a pattern match.
Record *TransformFn;
std::vector<TreePatternNode*> Children;
public:
TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch,
unsigned NumResults)
: Operator(Op), Val(nullptr), TransformFn(nullptr), Children(Ch) {
Types.resize(NumResults);
}
TreePatternNode(Init *val, unsigned NumResults) // leaf ctor
: Operator(nullptr), Val(val), TransformFn(nullptr) {
Types.resize(NumResults);
}
~TreePatternNode();
bool hasName() const { return !Name.empty(); }
const std::string &getName() const { return Name; }
void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
bool isLeaf() const { return Val != nullptr; }
// Type accessors.
unsigned getNumTypes() const { return Types.size(); }
MVT::SimpleValueType getType(unsigned ResNo) const {
return Types[ResNo].getConcrete();
}
const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; }
const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; }
EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; }
void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; }
bool hasTypeSet(unsigned ResNo) const {
return Types[ResNo].isConcrete();
}
bool isTypeCompletelyUnknown(unsigned ResNo) const {
return Types[ResNo].isCompletelyUnknown();
}
bool isTypeDynamicallyResolved(unsigned ResNo) const {
return Types[ResNo].isDynamicallyResolved();
}
Init *getLeafValue() const { assert(isLeaf()); return Val; }
Record *getOperator() const { assert(!isLeaf()); return Operator; }
unsigned getNumChildren() const { return Children.size(); }
TreePatternNode *getChild(unsigned N) const { return Children[N]; }
void setChild(unsigned i, TreePatternNode *N) {
Children[i] = N;
}
/// hasChild - Return true if N is any of our children.
bool hasChild(const TreePatternNode *N) const {
for (unsigned i = 0, e = Children.size(); i != e; ++i)
if (Children[i] == N) return true;
return false;
}
bool hasAnyPredicate() const { return !PredicateFns.empty(); }
const std::vector<TreePredicateFn> &getPredicateFns() const {
return PredicateFns;
}
void clearPredicateFns() { PredicateFns.clear(); }
void setPredicateFns(const std::vector<TreePredicateFn> &Fns) {
assert(PredicateFns.empty() && "Overwriting non-empty predicate list!");
PredicateFns = Fns;
}
void addPredicateFn(const TreePredicateFn &Fn) {
assert(!Fn.isAlwaysTrue() && "Empty predicate string!");
if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) ==
PredicateFns.end())
PredicateFns.push_back(Fn);
}
Record *getTransformFn() const { return TransformFn; }
void setTransformFn(Record *Fn) { TransformFn = Fn; }
/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
/// CodeGenIntrinsic information for it, otherwise return a null pointer.
const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
/// return the ComplexPattern information, otherwise return null.
const ComplexPattern *
getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
/// Returns the number of MachineInstr operands that would be produced by this
/// node if it mapped directly to an output Instruction's
/// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
/// for Operands; otherwise 1.
unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
/// NodeHasProperty - Return true if this node has the specified property.
bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
/// TreeHasProperty - Return true if any node in this tree has the specified
/// property.
bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
/// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
/// marked isCommutative.
bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
void print(raw_ostream &OS) const;
void dump() const;
public: // Higher level manipulation routines.
/// clone - Return a new copy of this tree.
///
TreePatternNode *clone() const;
/// RemoveAllTypes - Recursively strip all the types of this tree.
void RemoveAllTypes();
/// isIsomorphicTo - Return true if this node is recursively isomorphic to
/// the specified node. For this comparison, all of the state of the node
/// is considered, except for the assigned name. Nodes with differing names
/// that are otherwise identical are considered isomorphic.
bool isIsomorphicTo(const TreePatternNode *N,
const MultipleUseVarSet &DepVars) const;
/// SubstituteFormalArguments - Replace the formal arguments in this tree
/// with actual values specified by ArgMap.
void SubstituteFormalArguments(std::map<std::string,
TreePatternNode*> &ArgMap);
/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, inline them into place, giving us a pattern without any
/// PatFrag references.
TreePatternNode *InlinePatternFragments(TreePattern &TP);
/// ApplyTypeConstraints - Apply all of the type constraints relevant to
/// this node and its children in the tree. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, flag an error.
bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
/// UpdateNodeType - Set the node type of N to VT if VT contains
/// information. If N already contains a conflicting type, then flag an
/// error. This returns true if any information was updated.
///
bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy,
TreePattern &TP) {
return Types[ResNo].MergeInTypeInfo(InTy, TP);
}
bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
TreePattern &TP) {
return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP);
}
// Update node type with types inferred from an instruction operand or result
// def from the ins/outs lists.
// Return true if the type changed.
bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
/// ContainsUnresolvedType - Return true if this tree contains any
/// unresolved types.
bool ContainsUnresolvedType() const {
for (unsigned i = 0, e = Types.size(); i != e; ++i)
if (!Types[i].isConcrete()) return true;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (getChild(i)->ContainsUnresolvedType()) return true;
return false;
}
/// canPatternMatch - If it is impossible for this pattern to match on this
/// target, fill in Reason and return false. Otherwise, return true.
bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
};
inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
TPN.print(OS);
return OS;
}
/// TreePattern - Represent a pattern, used for instructions, pattern
/// fragments, etc.
///
class TreePattern {
/// Trees - The list of pattern trees which corresponds to this pattern.
/// Note that PatFrag's only have a single tree.
///
std::vector<TreePatternNode*> Trees;
/// NamedNodes - This is all of the nodes that have names in the trees in this
/// pattern.
StringMap<SmallVector<TreePatternNode*,1> > NamedNodes;
/// TheRecord - The actual TableGen record corresponding to this pattern.
///
Record *TheRecord;
/// Args - This is a list of all of the arguments to this pattern (for
/// PatFrag patterns), which are the 'node' markers in this pattern.
std::vector<std::string> Args;
/// CDP - the top-level object coordinating this madness.
///
CodeGenDAGPatterns &CDP;
/// isInputPattern - True if this is an input pattern, something to match.
/// False if this is an output pattern, something to emit.
bool isInputPattern;
/// hasError - True if the currently processed nodes have unresolvable types
/// or other non-fatal errors
bool HasError;
/// It's important that the usage of operands in ComplexPatterns is
/// consistent: each named operand can be defined by at most one
/// ComplexPattern. This records the ComplexPattern instance and the operand
/// number for each operand encountered in a ComplexPattern to aid in that
/// check.
StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
public:
/// TreePattern constructor - Parse the specified DagInits into the
/// current record.
TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
CodeGenDAGPatterns &ise);
TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
CodeGenDAGPatterns &ise);
TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
CodeGenDAGPatterns &ise);
/// getTrees - Return the tree patterns which corresponds to this pattern.
///
const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
unsigned getNumTrees() const { return Trees.size(); }
TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
TreePatternNode *getOnlyTree() const {
assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
return Trees[0];
}
const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() {
if (NamedNodes.empty())
ComputeNamedNodes();
return NamedNodes;
}
/// getRecord - Return the actual TableGen record corresponding to this
/// pattern.
///
Record *getRecord() const { return TheRecord; }
unsigned getNumArgs() const { return Args.size(); }
const std::string &getArgName(unsigned i) const {
assert(i < Args.size() && "Argument reference out of range!");
return Args[i];
}
std::vector<std::string> &getArgList() { return Args; }
CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, inline them into place, giving us a pattern without any
/// PatFrag references.
void InlinePatternFragments() {
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
Trees[i] = Trees[i]->InlinePatternFragments(*this);
}
/// InferAllTypes - Infer/propagate as many types throughout the expression
/// patterns as possible. Return true if all types are inferred, false
/// otherwise. Bail out if a type contradiction is found.
bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> >
*NamedTypes=nullptr);
/// error - If this is the first error in the current resolution step,
/// print it and set the error flag. Otherwise, continue silently.
void error(const Twine &Msg);
bool hasError() const {
return HasError;
}
void resetError() {
HasError = false;
}
void print(raw_ostream &OS) const;
void dump() const;
private:
TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName);
void ComputeNamedNodes();
void ComputeNamedNodes(TreePatternNode *N);
};
/// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
/// that has a set ExecuteAlways / DefaultOps field.
struct DAGDefaultOperand {
std::vector<TreePatternNode*> DefaultOps;
};
class DAGInstruction {
TreePattern *Pattern;
std::vector<Record*> Results;
std::vector<Record*> Operands;
std::vector<Record*> ImpResults;
TreePatternNode *ResultPattern;
public:
DAGInstruction(TreePattern *TP,
const std::vector<Record*> &results,
const std::vector<Record*> &operands,
const std::vector<Record*> &impresults)
: Pattern(TP), Results(results), Operands(operands),
ImpResults(impresults), ResultPattern(nullptr) {}
TreePattern *getPattern() const { return Pattern; }
unsigned getNumResults() const { return Results.size(); }
unsigned getNumOperands() const { return Operands.size(); }
unsigned getNumImpResults() const { return ImpResults.size(); }
const std::vector<Record*>& getImpResults() const { return ImpResults; }
void setResultPattern(TreePatternNode *R) { ResultPattern = R; }
Record *getResult(unsigned RN) const {
assert(RN < Results.size());
return Results[RN];
}
Record *getOperand(unsigned ON) const {
assert(ON < Operands.size());
return Operands[ON];
}
Record *getImpResult(unsigned RN) const {
assert(RN < ImpResults.size());
return ImpResults[RN];
}
TreePatternNode *getResultPattern() const { return ResultPattern; }
};
/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
/// processed to produce isel.
class PatternToMatch {
public:
PatternToMatch(Record *srcrecord, ListInit *preds,
TreePatternNode *src, TreePatternNode *dst,
const std::vector<Record*> &dstregs,
int complexity, unsigned uid)
: SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst),
Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {}
Record *SrcRecord; // Originating Record for the pattern.
ListInit *Predicates; // Top level predicate conditions to match.
TreePatternNode *SrcPattern; // Source pattern to match.
TreePatternNode *DstPattern; // Resulting pattern.
std::vector<Record*> Dstregs; // Physical register defs being matched.
int AddedComplexity; // Add to matching pattern complexity.
unsigned ID; // Unique ID for the record.
Record *getSrcRecord() const { return SrcRecord; }
ListInit *getPredicates() const { return Predicates; }
TreePatternNode *getSrcPattern() const { return SrcPattern; }
TreePatternNode *getDstPattern() const { return DstPattern; }
const std::vector<Record*> &getDstRegs() const { return Dstregs; }
int getAddedComplexity() const { return AddedComplexity; }
std::string getPredicateCheck() const;
/// Compute the complexity metric for the input pattern. This roughly
/// corresponds to the number of nodes that are covered.
int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
};
class CodeGenDAGPatterns {
RecordKeeper &Records;
CodeGenTarget Target;
std::vector<CodeGenIntrinsic> Intrinsics;
std::vector<CodeGenIntrinsic> TgtIntrinsics;
std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> SDNodeXForms;
std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
PatternFragments;
std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
// Specific SDNode definitions:
Record *intrinsic_void_sdnode;
Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
/// PatternsToMatch - All of the things we are matching on the DAG. The first
/// value is the pattern to match, the second pattern is the result to
/// emit.
std::vector<PatternToMatch> PatternsToMatch;
public:
CodeGenDAGPatterns(RecordKeeper &R);
CodeGenTarget &getTargetInfo() { return Target; }
const CodeGenTarget &getTargetInfo() const { return Target; }
Record *getSDNodeNamed(const std::string &Name) const;
const SDNodeInfo &getSDNodeInfo(Record *R) const {
assert(SDNodes.count(R) && "Unknown node!");
return SDNodes.find(R)->second;
}
// Node transformation lookups.
typedef std::pair<Record*, std::string> NodeXForm;
const NodeXForm &getSDNodeTransform(Record *R) const {
assert(SDNodeXForms.count(R) && "Invalid transform!");
return SDNodeXForms.find(R)->second;
}
typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator
nx_iterator;
nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
nx_iterator nx_end() const { return SDNodeXForms.end(); }
const ComplexPattern &getComplexPattern(Record *R) const {
assert(ComplexPatterns.count(R) && "Unknown addressing mode!");
return ComplexPatterns.find(R)->second;
}
const CodeGenIntrinsic &getIntrinsic(Record *R) const {
for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
if (Intrinsics[i].TheDef == R) return Intrinsics[i];
for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
llvm_unreachable("Unknown intrinsic!");
}
const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
if (IID-1 < Intrinsics.size())
return Intrinsics[IID-1];
if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
return TgtIntrinsics[IID-Intrinsics.size()-1];
llvm_unreachable("Bad intrinsic ID!");
}
unsigned getIntrinsicID(Record *R) const {
for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
if (Intrinsics[i].TheDef == R) return i;
for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
llvm_unreachable("Unknown intrinsic!");
}
const DAGDefaultOperand &getDefaultOperand(Record *R) const {
assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!");
return DefaultOperands.find(R)->second;
}
// Pattern Fragment information.
TreePattern *getPatternFragment(Record *R) const {
assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
return PatternFragments.find(R)->second.get();
}
TreePattern *getPatternFragmentIfRead(Record *R) const {
if (!PatternFragments.count(R))
return nullptr;
return PatternFragments.find(R)->second.get();
}
typedef std::map<Record *, std::unique_ptr<TreePattern>,
LessRecordByID>::const_iterator pf_iterator;
pf_iterator pf_begin() const { return PatternFragments.begin(); }
pf_iterator pf_end() const { return PatternFragments.end(); }
// Patterns to match information.
typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
/// Parse the Pattern for an instruction, and insert the result in DAGInsts.
typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
const DAGInstruction &parseInstructionPattern(
CodeGenInstruction &CGI, ListInit *Pattern,
DAGInstMap &DAGInsts);
const DAGInstruction &getInstruction(Record *R) const {
assert(Instructions.count(R) && "Unknown instruction!");
return Instructions.find(R)->second;
}
Record *get_intrinsic_void_sdnode() const {
return intrinsic_void_sdnode;
}
Record *get_intrinsic_w_chain_sdnode() const {
return intrinsic_w_chain_sdnode;
}
Record *get_intrinsic_wo_chain_sdnode() const {
return intrinsic_wo_chain_sdnode;
}
bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }
private:
void ParseNodeInfo();
void ParseNodeTransforms();
void ParseComplexPatterns();
void ParsePatternFragments(bool OutFrags = false);
void ParseDefaultOperands();
void ParseInstructions();
void ParsePatterns();
void InferInstructionFlags();
void GenerateVariants();
void VerifyInstructionFlags();
void AddPatternToMatch(TreePattern *Pattern, const PatternToMatch &PTM);
void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
std::map<std::string,
TreePatternNode*> &InstInputs,
std::map<std::string,
TreePatternNode*> &InstResults,
std::vector<Record*> &InstImpResults);
};
} // end namespace llvm
#endif