mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21416 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2406 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2406 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the implementation of the scalar evolution analysis
 | |
| // engine, which is used primarily to analyze expressions involving induction
 | |
| // variables in loops.
 | |
| //
 | |
| // There are several aspects to this library.  First is the representation of
 | |
| // scalar expressions, which are represented as subclasses of the SCEV class.
 | |
| // These classes are used to represent certain types of subexpressions that we
 | |
| // can handle.  These classes are reference counted, managed by the SCEVHandle
 | |
| // class.  We only create one SCEV of a particular shape, so pointer-comparisons
 | |
| // for equality are legal.
 | |
| //
 | |
| // One important aspect of the SCEV objects is that they are never cyclic, even
 | |
| // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
 | |
| // the PHI node is one of the idioms that we can represent (e.g., a polynomial
 | |
| // recurrence) then we represent it directly as a recurrence node, otherwise we
 | |
| // represent it as a SCEVUnknown node.
 | |
| //
 | |
| // In addition to being able to represent expressions of various types, we also
 | |
| // have folders that are used to build the *canonical* representation for a
 | |
| // particular expression.  These folders are capable of using a variety of
 | |
| // rewrite rules to simplify the expressions.
 | |
| //
 | |
| // Once the folders are defined, we can implement the more interesting
 | |
| // higher-level code, such as the code that recognizes PHI nodes of various
 | |
| // types, computes the execution count of a loop, etc.
 | |
| //
 | |
| // TODO: We should use these routines and value representations to implement
 | |
| // dependence analysis!
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // There are several good references for the techniques used in this analysis.
 | |
| //
 | |
| //  Chains of recurrences -- a method to expedite the evaluation
 | |
| //  of closed-form functions
 | |
| //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
 | |
| //
 | |
| //  On computational properties of chains of recurrences
 | |
| //  Eugene V. Zima
 | |
| //
 | |
| //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
 | |
| //  Robert A. van Engelen
 | |
| //
 | |
| //  Efficient Symbolic Analysis for Optimizing Compilers
 | |
| //  Robert A. van Engelen
 | |
| //
 | |
| //  Using the chains of recurrences algebra for data dependence testing and
 | |
| //  induction variable substitution
 | |
| //  MS Thesis, Johnie Birch
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/ConstantRange.h"
 | |
| #include "llvm/Support/InstIterator.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <cmath>
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   RegisterAnalysis<ScalarEvolution>
 | |
|   R("scalar-evolution", "Scalar Evolution Analysis");
 | |
| 
 | |
|   Statistic<>
 | |
|   NumBruteForceEvaluations("scalar-evolution",
 | |
|                            "Number of brute force evaluations needed to "
 | |
|                            "calculate high-order polynomial exit values");
 | |
|   Statistic<>
 | |
|   NumArrayLenItCounts("scalar-evolution",
 | |
|                       "Number of trip counts computed with array length");
 | |
|   Statistic<>
 | |
|   NumTripCountsComputed("scalar-evolution",
 | |
|                         "Number of loops with predictable loop counts");
 | |
|   Statistic<>
 | |
|   NumTripCountsNotComputed("scalar-evolution",
 | |
|                            "Number of loops without predictable loop counts");
 | |
|   Statistic<>
 | |
|   NumBruteForceTripCountsComputed("scalar-evolution",
 | |
|                         "Number of loops with trip counts computed by force");
 | |
| 
 | |
|   cl::opt<unsigned>
 | |
|   MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
 | |
|                           cl::desc("Maximum number of iterations SCEV will symbolically execute a constant derived loop"),
 | |
|                           cl::init(100));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           SCEV class definitions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Implementation of the SCEV class.
 | |
| //
 | |
| SCEV::~SCEV() {}
 | |
| void SCEV::dump() const {
 | |
|   print(std::cerr);
 | |
| }
 | |
| 
 | |
| /// getValueRange - Return the tightest constant bounds that this value is
 | |
| /// known to have.  This method is only valid on integer SCEV objects.
 | |
| ConstantRange SCEV::getValueRange() const {
 | |
|   const Type *Ty = getType();
 | |
|   assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
 | |
|   Ty = Ty->getUnsignedVersion();
 | |
|   // Default to a full range if no better information is available.
 | |
|   return ConstantRange(getType());
 | |
| }
 | |
| 
 | |
| 
 | |
| SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
 | |
| 
 | |
| bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
 | |
|   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| const Type *SCEVCouldNotCompute::getType() const {
 | |
|   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
 | |
|   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SCEVHandle SCEVCouldNotCompute::
 | |
| replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
 | |
|                                   const SCEVHandle &Conc) const {
 | |
|   return this;
 | |
| }
 | |
| 
 | |
| void SCEVCouldNotCompute::print(std::ostream &OS) const {
 | |
|   OS << "***COULDNOTCOMPUTE***";
 | |
| }
 | |
| 
 | |
| bool SCEVCouldNotCompute::classof(const SCEV *S) {
 | |
|   return S->getSCEVType() == scCouldNotCompute;
 | |
| }
 | |
| 
 | |
| 
 | |
| // SCEVConstants - Only allow the creation of one SCEVConstant for any
 | |
| // particular value.  Don't use a SCEVHandle here, or else the object will
 | |
| // never be deleted!
 | |
| static std::map<ConstantInt*, SCEVConstant*> SCEVConstants;
 | |
| 
 | |
| 
 | |
| SCEVConstant::~SCEVConstant() {
 | |
|   SCEVConstants.erase(V);
 | |
| }
 | |
| 
 | |
| SCEVHandle SCEVConstant::get(ConstantInt *V) {
 | |
|   // Make sure that SCEVConstant instances are all unsigned.
 | |
|   if (V->getType()->isSigned()) {
 | |
|     const Type *NewTy = V->getType()->getUnsignedVersion();
 | |
|     V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy));
 | |
|   }
 | |
| 
 | |
|   SCEVConstant *&R = SCEVConstants[V];
 | |
|   if (R == 0) R = new SCEVConstant(V);
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| ConstantRange SCEVConstant::getValueRange() const {
 | |
|   return ConstantRange(V);
 | |
| }
 | |
| 
 | |
| const Type *SCEVConstant::getType() const { return V->getType(); }
 | |
| 
 | |
| void SCEVConstant::print(std::ostream &OS) const {
 | |
|   WriteAsOperand(OS, V, false);
 | |
| }
 | |
| 
 | |
| // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
 | |
| // particular input.  Don't use a SCEVHandle here, or else the object will
 | |
| // never be deleted!
 | |
| static std::map<std::pair<SCEV*, const Type*>, SCEVTruncateExpr*> SCEVTruncates;
 | |
| 
 | |
| SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
 | |
|   : SCEV(scTruncate), Op(op), Ty(ty) {
 | |
|   assert(Op->getType()->isInteger() && Ty->isInteger() &&
 | |
|          Ty->isUnsigned() &&
 | |
|          "Cannot truncate non-integer value!");
 | |
|   assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
 | |
|          "This is not a truncating conversion!");
 | |
| }
 | |
| 
 | |
| SCEVTruncateExpr::~SCEVTruncateExpr() {
 | |
|   SCEVTruncates.erase(std::make_pair(Op, Ty));
 | |
| }
 | |
| 
 | |
| ConstantRange SCEVTruncateExpr::getValueRange() const {
 | |
|   return getOperand()->getValueRange().truncate(getType());
 | |
| }
 | |
| 
 | |
| void SCEVTruncateExpr::print(std::ostream &OS) const {
 | |
|   OS << "(truncate " << *Op << " to " << *Ty << ")";
 | |
| }
 | |
| 
 | |
| // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
 | |
| // particular input.  Don't use a SCEVHandle here, or else the object will never
 | |
| // be deleted!
 | |
| static std::map<std::pair<SCEV*, const Type*>,
 | |
|                 SCEVZeroExtendExpr*> SCEVZeroExtends;
 | |
| 
 | |
| SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
 | |
|   : SCEV(scTruncate), Op(op), Ty(ty) {
 | |
|   assert(Op->getType()->isInteger() && Ty->isInteger() &&
 | |
|          Ty->isUnsigned() &&
 | |
|          "Cannot zero extend non-integer value!");
 | |
|   assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
 | |
|          "This is not an extending conversion!");
 | |
| }
 | |
| 
 | |
| SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
 | |
|   SCEVZeroExtends.erase(std::make_pair(Op, Ty));
 | |
| }
 | |
| 
 | |
| ConstantRange SCEVZeroExtendExpr::getValueRange() const {
 | |
|   return getOperand()->getValueRange().zeroExtend(getType());
 | |
| }
 | |
| 
 | |
| void SCEVZeroExtendExpr::print(std::ostream &OS) const {
 | |
|   OS << "(zeroextend " << *Op << " to " << *Ty << ")";
 | |
| }
 | |
| 
 | |
| // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
 | |
| // particular input.  Don't use a SCEVHandle here, or else the object will never
 | |
| // be deleted!
 | |
| static std::map<std::pair<unsigned, std::vector<SCEV*> >,
 | |
|                 SCEVCommutativeExpr*> SCEVCommExprs;
 | |
| 
 | |
| SCEVCommutativeExpr::~SCEVCommutativeExpr() {
 | |
|   SCEVCommExprs.erase(std::make_pair(getSCEVType(),
 | |
|                                      std::vector<SCEV*>(Operands.begin(),
 | |
|                                                         Operands.end())));
 | |
| }
 | |
| 
 | |
| void SCEVCommutativeExpr::print(std::ostream &OS) const {
 | |
|   assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
 | |
|   const char *OpStr = getOperationStr();
 | |
|   OS << "(" << *Operands[0];
 | |
|   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
 | |
|     OS << OpStr << *Operands[i];
 | |
|   OS << ")";
 | |
| }
 | |
| 
 | |
| SCEVHandle SCEVCommutativeExpr::
 | |
| replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
 | |
|                                   const SCEVHandle &Conc) const {
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
 | |
|     if (H != getOperand(i)) {
 | |
|       std::vector<SCEVHandle> NewOps;
 | |
|       NewOps.reserve(getNumOperands());
 | |
|       for (unsigned j = 0; j != i; ++j)
 | |
|         NewOps.push_back(getOperand(j));
 | |
|       NewOps.push_back(H);
 | |
|       for (++i; i != e; ++i)
 | |
|         NewOps.push_back(getOperand(i)->
 | |
|                          replaceSymbolicValuesWithConcrete(Sym, Conc));
 | |
| 
 | |
|       if (isa<SCEVAddExpr>(this))
 | |
|         return SCEVAddExpr::get(NewOps);
 | |
|       else if (isa<SCEVMulExpr>(this))
 | |
|         return SCEVMulExpr::get(NewOps);
 | |
|       else
 | |
|         assert(0 && "Unknown commutative expr!");
 | |
|     }
 | |
|   }
 | |
|   return this;
 | |
| }
 | |
| 
 | |
| 
 | |
| // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
 | |
| // input.  Don't use a SCEVHandle here, or else the object will never be
 | |
| // deleted!
 | |
| static std::map<std::pair<SCEV*, SCEV*>, SCEVUDivExpr*> SCEVUDivs;
 | |
| 
 | |
| SCEVUDivExpr::~SCEVUDivExpr() {
 | |
|   SCEVUDivs.erase(std::make_pair(LHS, RHS));
 | |
| }
 | |
| 
 | |
| void SCEVUDivExpr::print(std::ostream &OS) const {
 | |
|   OS << "(" << *LHS << " /u " << *RHS << ")";
 | |
| }
 | |
| 
 | |
| const Type *SCEVUDivExpr::getType() const {
 | |
|   const Type *Ty = LHS->getType();
 | |
|   if (Ty->isSigned()) Ty = Ty->getUnsignedVersion();
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
 | |
| // particular input.  Don't use a SCEVHandle here, or else the object will never
 | |
| // be deleted!
 | |
| static std::map<std::pair<const Loop *, std::vector<SCEV*> >,
 | |
|                 SCEVAddRecExpr*> SCEVAddRecExprs;
 | |
| 
 | |
| SCEVAddRecExpr::~SCEVAddRecExpr() {
 | |
|   SCEVAddRecExprs.erase(std::make_pair(L,
 | |
|                                        std::vector<SCEV*>(Operands.begin(),
 | |
|                                                           Operands.end())));
 | |
| }
 | |
| 
 | |
| SCEVHandle SCEVAddRecExpr::
 | |
| replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
 | |
|                                   const SCEVHandle &Conc) const {
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
 | |
|     if (H != getOperand(i)) {
 | |
|       std::vector<SCEVHandle> NewOps;
 | |
|       NewOps.reserve(getNumOperands());
 | |
|       for (unsigned j = 0; j != i; ++j)
 | |
|         NewOps.push_back(getOperand(j));
 | |
|       NewOps.push_back(H);
 | |
|       for (++i; i != e; ++i)
 | |
|         NewOps.push_back(getOperand(i)->
 | |
|                          replaceSymbolicValuesWithConcrete(Sym, Conc));
 | |
| 
 | |
|       return get(NewOps, L);
 | |
|     }
 | |
|   }
 | |
|   return this;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
 | |
|   // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
 | |
|   // contain L.
 | |
|   return !QueryLoop->contains(L->getHeader());
 | |
| }
 | |
| 
 | |
| 
 | |
| void SCEVAddRecExpr::print(std::ostream &OS) const {
 | |
|   OS << "{" << *Operands[0];
 | |
|   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
 | |
|     OS << ",+," << *Operands[i];
 | |
|   OS << "}<" << L->getHeader()->getName() + ">";
 | |
| }
 | |
| 
 | |
| // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
 | |
| // value.  Don't use a SCEVHandle here, or else the object will never be
 | |
| // deleted!
 | |
| static std::map<Value*, SCEVUnknown*> SCEVUnknowns;
 | |
| 
 | |
| SCEVUnknown::~SCEVUnknown() { SCEVUnknowns.erase(V); }
 | |
| 
 | |
| bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
 | |
|   // All non-instruction values are loop invariant.  All instructions are loop
 | |
|   // invariant if they are not contained in the specified loop.
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return !L->contains(I->getParent());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| const Type *SCEVUnknown::getType() const {
 | |
|   return V->getType();
 | |
| }
 | |
| 
 | |
| void SCEVUnknown::print(std::ostream &OS) const {
 | |
|   WriteAsOperand(OS, V, false);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               SCEV Utilities
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
 | |
|   /// than the complexity of the RHS.  This comparator is used to canonicalize
 | |
|   /// expressions.
 | |
|   struct SCEVComplexityCompare {
 | |
|     bool operator()(SCEV *LHS, SCEV *RHS) {
 | |
|       return LHS->getSCEVType() < RHS->getSCEVType();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// GroupByComplexity - Given a list of SCEV objects, order them by their
 | |
| /// complexity, and group objects of the same complexity together by value.
 | |
| /// When this routine is finished, we know that any duplicates in the vector are
 | |
| /// consecutive and that complexity is monotonically increasing.
 | |
| ///
 | |
| /// Note that we go take special precautions to ensure that we get determinstic
 | |
| /// results from this routine.  In other words, we don't want the results of
 | |
| /// this to depend on where the addresses of various SCEV objects happened to
 | |
| /// land in memory.
 | |
| ///
 | |
| static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
 | |
|   if (Ops.size() < 2) return;  // Noop
 | |
|   if (Ops.size() == 2) {
 | |
|     // This is the common case, which also happens to be trivially simple.
 | |
|     // Special case it.
 | |
|     if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
 | |
|       std::swap(Ops[0], Ops[1]);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Do the rough sort by complexity.
 | |
|   std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
 | |
| 
 | |
|   // Now that we are sorted by complexity, group elements of the same
 | |
|   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
 | |
|   // be extremely short in practice.  Note that we take this approach because we
 | |
|   // do not want to depend on the addresses of the objects we are grouping.
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
 | |
|     SCEV *S = Ops[i];
 | |
|     unsigned Complexity = S->getSCEVType();
 | |
| 
 | |
|     // If there are any objects of the same complexity and same value as this
 | |
|     // one, group them.
 | |
|     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
 | |
|       if (Ops[j] == S) { // Found a duplicate.
 | |
|         // Move it to immediately after i'th element.
 | |
|         std::swap(Ops[i+1], Ops[j]);
 | |
|         ++i;   // no need to rescan it.
 | |
|         if (i == e-2) return;  // Done!
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Simple SCEV method implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getIntegerSCEV - Given an integer or FP type, create a constant for the
 | |
| /// specified signed integer value and return a SCEV for the constant.
 | |
| SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
 | |
|   Constant *C;
 | |
|   if (Val == 0)
 | |
|     C = Constant::getNullValue(Ty);
 | |
|   else if (Ty->isFloatingPoint())
 | |
|     C = ConstantFP::get(Ty, Val);
 | |
|   else if (Ty->isSigned())
 | |
|     C = ConstantSInt::get(Ty, Val);
 | |
|   else {
 | |
|     C = ConstantSInt::get(Ty->getSignedVersion(), Val);
 | |
|     C = ConstantExpr::getCast(C, Ty);
 | |
|   }
 | |
|   return SCEVUnknown::get(C);
 | |
| }
 | |
| 
 | |
| /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
 | |
| /// input value to the specified type.  If the type must be extended, it is zero
 | |
| /// extended.
 | |
| static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
 | |
|   const Type *SrcTy = V->getType();
 | |
|   assert(SrcTy->isInteger() && Ty->isInteger() &&
 | |
|          "Cannot truncate or zero extend with non-integer arguments!");
 | |
|   if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
 | |
|     return V;  // No conversion
 | |
|   if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
 | |
|     return SCEVTruncateExpr::get(V, Ty);
 | |
|   return SCEVZeroExtendExpr::get(V, Ty);
 | |
| }
 | |
| 
 | |
| /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
 | |
| ///
 | |
| SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
 | |
|   if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
 | |
|     return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
 | |
| 
 | |
|   return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
 | |
| }
 | |
| 
 | |
| /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
 | |
| ///
 | |
| SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
 | |
|   // X - Y --> X + -Y
 | |
|   return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// PartialFact - Compute V!/(V-NumSteps)!
 | |
| static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
 | |
|   // Handle this case efficiently, it is common to have constant iteration
 | |
|   // counts while computing loop exit values.
 | |
|   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
 | |
|     uint64_t Val = SC->getValue()->getRawValue();
 | |
|     uint64_t Result = 1;
 | |
|     for (; NumSteps; --NumSteps)
 | |
|       Result *= Val-(NumSteps-1);
 | |
|     Constant *Res = ConstantUInt::get(Type::ULongTy, Result);
 | |
|     return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType()));
 | |
|   }
 | |
| 
 | |
|   const Type *Ty = V->getType();
 | |
|   if (NumSteps == 0)
 | |
|     return SCEVUnknown::getIntegerSCEV(1, Ty);
 | |
| 
 | |
|   SCEVHandle Result = V;
 | |
|   for (unsigned i = 1; i != NumSteps; ++i)
 | |
|     Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
 | |
|                                           SCEVUnknown::getIntegerSCEV(i, Ty)));
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// evaluateAtIteration - Return the value of this chain of recurrences at
 | |
| /// the specified iteration number.  We can evaluate this recurrence by
 | |
| /// multiplying each element in the chain by the binomial coefficient
 | |
| /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
 | |
| ///
 | |
| ///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
 | |
| ///
 | |
| /// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
 | |
| /// Is the binomial equation safe using modular arithmetic??
 | |
| ///
 | |
| SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
 | |
|   SCEVHandle Result = getStart();
 | |
|   int Divisor = 1;
 | |
|   const Type *Ty = It->getType();
 | |
|   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | |
|     SCEVHandle BC = PartialFact(It, i);
 | |
|     Divisor *= i;
 | |
|     SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
 | |
|                                        SCEVUnknown::getIntegerSCEV(Divisor,Ty));
 | |
|     Result = SCEVAddExpr::get(Result, Val);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                    SCEV Expression folder implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
 | |
|   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | |
|     return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
 | |
| 
 | |
|   // If the input value is a chrec scev made out of constants, truncate
 | |
|   // all of the constants.
 | |
|   if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
 | |
|     std::vector<SCEVHandle> Operands;
 | |
|     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
 | |
|       // FIXME: This should allow truncation of other expression types!
 | |
|       if (isa<SCEVConstant>(AddRec->getOperand(i)))
 | |
|         Operands.push_back(get(AddRec->getOperand(i), Ty));
 | |
|       else
 | |
|         break;
 | |
|     if (Operands.size() == AddRec->getNumOperands())
 | |
|       return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
 | |
|   }
 | |
| 
 | |
|   SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
 | |
|   if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
 | |
|   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | |
|     return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
 | |
| 
 | |
|   // FIXME: If the input value is a chrec scev, and we can prove that the value
 | |
|   // did not overflow the old, smaller, value, we can zero extend all of the
 | |
|   // operands (often constants).  This would allow analysis of something like
 | |
|   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
 | |
| 
 | |
|   SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
 | |
|   if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // get - Get a canonical add expression, or something simpler if possible.
 | |
| SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
 | |
|   assert(!Ops.empty() && "Cannot get empty add!");
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| 
 | |
|   // Sort by complexity, this groups all similar expression types together.
 | |
|   GroupByComplexity(Ops);
 | |
| 
 | |
|   // If there are any constants, fold them together.
 | |
|   unsigned Idx = 0;
 | |
|   if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | |
|     ++Idx;
 | |
|     assert(Idx < Ops.size());
 | |
|     while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | |
|       // We found two constants, fold them together!
 | |
|       Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
 | |
|         Ops[0] = SCEVConstant::get(CI);
 | |
|         Ops.erase(Ops.begin()+1);  // Erase the folded element
 | |
|         if (Ops.size() == 1) return Ops[0];
 | |
|         LHSC = cast<SCEVConstant>(Ops[0]);
 | |
|       } else {
 | |
|         // If we couldn't fold the expression, move to the next constant.  Note
 | |
|         // that this is impossible to happen in practice because we always
 | |
|         // constant fold constant ints to constant ints.
 | |
|         ++Idx;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we are left with a constant zero being added, strip it off.
 | |
|     if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
 | |
|       Ops.erase(Ops.begin());
 | |
|       --Idx;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| 
 | |
|   // Okay, check to see if the same value occurs in the operand list twice.  If
 | |
|   // so, merge them together into an multiply expression.  Since we sorted the
 | |
|   // list, these values are required to be adjacent.
 | |
|   const Type *Ty = Ops[0]->getType();
 | |
|   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
 | |
|     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
 | |
|       // Found a match, merge the two values into a multiply, and add any
 | |
|       // remaining values to the result.
 | |
|       SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
 | |
|       SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
 | |
|       if (Ops.size() == 2)
 | |
|         return Mul;
 | |
|       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
 | |
|       Ops.push_back(Mul);
 | |
|       return SCEVAddExpr::get(Ops);
 | |
|     }
 | |
| 
 | |
|   // Okay, now we know the first non-constant operand.  If there are add
 | |
|   // operands they would be next.
 | |
|   if (Idx < Ops.size()) {
 | |
|     bool DeletedAdd = false;
 | |
|     while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
 | |
|       // If we have an add, expand the add operands onto the end of the operands
 | |
|       // list.
 | |
|       Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
 | |
|       Ops.erase(Ops.begin()+Idx);
 | |
|       DeletedAdd = true;
 | |
|     }
 | |
| 
 | |
|     // If we deleted at least one add, we added operands to the end of the list,
 | |
|     // and they are not necessarily sorted.  Recurse to resort and resimplify
 | |
|     // any operands we just aquired.
 | |
|     if (DeletedAdd)
 | |
|       return get(Ops);
 | |
|   }
 | |
| 
 | |
|   // Skip over the add expression until we get to a multiply.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // If we are adding something to a multiply expression, make sure the
 | |
|   // something is not already an operand of the multiply.  If so, merge it into
 | |
|   // the multiply.
 | |
|   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
 | |
|     SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
 | |
|     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
 | |
|       SCEV *MulOpSCEV = Mul->getOperand(MulOp);
 | |
|       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
 | |
|         if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
 | |
|           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
 | |
|           SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
 | |
|           if (Mul->getNumOperands() != 2) {
 | |
|             // If the multiply has more than two operands, we must get the
 | |
|             // Y*Z term.
 | |
|             std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
 | |
|             MulOps.erase(MulOps.begin()+MulOp);
 | |
|             InnerMul = SCEVMulExpr::get(MulOps);
 | |
|           }
 | |
|           SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
 | |
|           SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
 | |
|           SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
 | |
|           if (Ops.size() == 2) return OuterMul;
 | |
|           if (AddOp < Idx) {
 | |
|             Ops.erase(Ops.begin()+AddOp);
 | |
|             Ops.erase(Ops.begin()+Idx-1);
 | |
|           } else {
 | |
|             Ops.erase(Ops.begin()+Idx);
 | |
|             Ops.erase(Ops.begin()+AddOp-1);
 | |
|           }
 | |
|           Ops.push_back(OuterMul);
 | |
|           return SCEVAddExpr::get(Ops);
 | |
|         }
 | |
| 
 | |
|       // Check this multiply against other multiplies being added together.
 | |
|       for (unsigned OtherMulIdx = Idx+1;
 | |
|            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
 | |
|            ++OtherMulIdx) {
 | |
|         SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
 | |
|         // If MulOp occurs in OtherMul, we can fold the two multiplies
 | |
|         // together.
 | |
|         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
 | |
|              OMulOp != e; ++OMulOp)
 | |
|           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
 | |
|             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
 | |
|             SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
 | |
|             if (Mul->getNumOperands() != 2) {
 | |
|               std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
 | |
|               MulOps.erase(MulOps.begin()+MulOp);
 | |
|               InnerMul1 = SCEVMulExpr::get(MulOps);
 | |
|             }
 | |
|             SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
 | |
|             if (OtherMul->getNumOperands() != 2) {
 | |
|               std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
 | |
|                                              OtherMul->op_end());
 | |
|               MulOps.erase(MulOps.begin()+OMulOp);
 | |
|               InnerMul2 = SCEVMulExpr::get(MulOps);
 | |
|             }
 | |
|             SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
 | |
|             SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
 | |
|             if (Ops.size() == 2) return OuterMul;
 | |
|             Ops.erase(Ops.begin()+Idx);
 | |
|             Ops.erase(Ops.begin()+OtherMulIdx-1);
 | |
|             Ops.push_back(OuterMul);
 | |
|             return SCEVAddExpr::get(Ops);
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are any add recurrences in the operands list, see if any other
 | |
|   // added values are loop invariant.  If so, we can fold them into the
 | |
|   // recurrence.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // Scan over all recurrences, trying to fold loop invariants into them.
 | |
|   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
 | |
|     // Scan all of the other operands to this add and add them to the vector if
 | |
|     // they are loop invariant w.r.t. the recurrence.
 | |
|     std::vector<SCEVHandle> LIOps;
 | |
|     SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
 | |
|     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
 | |
|         LIOps.push_back(Ops[i]);
 | |
|         Ops.erase(Ops.begin()+i);
 | |
|         --i; --e;
 | |
|       }
 | |
| 
 | |
|     // If we found some loop invariants, fold them into the recurrence.
 | |
|     if (!LIOps.empty()) {
 | |
|       //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
 | |
|       LIOps.push_back(AddRec->getStart());
 | |
| 
 | |
|       std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
 | |
|       AddRecOps[0] = SCEVAddExpr::get(LIOps);
 | |
| 
 | |
|       SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
 | |
|       // If all of the other operands were loop invariant, we are done.
 | |
|       if (Ops.size() == 1) return NewRec;
 | |
| 
 | |
|       // Otherwise, add the folded AddRec by the non-liv parts.
 | |
|       for (unsigned i = 0;; ++i)
 | |
|         if (Ops[i] == AddRec) {
 | |
|           Ops[i] = NewRec;
 | |
|           break;
 | |
|         }
 | |
|       return SCEVAddExpr::get(Ops);
 | |
|     }
 | |
| 
 | |
|     // Okay, if there weren't any loop invariants to be folded, check to see if
 | |
|     // there are multiple AddRec's with the same loop induction variable being
 | |
|     // added together.  If so, we can fold them.
 | |
|     for (unsigned OtherIdx = Idx+1;
 | |
|          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
 | |
|       if (OtherIdx != Idx) {
 | |
|         SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
 | |
|         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
 | |
|           // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
 | |
|           std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
 | |
|           for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
 | |
|             if (i >= NewOps.size()) {
 | |
|               NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
 | |
|                             OtherAddRec->op_end());
 | |
|               break;
 | |
|             }
 | |
|             NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
 | |
|           }
 | |
|           SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
 | |
| 
 | |
|           if (Ops.size() == 2) return NewAddRec;
 | |
| 
 | |
|           Ops.erase(Ops.begin()+Idx);
 | |
|           Ops.erase(Ops.begin()+OtherIdx-1);
 | |
|           Ops.push_back(NewAddRec);
 | |
|           return SCEVAddExpr::get(Ops);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // Otherwise couldn't fold anything into this recurrence.  Move onto the
 | |
|     // next one.
 | |
|   }
 | |
| 
 | |
|   // Okay, it looks like we really DO need an add expr.  Check to see if we
 | |
|   // already have one, otherwise create a new one.
 | |
|   std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
 | |
|   SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
 | |
|                                                               SCEVOps)];
 | |
|   if (Result == 0) Result = new SCEVAddExpr(Ops);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
 | |
|   assert(!Ops.empty() && "Cannot get empty mul!");
 | |
| 
 | |
|   // Sort by complexity, this groups all similar expression types together.
 | |
|   GroupByComplexity(Ops);
 | |
| 
 | |
|   // If there are any constants, fold them together.
 | |
|   unsigned Idx = 0;
 | |
|   if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | |
| 
 | |
|     // C1*(C2+V) -> C1*C2 + C1*V
 | |
|     if (Ops.size() == 2)
 | |
|       if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
 | |
|         if (Add->getNumOperands() == 2 &&
 | |
|             isa<SCEVConstant>(Add->getOperand(0)))
 | |
|           return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
 | |
|                                   SCEVMulExpr::get(LHSC, Add->getOperand(1)));
 | |
| 
 | |
| 
 | |
|     ++Idx;
 | |
|     while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | |
|       // We found two constants, fold them together!
 | |
|       Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
 | |
|         Ops[0] = SCEVConstant::get(CI);
 | |
|         Ops.erase(Ops.begin()+1);  // Erase the folded element
 | |
|         if (Ops.size() == 1) return Ops[0];
 | |
|         LHSC = cast<SCEVConstant>(Ops[0]);
 | |
|       } else {
 | |
|         // If we couldn't fold the expression, move to the next constant.  Note
 | |
|         // that this is impossible to happen in practice because we always
 | |
|         // constant fold constant ints to constant ints.
 | |
|         ++Idx;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we are left with a constant one being multiplied, strip it off.
 | |
|     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
 | |
|       Ops.erase(Ops.begin());
 | |
|       --Idx;
 | |
|     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
 | |
|       // If we have a multiply of zero, it will always be zero.
 | |
|       return Ops[0];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Skip over the add expression until we get to a multiply.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   if (Ops.size() == 1)
 | |
|     return Ops[0];
 | |
| 
 | |
|   // If there are mul operands inline them all into this expression.
 | |
|   if (Idx < Ops.size()) {
 | |
|     bool DeletedMul = false;
 | |
|     while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
 | |
|       // If we have an mul, expand the mul operands onto the end of the operands
 | |
|       // list.
 | |
|       Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
 | |
|       Ops.erase(Ops.begin()+Idx);
 | |
|       DeletedMul = true;
 | |
|     }
 | |
| 
 | |
|     // If we deleted at least one mul, we added operands to the end of the list,
 | |
|     // and they are not necessarily sorted.  Recurse to resort and resimplify
 | |
|     // any operands we just aquired.
 | |
|     if (DeletedMul)
 | |
|       return get(Ops);
 | |
|   }
 | |
| 
 | |
|   // If there are any add recurrences in the operands list, see if any other
 | |
|   // added values are loop invariant.  If so, we can fold them into the
 | |
|   // recurrence.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // Scan over all recurrences, trying to fold loop invariants into them.
 | |
|   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
 | |
|     // Scan all of the other operands to this mul and add them to the vector if
 | |
|     // they are loop invariant w.r.t. the recurrence.
 | |
|     std::vector<SCEVHandle> LIOps;
 | |
|     SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
 | |
|     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
 | |
|         LIOps.push_back(Ops[i]);
 | |
|         Ops.erase(Ops.begin()+i);
 | |
|         --i; --e;
 | |
|       }
 | |
| 
 | |
|     // If we found some loop invariants, fold them into the recurrence.
 | |
|     if (!LIOps.empty()) {
 | |
|       //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
 | |
|       std::vector<SCEVHandle> NewOps;
 | |
|       NewOps.reserve(AddRec->getNumOperands());
 | |
|       if (LIOps.size() == 1) {
 | |
|         SCEV *Scale = LIOps[0];
 | |
|         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
 | |
|           NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
 | |
|       } else {
 | |
|         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
 | |
|           std::vector<SCEVHandle> MulOps(LIOps);
 | |
|           MulOps.push_back(AddRec->getOperand(i));
 | |
|           NewOps.push_back(SCEVMulExpr::get(MulOps));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
 | |
| 
 | |
|       // If all of the other operands were loop invariant, we are done.
 | |
|       if (Ops.size() == 1) return NewRec;
 | |
| 
 | |
|       // Otherwise, multiply the folded AddRec by the non-liv parts.
 | |
|       for (unsigned i = 0;; ++i)
 | |
|         if (Ops[i] == AddRec) {
 | |
|           Ops[i] = NewRec;
 | |
|           break;
 | |
|         }
 | |
|       return SCEVMulExpr::get(Ops);
 | |
|     }
 | |
| 
 | |
|     // Okay, if there weren't any loop invariants to be folded, check to see if
 | |
|     // there are multiple AddRec's with the same loop induction variable being
 | |
|     // multiplied together.  If so, we can fold them.
 | |
|     for (unsigned OtherIdx = Idx+1;
 | |
|          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
 | |
|       if (OtherIdx != Idx) {
 | |
|         SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
 | |
|         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
 | |
|           // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
 | |
|           SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
 | |
|           SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
 | |
|                                                  G->getStart());
 | |
|           SCEVHandle B = F->getStepRecurrence();
 | |
|           SCEVHandle D = G->getStepRecurrence();
 | |
|           SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
 | |
|                                                 SCEVMulExpr::get(G, B),
 | |
|                                                 SCEVMulExpr::get(B, D));
 | |
|           SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
 | |
|                                                      F->getLoop());
 | |
|           if (Ops.size() == 2) return NewAddRec;
 | |
| 
 | |
|           Ops.erase(Ops.begin()+Idx);
 | |
|           Ops.erase(Ops.begin()+OtherIdx-1);
 | |
|           Ops.push_back(NewAddRec);
 | |
|           return SCEVMulExpr::get(Ops);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // Otherwise couldn't fold anything into this recurrence.  Move onto the
 | |
|     // next one.
 | |
|   }
 | |
| 
 | |
|   // Okay, it looks like we really DO need an mul expr.  Check to see if we
 | |
|   // already have one, otherwise create a new one.
 | |
|   std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
 | |
|   SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
 | |
|                                                               SCEVOps)];
 | |
|   if (Result == 0)
 | |
|     Result = new SCEVMulExpr(Ops);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SCEVHandle SCEVUDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
 | |
|   if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
 | |
|     if (RHSC->getValue()->equalsInt(1))
 | |
|       return LHS;                            // X /u 1 --> x
 | |
|     if (RHSC->getValue()->isAllOnesValue())
 | |
|       return SCEV::getNegativeSCEV(LHS);           // X /u -1  -->  -x
 | |
| 
 | |
|     if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
 | |
|       Constant *LHSCV = LHSC->getValue();
 | |
|       Constant *RHSCV = RHSC->getValue();
 | |
|       if (LHSCV->getType()->isSigned())
 | |
|         LHSCV = ConstantExpr::getCast(LHSCV,
 | |
|                                       LHSCV->getType()->getUnsignedVersion());
 | |
|       if (RHSCV->getType()->isSigned())
 | |
|         RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType());
 | |
|       return SCEVUnknown::get(ConstantExpr::getDiv(LHSCV, RHSCV));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
 | |
| 
 | |
|   SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
 | |
|   if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SCEVAddRecExpr::get - Get a add recurrence expression for the
 | |
| /// specified loop.  Simplify the expression as much as possible.
 | |
| SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
 | |
|                                const SCEVHandle &Step, const Loop *L) {
 | |
|   std::vector<SCEVHandle> Operands;
 | |
|   Operands.push_back(Start);
 | |
|   if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
 | |
|     if (StepChrec->getLoop() == L) {
 | |
|       Operands.insert(Operands.end(), StepChrec->op_begin(),
 | |
|                       StepChrec->op_end());
 | |
|       return get(Operands, L);
 | |
|     }
 | |
| 
 | |
|   Operands.push_back(Step);
 | |
|   return get(Operands, L);
 | |
| }
 | |
| 
 | |
| /// SCEVAddRecExpr::get - Get a add recurrence expression for the
 | |
| /// specified loop.  Simplify the expression as much as possible.
 | |
| SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
 | |
|                                const Loop *L) {
 | |
|   if (Operands.size() == 1) return Operands[0];
 | |
| 
 | |
|   if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
 | |
|     if (StepC->getValue()->isNullValue()) {
 | |
|       Operands.pop_back();
 | |
|       return get(Operands, L);             // { X,+,0 }  -->  X
 | |
|     }
 | |
| 
 | |
|   SCEVAddRecExpr *&Result =
 | |
|     SCEVAddRecExprs[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
 | |
|                                                          Operands.end()))];
 | |
|   if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SCEVHandle SCEVUnknown::get(Value *V) {
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | |
|     return SCEVConstant::get(CI);
 | |
|   SCEVUnknown *&Result = SCEVUnknowns[V];
 | |
|   if (Result == 0) Result = new SCEVUnknown(V);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //             ScalarEvolutionsImpl Definition and Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// ScalarEvolutionsImpl - This class implements the main driver for the scalar
 | |
| /// evolution code.
 | |
| ///
 | |
| namespace {
 | |
|   struct ScalarEvolutionsImpl {
 | |
|     /// F - The function we are analyzing.
 | |
|     ///
 | |
|     Function &F;
 | |
| 
 | |
|     /// LI - The loop information for the function we are currently analyzing.
 | |
|     ///
 | |
|     LoopInfo &LI;
 | |
| 
 | |
|     /// UnknownValue - This SCEV is used to represent unknown trip counts and
 | |
|     /// things.
 | |
|     SCEVHandle UnknownValue;
 | |
| 
 | |
|     /// Scalars - This is a cache of the scalars we have analyzed so far.
 | |
|     ///
 | |
|     std::map<Value*, SCEVHandle> Scalars;
 | |
| 
 | |
|     /// IterationCounts - Cache the iteration count of the loops for this
 | |
|     /// function as they are computed.
 | |
|     std::map<const Loop*, SCEVHandle> IterationCounts;
 | |
| 
 | |
|     /// ConstantEvolutionLoopExitValue - This map contains entries for all of
 | |
|     /// the PHI instructions that we attempt to compute constant evolutions for.
 | |
|     /// This allows us to avoid potentially expensive recomputation of these
 | |
|     /// properties.  An instruction maps to null if we are unable to compute its
 | |
|     /// exit value.
 | |
|     std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
 | |
| 
 | |
|   public:
 | |
|     ScalarEvolutionsImpl(Function &f, LoopInfo &li)
 | |
|       : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
 | |
| 
 | |
|     /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
 | |
|     /// expression and create a new one.
 | |
|     SCEVHandle getSCEV(Value *V);
 | |
| 
 | |
|     /// getSCEVAtScope - Compute the value of the specified expression within
 | |
|     /// the indicated loop (which may be null to indicate in no loop).  If the
 | |
|     /// expression cannot be evaluated, return UnknownValue itself.
 | |
|     SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
 | |
| 
 | |
| 
 | |
|     /// hasLoopInvariantIterationCount - Return true if the specified loop has
 | |
|     /// an analyzable loop-invariant iteration count.
 | |
|     bool hasLoopInvariantIterationCount(const Loop *L);
 | |
| 
 | |
|     /// getIterationCount - If the specified loop has a predictable iteration
 | |
|     /// count, return it.  Note that it is not valid to call this method on a
 | |
|     /// loop without a loop-invariant iteration count.
 | |
|     SCEVHandle getIterationCount(const Loop *L);
 | |
| 
 | |
|     /// deleteInstructionFromRecords - This method should be called by the
 | |
|     /// client before it removes an instruction from the program, to make sure
 | |
|     /// that no dangling references are left around.
 | |
|     void deleteInstructionFromRecords(Instruction *I);
 | |
| 
 | |
|   private:
 | |
|     /// createSCEV - We know that there is no SCEV for the specified value.
 | |
|     /// Analyze the expression.
 | |
|     SCEVHandle createSCEV(Value *V);
 | |
|     SCEVHandle createNodeForCast(CastInst *CI);
 | |
| 
 | |
|     /// createNodeForPHI - Provide the special handling we need to analyze PHI
 | |
|     /// SCEVs.
 | |
|     SCEVHandle createNodeForPHI(PHINode *PN);
 | |
| 
 | |
|     /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
 | |
|     /// for the specified instruction and replaces any references to the
 | |
|     /// symbolic value SymName with the specified value.  This is used during
 | |
|     /// PHI resolution.
 | |
|     void ReplaceSymbolicValueWithConcrete(Instruction *I,
 | |
|                                           const SCEVHandle &SymName,
 | |
|                                           const SCEVHandle &NewVal);
 | |
| 
 | |
|     /// ComputeIterationCount - Compute the number of times the specified loop
 | |
|     /// will iterate.
 | |
|     SCEVHandle ComputeIterationCount(const Loop *L);
 | |
| 
 | |
|     /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
 | |
|     /// 'setcc load X, cst', try to se if we can compute the trip count.
 | |
|     SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
 | |
|                                                         Constant *RHS,
 | |
|                                                         const Loop *L,
 | |
|                                                         unsigned SetCCOpcode);
 | |
| 
 | |
|     /// ComputeIterationCountExhaustively - If the trip is known to execute a
 | |
|     /// constant number of times (the condition evolves only from constants),
 | |
|     /// try to evaluate a few iterations of the loop until we get the exit
 | |
|     /// condition gets a value of ExitWhen (true or false).  If we cannot
 | |
|     /// evaluate the trip count of the loop, return UnknownValue.
 | |
|     SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
 | |
|                                                  bool ExitWhen);
 | |
| 
 | |
|     /// HowFarToZero - Return the number of times a backedge comparing the
 | |
|     /// specified value to zero will execute.  If not computable, return
 | |
|     /// UnknownValue
 | |
|     SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
 | |
| 
 | |
|     /// HowFarToNonZero - Return the number of times a backedge checking the
 | |
|     /// specified value for nonzero will execute.  If not computable, return
 | |
|     /// UnknownValue
 | |
|     SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
 | |
| 
 | |
|     /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
 | |
|     /// in the header of its containing loop, we know the loop executes a
 | |
|     /// constant number of times, and the PHI node is just a recurrence
 | |
|     /// involving constants, fold it.
 | |
|     Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
 | |
|                                                 const Loop *L);
 | |
|   };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //            Basic SCEV Analysis and PHI Idiom Recognition Code
 | |
| //
 | |
| 
 | |
| /// deleteInstructionFromRecords - This method should be called by the
 | |
| /// client before it removes an instruction from the program, to make sure
 | |
| /// that no dangling references are left around.
 | |
| void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
 | |
|   Scalars.erase(I);
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(I))
 | |
|     ConstantEvolutionLoopExitValue.erase(PN);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
 | |
| /// expression and create a new one.
 | |
| SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
 | |
|   assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
 | |
| 
 | |
|   std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
 | |
|   if (I != Scalars.end()) return I->second;
 | |
|   SCEVHandle S = createSCEV(V);
 | |
|   Scalars.insert(std::make_pair(V, S));
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
 | |
| /// the specified instruction and replaces any references to the symbolic value
 | |
| /// SymName with the specified value.  This is used during PHI resolution.
 | |
| void ScalarEvolutionsImpl::
 | |
| ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
 | |
|                                  const SCEVHandle &NewVal) {
 | |
|   std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
 | |
|   if (SI == Scalars.end()) return;
 | |
| 
 | |
|   SCEVHandle NV =
 | |
|     SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
 | |
|   if (NV == SI->second) return;  // No change.
 | |
| 
 | |
|   SI->second = NV;       // Update the scalars map!
 | |
| 
 | |
|   // Any instruction values that use this instruction might also need to be
 | |
|   // updated!
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | |
|        UI != E; ++UI)
 | |
|     ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
 | |
| }
 | |
| 
 | |
| /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
 | |
| /// a loop header, making it a potential recurrence, or it doesn't.
 | |
| ///
 | |
| SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
 | |
|   if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
 | |
|     if (const Loop *L = LI.getLoopFor(PN->getParent()))
 | |
|       if (L->getHeader() == PN->getParent()) {
 | |
|         // If it lives in the loop header, it has two incoming values, one
 | |
|         // from outside the loop, and one from inside.
 | |
|         unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
 | |
|         unsigned BackEdge     = IncomingEdge^1;
 | |
| 
 | |
|         // While we are analyzing this PHI node, handle its value symbolically.
 | |
|         SCEVHandle SymbolicName = SCEVUnknown::get(PN);
 | |
|         assert(Scalars.find(PN) == Scalars.end() &&
 | |
|                "PHI node already processed?");
 | |
|         Scalars.insert(std::make_pair(PN, SymbolicName));
 | |
| 
 | |
|         // Using this symbolic name for the PHI, analyze the value coming around
 | |
|         // the back-edge.
 | |
|         SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
 | |
| 
 | |
|         // NOTE: If BEValue is loop invariant, we know that the PHI node just
 | |
|         // has a special value for the first iteration of the loop.
 | |
| 
 | |
|         // If the value coming around the backedge is an add with the symbolic
 | |
|         // value we just inserted, then we found a simple induction variable!
 | |
|         if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
 | |
|           // If there is a single occurrence of the symbolic value, replace it
 | |
|           // with a recurrence.
 | |
|           unsigned FoundIndex = Add->getNumOperands();
 | |
|           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
 | |
|             if (Add->getOperand(i) == SymbolicName)
 | |
|               if (FoundIndex == e) {
 | |
|                 FoundIndex = i;
 | |
|                 break;
 | |
|               }
 | |
| 
 | |
|           if (FoundIndex != Add->getNumOperands()) {
 | |
|             // Create an add with everything but the specified operand.
 | |
|             std::vector<SCEVHandle> Ops;
 | |
|             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
 | |
|               if (i != FoundIndex)
 | |
|                 Ops.push_back(Add->getOperand(i));
 | |
|             SCEVHandle Accum = SCEVAddExpr::get(Ops);
 | |
| 
 | |
|             // This is not a valid addrec if the step amount is varying each
 | |
|             // loop iteration, but is not itself an addrec in this loop.
 | |
|             if (Accum->isLoopInvariant(L) ||
 | |
|                 (isa<SCEVAddRecExpr>(Accum) &&
 | |
|                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
 | |
|               SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
 | |
|               SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
 | |
| 
 | |
|               // Okay, for the entire analysis of this edge we assumed the PHI
 | |
|               // to be symbolic.  We now need to go back and update all of the
 | |
|               // entries for the scalars that use the PHI (except for the PHI
 | |
|               // itself) to use the new analyzed value instead of the "symbolic"
 | |
|               // value.
 | |
|               ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
 | |
|               return PHISCEV;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         return SymbolicName;
 | |
|       }
 | |
| 
 | |
|   // If it's not a loop phi, we can't handle it yet.
 | |
|   return SCEVUnknown::get(PN);
 | |
| }
 | |
| 
 | |
| /// createNodeForCast - Handle the various forms of casts that we support.
 | |
| ///
 | |
| SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) {
 | |
|   const Type *SrcTy = CI->getOperand(0)->getType();
 | |
|   const Type *DestTy = CI->getType();
 | |
| 
 | |
|   // If this is a noop cast (ie, conversion from int to uint), ignore it.
 | |
|   if (SrcTy->isLosslesslyConvertibleTo(DestTy))
 | |
|     return getSCEV(CI->getOperand(0));
 | |
| 
 | |
|   if (SrcTy->isInteger() && DestTy->isInteger()) {
 | |
|     // Otherwise, if this is a truncating integer cast, we can represent this
 | |
|     // cast.
 | |
|     if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
 | |
|       return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)),
 | |
|                                    CI->getType()->getUnsignedVersion());
 | |
|     if (SrcTy->isUnsigned() &&
 | |
|         SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
 | |
|       return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)),
 | |
|                                      CI->getType()->getUnsignedVersion());
 | |
|   }
 | |
| 
 | |
|   // If this is an sign or zero extending cast and we can prove that the value
 | |
|   // will never overflow, we could do similar transformations.
 | |
| 
 | |
|   // Otherwise, we can't handle this cast!
 | |
|   return SCEVUnknown::get(CI);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// createSCEV - We know that there is no SCEV for the specified value.
 | |
| /// Analyze the expression.
 | |
| ///
 | |
| SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::Add:
 | |
|       return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
 | |
|                               getSCEV(I->getOperand(1)));
 | |
|     case Instruction::Mul:
 | |
|       return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
 | |
|                               getSCEV(I->getOperand(1)));
 | |
|     case Instruction::Div:
 | |
|       if (V->getType()->isInteger() && V->getType()->isUnsigned())
 | |
|         return SCEVUDivExpr::get(getSCEV(I->getOperand(0)),
 | |
|                                  getSCEV(I->getOperand(1)));
 | |
|       break;
 | |
| 
 | |
|     case Instruction::Sub:
 | |
|       return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
 | |
|                                 getSCEV(I->getOperand(1)));
 | |
| 
 | |
|     case Instruction::Shl:
 | |
|       // Turn shift left of a constant amount into a multiply.
 | |
|       if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|         Constant *X = ConstantInt::get(V->getType(), 1);
 | |
|         X = ConstantExpr::getShl(X, SA);
 | |
|         return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case Instruction::Shr:
 | |
|       if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1)))
 | |
|         if (V->getType()->isUnsigned()) {
 | |
|           Constant *X = ConstantInt::get(V->getType(), 1);
 | |
|           X = ConstantExpr::getShl(X, SA);
 | |
|           return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
 | |
|         }
 | |
|       break;
 | |
| 
 | |
|     case Instruction::Cast:
 | |
|       return createNodeForCast(cast<CastInst>(I));
 | |
| 
 | |
|     case Instruction::PHI:
 | |
|       return createNodeForPHI(cast<PHINode>(I));
 | |
| 
 | |
|     default: // We cannot analyze this expression.
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SCEVUnknown::get(V);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                   Iteration Count Computation Code
 | |
| //
 | |
| 
 | |
| /// getIterationCount - If the specified loop has a predictable iteration
 | |
| /// count, return it.  Note that it is not valid to call this method on a
 | |
| /// loop without a loop-invariant iteration count.
 | |
| SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
 | |
|   std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
 | |
|   if (I == IterationCounts.end()) {
 | |
|     SCEVHandle ItCount = ComputeIterationCount(L);
 | |
|     I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
 | |
|     if (ItCount != UnknownValue) {
 | |
|       assert(ItCount->isLoopInvariant(L) &&
 | |
|              "Computed trip count isn't loop invariant for loop!");
 | |
|       ++NumTripCountsComputed;
 | |
|     } else if (isa<PHINode>(L->getHeader()->begin())) {
 | |
|       // Only count loops that have phi nodes as not being computable.
 | |
|       ++NumTripCountsNotComputed;
 | |
|     }
 | |
|   }
 | |
|   return I->second;
 | |
| }
 | |
| 
 | |
| /// ComputeIterationCount - Compute the number of times the specified loop
 | |
| /// will iterate.
 | |
| SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
 | |
|   // If the loop has a non-one exit block count, we can't analyze it.
 | |
|   std::vector<BasicBlock*> ExitBlocks;
 | |
|   L->getExitBlocks(ExitBlocks);
 | |
|   if (ExitBlocks.size() != 1) return UnknownValue;
 | |
| 
 | |
|   // Okay, there is one exit block.  Try to find the condition that causes the
 | |
|   // loop to be exited.
 | |
|   BasicBlock *ExitBlock = ExitBlocks[0];
 | |
| 
 | |
|   BasicBlock *ExitingBlock = 0;
 | |
|   for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
 | |
|        PI != E; ++PI)
 | |
|     if (L->contains(*PI)) {
 | |
|       if (ExitingBlock == 0)
 | |
|         ExitingBlock = *PI;
 | |
|       else
 | |
|         return UnknownValue;   // More than one block exiting!
 | |
|     }
 | |
|   assert(ExitingBlock && "No exits from loop, something is broken!");
 | |
| 
 | |
|   // Okay, we've computed the exiting block.  See what condition causes us to
 | |
|   // exit.
 | |
|   //
 | |
|   // FIXME: we should be able to handle switch instructions (with a single exit)
 | |
|   // FIXME: We should handle cast of int to bool as well
 | |
|   BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
 | |
|   if (ExitBr == 0) return UnknownValue;
 | |
|   assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
 | |
|   SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
 | |
|   if (ExitCond == 0)  // Not a setcc
 | |
|     return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
 | |
|                                           ExitBr->getSuccessor(0) == ExitBlock);
 | |
| 
 | |
|   // If the condition was exit on true, convert the condition to exit on false.
 | |
|   Instruction::BinaryOps Cond;
 | |
|   if (ExitBr->getSuccessor(1) == ExitBlock)
 | |
|     Cond = ExitCond->getOpcode();
 | |
|   else
 | |
|     Cond = ExitCond->getInverseCondition();
 | |
| 
 | |
|   // Handle common loops like: for (X = "string"; *X; ++X)
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
 | |
|     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
 | |
|       SCEVHandle ItCnt =
 | |
|         ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
 | |
|       if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
 | |
|     }
 | |
| 
 | |
|   SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
 | |
|   SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
 | |
| 
 | |
|   // Try to evaluate any dependencies out of the loop.
 | |
|   SCEVHandle Tmp = getSCEVAtScope(LHS, L);
 | |
|   if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
 | |
|   Tmp = getSCEVAtScope(RHS, L);
 | |
|   if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
 | |
| 
 | |
|   // At this point, we would like to compute how many iterations of the loop the
 | |
|   // predicate will return true for these inputs.
 | |
|   if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
 | |
|     // If there is a constant, force it into the RHS.
 | |
|     std::swap(LHS, RHS);
 | |
|     Cond = SetCondInst::getSwappedCondition(Cond);
 | |
|   }
 | |
| 
 | |
|   // FIXME: think about handling pointer comparisons!  i.e.:
 | |
|   // while (P != P+100) ++P;
 | |
| 
 | |
|   // If we have a comparison of a chrec against a constant, try to use value
 | |
|   // ranges to answer this query.
 | |
|   if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
 | |
|     if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
 | |
|       if (AddRec->getLoop() == L) {
 | |
|         // Form the comparison range using the constant of the correct type so
 | |
|         // that the ConstantRange class knows to do a signed or unsigned
 | |
|         // comparison.
 | |
|         ConstantInt *CompVal = RHSC->getValue();
 | |
|         const Type *RealTy = ExitCond->getOperand(0)->getType();
 | |
|         CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy));
 | |
|         if (CompVal) {
 | |
|           // Form the constant range.
 | |
|           ConstantRange CompRange(Cond, CompVal);
 | |
| 
 | |
|           // Now that we have it, if it's signed, convert it to an unsigned
 | |
|           // range.
 | |
|           if (CompRange.getLower()->getType()->isSigned()) {
 | |
|             const Type *NewTy = RHSC->getValue()->getType();
 | |
|             Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy);
 | |
|             Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy);
 | |
|             CompRange = ConstantRange(NewL, NewU);
 | |
|           }
 | |
| 
 | |
|           SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
 | |
|           if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   switch (Cond) {
 | |
|   case Instruction::SetNE:                     // while (X != Y)
 | |
|     // Convert to: while (X-Y != 0)
 | |
|     if (LHS->getType()->isInteger()) {
 | |
|       SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
 | |
|       if (!isa<SCEVCouldNotCompute>(TC)) return TC;
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::SetEQ:
 | |
|     // Convert to: while (X-Y == 0)           // while (X == Y)
 | |
|     if (LHS->getType()->isInteger()) {
 | |
|       SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
 | |
|       if (!isa<SCEVCouldNotCompute>(TC)) return TC;
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
| #if 0
 | |
|     std::cerr << "ComputeIterationCount ";
 | |
|     if (ExitCond->getOperand(0)->getType()->isUnsigned())
 | |
|       std::cerr << "[unsigned] ";
 | |
|     std::cerr << *LHS << "   "
 | |
|               << Instruction::getOpcodeName(Cond) << "   " << *RHS << "\n";
 | |
| #endif
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return ComputeIterationCountExhaustively(L, ExitCond,
 | |
|                                          ExitBr->getSuccessor(0) == ExitBlock);
 | |
| }
 | |
| 
 | |
| static ConstantInt *
 | |
| EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
 | |
|   SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
 | |
|   SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
 | |
|   assert(isa<SCEVConstant>(Val) &&
 | |
|          "Evaluation of SCEV at constant didn't fold correctly?");
 | |
|   return cast<SCEVConstant>(Val)->getValue();
 | |
| }
 | |
| 
 | |
| /// GetAddressedElementFromGlobal - Given a global variable with an initializer
 | |
| /// and a GEP expression (missing the pointer index) indexing into it, return
 | |
| /// the addressed element of the initializer or null if the index expression is
 | |
| /// invalid.
 | |
| static Constant *
 | |
| GetAddressedElementFromGlobal(GlobalVariable *GV,
 | |
|                               const std::vector<ConstantInt*> &Indices) {
 | |
|   Constant *Init = GV->getInitializer();
 | |
|   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
 | |
|     uint64_t Idx = Indices[i]->getRawValue();
 | |
|     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
 | |
|       assert(Idx < CS->getNumOperands() && "Bad struct index!");
 | |
|       Init = cast<Constant>(CS->getOperand(Idx));
 | |
|     } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
 | |
|       if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
 | |
|       Init = cast<Constant>(CA->getOperand(Idx));
 | |
|     } else if (isa<ConstantAggregateZero>(Init)) {
 | |
|       if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
 | |
|         assert(Idx < STy->getNumElements() && "Bad struct index!");
 | |
|         Init = Constant::getNullValue(STy->getElementType(Idx));
 | |
|       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
 | |
|         if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
 | |
|         Init = Constant::getNullValue(ATy->getElementType());
 | |
|       } else {
 | |
|         assert(0 && "Unknown constant aggregate type!");
 | |
|       }
 | |
|       return 0;
 | |
|     } else {
 | |
|       return 0; // Unknown initializer type
 | |
|     }
 | |
|   }
 | |
|   return Init;
 | |
| }
 | |
| 
 | |
| /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
 | |
| /// 'setcc load X, cst', try to se if we can compute the trip count.
 | |
| SCEVHandle ScalarEvolutionsImpl::
 | |
| ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
 | |
|                                          const Loop *L, unsigned SetCCOpcode) {
 | |
|   if (LI->isVolatile()) return UnknownValue;
 | |
| 
 | |
|   // Check to see if the loaded pointer is a getelementptr of a global.
 | |
|   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
 | |
|   if (!GEP) return UnknownValue;
 | |
| 
 | |
|   // Make sure that it is really a constant global we are gepping, with an
 | |
|   // initializer, and make sure the first IDX is really 0.
 | |
|   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
 | |
|   if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
 | |
|       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
 | |
|       !cast<Constant>(GEP->getOperand(1))->isNullValue())
 | |
|     return UnknownValue;
 | |
| 
 | |
|   // Okay, we allow one non-constant index into the GEP instruction.
 | |
|   Value *VarIdx = 0;
 | |
|   std::vector<ConstantInt*> Indexes;
 | |
|   unsigned VarIdxNum = 0;
 | |
|   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
 | |
|       Indexes.push_back(CI);
 | |
|     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
 | |
|       if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
 | |
|       VarIdx = GEP->getOperand(i);
 | |
|       VarIdxNum = i-2;
 | |
|       Indexes.push_back(0);
 | |
|     }
 | |
| 
 | |
|   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
 | |
|   // Check to see if X is a loop variant variable value now.
 | |
|   SCEVHandle Idx = getSCEV(VarIdx);
 | |
|   SCEVHandle Tmp = getSCEVAtScope(Idx, L);
 | |
|   if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
 | |
| 
 | |
|   // We can only recognize very limited forms of loop index expressions, in
 | |
|   // particular, only affine AddRec's like {C1,+,C2}.
 | |
|   SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
 | |
|   if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
 | |
|       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
 | |
|       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
 | |
|     return UnknownValue;
 | |
| 
 | |
|   unsigned MaxSteps = MaxBruteForceIterations;
 | |
|   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
 | |
|     ConstantUInt *ItCst =
 | |
|       ConstantUInt::get(IdxExpr->getType()->getUnsignedVersion(), IterationNum);
 | |
|     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
 | |
| 
 | |
|     // Form the GEP offset.
 | |
|     Indexes[VarIdxNum] = Val;
 | |
| 
 | |
|     Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
 | |
|     if (Result == 0) break;  // Cannot compute!
 | |
| 
 | |
|     // Evaluate the condition for this iteration.
 | |
|     Result = ConstantExpr::get(SetCCOpcode, Result, RHS);
 | |
|     if (!isa<ConstantBool>(Result)) break;  // Couldn't decide for sure
 | |
|     if (Result == ConstantBool::False) {
 | |
| #if 0
 | |
|       std::cerr << "\n***\n*** Computed loop count " << *ItCst
 | |
|                 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
 | |
|                 << "***\n";
 | |
| #endif
 | |
|       ++NumArrayLenItCounts;
 | |
|       return SCEVConstant::get(ItCst);   // Found terminating iteration!
 | |
|     }
 | |
|   }
 | |
|   return UnknownValue;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CanConstantFold - Return true if we can constant fold an instruction of the
 | |
| /// specified type, assuming that all operands were constants.
 | |
| static bool CanConstantFold(const Instruction *I) {
 | |
|   if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
 | |
|       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
 | |
|     return true;
 | |
| 
 | |
|   if (const CallInst *CI = dyn_cast<CallInst>(I))
 | |
|     if (const Function *F = CI->getCalledFunction())
 | |
|       return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ConstantFold - Constant fold an instruction of the specified type with the
 | |
| /// specified constant operands.  This function may modify the operands vector.
 | |
| static Constant *ConstantFold(const Instruction *I,
 | |
|                               std::vector<Constant*> &Operands) {
 | |
|   if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
 | |
|     return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]);
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::Cast:
 | |
|     return ConstantExpr::getCast(Operands[0], I->getType());
 | |
|   case Instruction::Select:
 | |
|     return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
 | |
|   case Instruction::Call:
 | |
|     if (Function *GV = dyn_cast<Function>(Operands[0])) {
 | |
|       Operands.erase(Operands.begin());
 | |
|       return ConstantFoldCall(cast<Function>(GV), Operands);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   case Instruction::GetElementPtr:
 | |
|     Constant *Base = Operands[0];
 | |
|     Operands.erase(Operands.begin());
 | |
|     return ConstantExpr::getGetElementPtr(Base, Operands);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
 | |
| /// in the loop that V is derived from.  We allow arbitrary operations along the
 | |
| /// way, but the operands of an operation must either be constants or a value
 | |
| /// derived from a constant PHI.  If this expression does not fit with these
 | |
| /// constraints, return null.
 | |
| static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
 | |
|   // If this is not an instruction, or if this is an instruction outside of the
 | |
|   // loop, it can't be derived from a loop PHI.
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (I == 0 || !L->contains(I->getParent())) return 0;
 | |
| 
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(I))
 | |
|     if (L->getHeader() == I->getParent())
 | |
|       return PN;
 | |
|     else
 | |
|       // We don't currently keep track of the control flow needed to evaluate
 | |
|       // PHIs, so we cannot handle PHIs inside of loops.
 | |
|       return 0;
 | |
| 
 | |
|   // If we won't be able to constant fold this expression even if the operands
 | |
|   // are constants, return early.
 | |
|   if (!CanConstantFold(I)) return 0;
 | |
| 
 | |
|   // Otherwise, we can evaluate this instruction if all of its operands are
 | |
|   // constant or derived from a PHI node themselves.
 | |
|   PHINode *PHI = 0;
 | |
|   for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
 | |
|     if (!(isa<Constant>(I->getOperand(Op)) ||
 | |
|           isa<GlobalValue>(I->getOperand(Op)))) {
 | |
|       PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
 | |
|       if (P == 0) return 0;  // Not evolving from PHI
 | |
|       if (PHI == 0)
 | |
|         PHI = P;
 | |
|       else if (PHI != P)
 | |
|         return 0;  // Evolving from multiple different PHIs.
 | |
|     }
 | |
| 
 | |
|   // This is a expression evolving from a constant PHI!
 | |
|   return PHI;
 | |
| }
 | |
| 
 | |
| /// EvaluateExpression - Given an expression that passes the
 | |
| /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
 | |
| /// in the loop has the value PHIVal.  If we can't fold this expression for some
 | |
| /// reason, return null.
 | |
| static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
 | |
|   if (isa<PHINode>(V)) return PHIVal;
 | |
|   if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
 | |
|     return GV;
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) return C;
 | |
|   Instruction *I = cast<Instruction>(V);
 | |
| 
 | |
|   std::vector<Constant*> Operands;
 | |
|   Operands.resize(I->getNumOperands());
 | |
| 
 | |
|   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|     Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
 | |
|     if (Operands[i] == 0) return 0;
 | |
|   }
 | |
| 
 | |
|   return ConstantFold(I, Operands);
 | |
| }
 | |
| 
 | |
| /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
 | |
| /// in the header of its containing loop, we know the loop executes a
 | |
| /// constant number of times, and the PHI node is just a recurrence
 | |
| /// involving constants, fold it.
 | |
| Constant *ScalarEvolutionsImpl::
 | |
| getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
 | |
|   std::map<PHINode*, Constant*>::iterator I =
 | |
|     ConstantEvolutionLoopExitValue.find(PN);
 | |
|   if (I != ConstantEvolutionLoopExitValue.end())
 | |
|     return I->second;
 | |
| 
 | |
|   if (Its > MaxBruteForceIterations)
 | |
|     return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
 | |
| 
 | |
|   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
 | |
| 
 | |
|   // Since the loop is canonicalized, the PHI node must have two entries.  One
 | |
|   // entry must be a constant (coming in from outside of the loop), and the
 | |
|   // second must be derived from the same PHI.
 | |
|   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
 | |
|   Constant *StartCST =
 | |
|     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
 | |
|   if (StartCST == 0)
 | |
|     return RetVal = 0;  // Must be a constant.
 | |
| 
 | |
|   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
 | |
|   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
 | |
|   if (PN2 != PN)
 | |
|     return RetVal = 0;  // Not derived from same PHI.
 | |
| 
 | |
|   // Execute the loop symbolically to determine the exit value.
 | |
|   unsigned IterationNum = 0;
 | |
|   unsigned NumIterations = Its;
 | |
|   if (NumIterations != Its)
 | |
|     return RetVal = 0;  // More than 2^32 iterations??
 | |
| 
 | |
|   for (Constant *PHIVal = StartCST; ; ++IterationNum) {
 | |
|     if (IterationNum == NumIterations)
 | |
|       return RetVal = PHIVal;  // Got exit value!
 | |
| 
 | |
|     // Compute the value of the PHI node for the next iteration.
 | |
|     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
 | |
|     if (NextPHI == PHIVal)
 | |
|       return RetVal = NextPHI;  // Stopped evolving!
 | |
|     if (NextPHI == 0)
 | |
|       return 0;        // Couldn't evaluate!
 | |
|     PHIVal = NextPHI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ComputeIterationCountExhaustively - If the trip is known to execute a
 | |
| /// constant number of times (the condition evolves only from constants),
 | |
| /// try to evaluate a few iterations of the loop until we get the exit
 | |
| /// condition gets a value of ExitWhen (true or false).  If we cannot
 | |
| /// evaluate the trip count of the loop, return UnknownValue.
 | |
| SCEVHandle ScalarEvolutionsImpl::
 | |
| ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
 | |
|   PHINode *PN = getConstantEvolvingPHI(Cond, L);
 | |
|   if (PN == 0) return UnknownValue;
 | |
| 
 | |
|   // Since the loop is canonicalized, the PHI node must have two entries.  One
 | |
|   // entry must be a constant (coming in from outside of the loop), and the
 | |
|   // second must be derived from the same PHI.
 | |
|   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
 | |
|   Constant *StartCST =
 | |
|     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
 | |
|   if (StartCST == 0) return UnknownValue;  // Must be a constant.
 | |
| 
 | |
|   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
 | |
|   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
 | |
|   if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
 | |
| 
 | |
|   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
 | |
|   // the loop symbolically to determine when the condition gets a value of
 | |
|   // "ExitWhen".
 | |
|   unsigned IterationNum = 0;
 | |
|   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
 | |
|   for (Constant *PHIVal = StartCST;
 | |
|        IterationNum != MaxIterations; ++IterationNum) {
 | |
|     ConstantBool *CondVal =
 | |
|       dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal));
 | |
|     if (!CondVal) return UnknownValue;     // Couldn't symbolically evaluate.
 | |
| 
 | |
|     if (CondVal->getValue() == ExitWhen) {
 | |
|       ConstantEvolutionLoopExitValue[PN] = PHIVal;
 | |
|       ++NumBruteForceTripCountsComputed;
 | |
|       return SCEVConstant::get(ConstantUInt::get(Type::UIntTy, IterationNum));
 | |
|     }
 | |
| 
 | |
|     // Compute the value of the PHI node for the next iteration.
 | |
|     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
 | |
|     if (NextPHI == 0 || NextPHI == PHIVal)
 | |
|       return UnknownValue;  // Couldn't evaluate or not making progress...
 | |
|     PHIVal = NextPHI;
 | |
|   }
 | |
| 
 | |
|   // Too many iterations were needed to evaluate.
 | |
|   return UnknownValue;
 | |
| }
 | |
| 
 | |
| /// getSCEVAtScope - Compute the value of the specified expression within the
 | |
| /// indicated loop (which may be null to indicate in no loop).  If the
 | |
| /// expression cannot be evaluated, return UnknownValue.
 | |
| SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
 | |
|   // FIXME: this should be turned into a virtual method on SCEV!
 | |
| 
 | |
|   if (isa<SCEVConstant>(V)) return V;
 | |
| 
 | |
|   // If this instruction is evolves from a constant-evolving PHI, compute the
 | |
|   // exit value from the loop without using SCEVs.
 | |
|   if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
 | |
|     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
 | |
|       const Loop *LI = this->LI[I->getParent()];
 | |
|       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
 | |
|         if (PHINode *PN = dyn_cast<PHINode>(I))
 | |
|           if (PN->getParent() == LI->getHeader()) {
 | |
|             // Okay, there is no closed form solution for the PHI node.  Check
 | |
|             // to see if the loop that contains it has a known iteration count.
 | |
|             // If so, we may be able to force computation of the exit value.
 | |
|             SCEVHandle IterationCount = getIterationCount(LI);
 | |
|             if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
 | |
|               // Okay, we know how many times the containing loop executes.  If
 | |
|               // this is a constant evolving PHI node, get the final value at
 | |
|               // the specified iteration number.
 | |
|               Constant *RV = getConstantEvolutionLoopExitValue(PN,
 | |
|                                                ICC->getValue()->getRawValue(),
 | |
|                                                                LI);
 | |
|               if (RV) return SCEVUnknown::get(RV);
 | |
|             }
 | |
|           }
 | |
| 
 | |
|       // Okay, this is a some expression that we cannot symbolically evaluate
 | |
|       // into a SCEV.  Check to see if it's possible to symbolically evaluate
 | |
|       // the arguments into constants, and if see, try to constant propagate the
 | |
|       // result.  This is particularly useful for computing loop exit values.
 | |
|       if (CanConstantFold(I)) {
 | |
|         std::vector<Constant*> Operands;
 | |
|         Operands.reserve(I->getNumOperands());
 | |
|         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|           Value *Op = I->getOperand(i);
 | |
|           if (Constant *C = dyn_cast<Constant>(Op)) {
 | |
|             Operands.push_back(C);
 | |
|           } else {
 | |
|             SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
 | |
|             if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
 | |
|               Operands.push_back(ConstantExpr::getCast(SC->getValue(),
 | |
|                                                        Op->getType()));
 | |
|             else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
 | |
|               if (Constant *C = dyn_cast<Constant>(SU->getValue()))
 | |
|                 Operands.push_back(ConstantExpr::getCast(C, Op->getType()));
 | |
|               else
 | |
|                 return V;
 | |
|             } else {
 | |
|               return V;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         return SCEVUnknown::get(ConstantFold(I, Operands));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // This is some other type of SCEVUnknown, just return it.
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
 | |
|     // Avoid performing the look-up in the common case where the specified
 | |
|     // expression has no loop-variant portions.
 | |
|     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
 | |
|       SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
 | |
|       if (OpAtScope != Comm->getOperand(i)) {
 | |
|         if (OpAtScope == UnknownValue) return UnknownValue;
 | |
|         // Okay, at least one of these operands is loop variant but might be
 | |
|         // foldable.  Build a new instance of the folded commutative expression.
 | |
|         std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
 | |
|         NewOps.push_back(OpAtScope);
 | |
| 
 | |
|         for (++i; i != e; ++i) {
 | |
|           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
 | |
|           if (OpAtScope == UnknownValue) return UnknownValue;
 | |
|           NewOps.push_back(OpAtScope);
 | |
|         }
 | |
|         if (isa<SCEVAddExpr>(Comm))
 | |
|           return SCEVAddExpr::get(NewOps);
 | |
|         assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
 | |
|         return SCEVMulExpr::get(NewOps);
 | |
|       }
 | |
|     }
 | |
|     // If we got here, all operands are loop invariant.
 | |
|     return Comm;
 | |
|   }
 | |
| 
 | |
|   if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(V)) {
 | |
|     SCEVHandle LHS = getSCEVAtScope(UDiv->getLHS(), L);
 | |
|     if (LHS == UnknownValue) return LHS;
 | |
|     SCEVHandle RHS = getSCEVAtScope(UDiv->getRHS(), L);
 | |
|     if (RHS == UnknownValue) return RHS;
 | |
|     if (LHS == UDiv->getLHS() && RHS == UDiv->getRHS())
 | |
|       return UDiv;   // must be loop invariant
 | |
|     return SCEVUDivExpr::get(LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   // If this is a loop recurrence for a loop that does not contain L, then we
 | |
|   // are dealing with the final value computed by the loop.
 | |
|   if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
 | |
|     if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
 | |
|       // To evaluate this recurrence, we need to know how many times the AddRec
 | |
|       // loop iterates.  Compute this now.
 | |
|       SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
 | |
|       if (IterationCount == UnknownValue) return UnknownValue;
 | |
|       IterationCount = getTruncateOrZeroExtend(IterationCount,
 | |
|                                                AddRec->getType());
 | |
| 
 | |
|       // If the value is affine, simplify the expression evaluation to just
 | |
|       // Start + Step*IterationCount.
 | |
|       if (AddRec->isAffine())
 | |
|         return SCEVAddExpr::get(AddRec->getStart(),
 | |
|                                 SCEVMulExpr::get(IterationCount,
 | |
|                                                  AddRec->getOperand(1)));
 | |
| 
 | |
|       // Otherwise, evaluate it the hard way.
 | |
|       return AddRec->evaluateAtIteration(IterationCount);
 | |
|     }
 | |
|     return UnknownValue;
 | |
|   }
 | |
| 
 | |
|   //assert(0 && "Unknown SCEV type!");
 | |
|   return UnknownValue;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
 | |
| /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
 | |
| /// might be the same) or two SCEVCouldNotCompute objects.
 | |
| ///
 | |
| static std::pair<SCEVHandle,SCEVHandle>
 | |
| SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
 | |
|   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
 | |
|   SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
 | |
|   SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
 | |
|   SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
 | |
| 
 | |
|   // We currently can only solve this if the coefficients are constants.
 | |
|   if (!L || !M || !N) {
 | |
|     SCEV *CNC = new SCEVCouldNotCompute();
 | |
|     return std::make_pair(CNC, CNC);
 | |
|   }
 | |
| 
 | |
|   Constant *Two = ConstantInt::get(L->getValue()->getType(), 2);
 | |
| 
 | |
|   // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
 | |
|   Constant *C = L->getValue();
 | |
|   // The B coefficient is M-N/2
 | |
|   Constant *B = ConstantExpr::getSub(M->getValue(),
 | |
|                                      ConstantExpr::getDiv(N->getValue(),
 | |
|                                                           Two));
 | |
|   // The A coefficient is N/2
 | |
|   Constant *A = ConstantExpr::getDiv(N->getValue(), Two);
 | |
| 
 | |
|   // Compute the B^2-4ac term.
 | |
|   Constant *SqrtTerm =
 | |
|     ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
 | |
|                          ConstantExpr::getMul(A, C));
 | |
|   SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
 | |
| 
 | |
|   // Compute floor(sqrt(B^2-4ac))
 | |
|   ConstantUInt *SqrtVal =
 | |
|     cast<ConstantUInt>(ConstantExpr::getCast(SqrtTerm,
 | |
|                                    SqrtTerm->getType()->getUnsignedVersion()));
 | |
|   uint64_t SqrtValV = SqrtVal->getValue();
 | |
|   uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
 | |
|   // The square root might not be precise for arbitrary 64-bit integer
 | |
|   // values.  Do some sanity checks to ensure it's correct.
 | |
|   if (SqrtValV2*SqrtValV2 > SqrtValV ||
 | |
|       (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
 | |
|     SCEV *CNC = new SCEVCouldNotCompute();
 | |
|     return std::make_pair(CNC, CNC);
 | |
|   }
 | |
| 
 | |
|   SqrtVal = ConstantUInt::get(Type::ULongTy, SqrtValV2);
 | |
|   SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType());
 | |
| 
 | |
|   Constant *NegB = ConstantExpr::getNeg(B);
 | |
|   Constant *TwoA = ConstantExpr::getMul(A, Two);
 | |
| 
 | |
|   // The divisions must be performed as signed divisions.
 | |
|   const Type *SignedTy = NegB->getType()->getSignedVersion();
 | |
|   NegB = ConstantExpr::getCast(NegB, SignedTy);
 | |
|   TwoA = ConstantExpr::getCast(TwoA, SignedTy);
 | |
|   SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy);
 | |
| 
 | |
|   Constant *Solution1 =
 | |
|     ConstantExpr::getDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
 | |
|   Constant *Solution2 =
 | |
|     ConstantExpr::getDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
 | |
|   return std::make_pair(SCEVUnknown::get(Solution1),
 | |
|                         SCEVUnknown::get(Solution2));
 | |
| }
 | |
| 
 | |
| /// HowFarToZero - Return the number of times a backedge comparing the specified
 | |
| /// value to zero will execute.  If not computable, return UnknownValue
 | |
| SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
 | |
|   // If the value is a constant
 | |
|   if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
 | |
|     // If the value is already zero, the branch will execute zero times.
 | |
|     if (C->getValue()->isNullValue()) return C;
 | |
|     return UnknownValue;  // Otherwise it will loop infinitely.
 | |
|   }
 | |
| 
 | |
|   SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
 | |
|   if (!AddRec || AddRec->getLoop() != L)
 | |
|     return UnknownValue;
 | |
| 
 | |
|   if (AddRec->isAffine()) {
 | |
|     // If this is an affine expression the execution count of this branch is
 | |
|     // equal to:
 | |
|     //
 | |
|     //     (0 - Start/Step)    iff   Start % Step == 0
 | |
|     //
 | |
|     // Get the initial value for the loop.
 | |
|     SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
 | |
|     if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
 | |
|     SCEVHandle Step = AddRec->getOperand(1);
 | |
| 
 | |
|     Step = getSCEVAtScope(Step, L->getParentLoop());
 | |
| 
 | |
|     // Figure out if Start % Step == 0.
 | |
|     // FIXME: We should add DivExpr and RemExpr operations to our AST.
 | |
|     if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
 | |
|       if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
 | |
|         return SCEV::getNegativeSCEV(Start);  // 0 - Start/1 == -Start
 | |
|       if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
 | |
|         return Start;                   // 0 - Start/-1 == Start
 | |
| 
 | |
|       // Check to see if Start is divisible by SC with no remainder.
 | |
|       if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
 | |
|         ConstantInt *StartCC = StartC->getValue();
 | |
|         Constant *StartNegC = ConstantExpr::getNeg(StartCC);
 | |
|         Constant *Rem = ConstantExpr::getRem(StartNegC, StepC->getValue());
 | |
|         if (Rem->isNullValue()) {
 | |
|           Constant *Result =ConstantExpr::getDiv(StartNegC,StepC->getValue());
 | |
|           return SCEVUnknown::get(Result);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
 | |
|     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
 | |
|     // the quadratic equation to solve it.
 | |
|     std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
 | |
|     SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
 | |
|     SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
 | |
|     if (R1) {
 | |
| #if 0
 | |
|       std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1
 | |
|                 << "  sol#2: " << *R2 << "\n";
 | |
| #endif
 | |
|       // Pick the smallest positive root value.
 | |
|       assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
 | |
|       if (ConstantBool *CB =
 | |
|           dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
 | |
|                                                         R2->getValue()))) {
 | |
|         if (CB != ConstantBool::True)
 | |
|           std::swap(R1, R2);   // R1 is the minimum root now.
 | |
| 
 | |
|         // We can only use this value if the chrec ends up with an exact zero
 | |
|         // value at this index.  When solving for "X*X != 5", for example, we
 | |
|         // should not accept a root of 2.
 | |
|         SCEVHandle Val = AddRec->evaluateAtIteration(R1);
 | |
|         if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
 | |
|           if (EvalVal->getValue()->isNullValue())
 | |
|             return R1;  // We found a quadratic root!
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return UnknownValue;
 | |
| }
 | |
| 
 | |
| /// HowFarToNonZero - Return the number of times a backedge checking the
 | |
| /// specified value for nonzero will execute.  If not computable, return
 | |
| /// UnknownValue
 | |
| SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
 | |
|   // Loops that look like: while (X == 0) are very strange indeed.  We don't
 | |
|   // handle them yet except for the trivial case.  This could be expanded in the
 | |
|   // future as needed.
 | |
| 
 | |
|   // If the value is a constant, check to see if it is known to be non-zero
 | |
|   // already.  If so, the backedge will execute zero times.
 | |
|   if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
 | |
|     Constant *Zero = Constant::getNullValue(C->getValue()->getType());
 | |
|     Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
 | |
|     if (NonZero == ConstantBool::True)
 | |
|       return getSCEV(Zero);
 | |
|     return UnknownValue;  // Otherwise it will loop infinitely.
 | |
|   }
 | |
| 
 | |
|   // We could implement others, but I really doubt anyone writes loops like
 | |
|   // this, and if they did, they would already be constant folded.
 | |
|   return UnknownValue;
 | |
| }
 | |
| 
 | |
| /// getNumIterationsInRange - Return the number of iterations of this loop that
 | |
| /// produce values in the specified constant range.  Another way of looking at
 | |
| /// this is that it returns the first iteration number where the value is not in
 | |
| /// the condition, thus computing the exit count. If the iteration count can't
 | |
| /// be computed, an instance of SCEVCouldNotCompute is returned.
 | |
| SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
 | |
|   if (Range.isFullSet())  // Infinite loop.
 | |
|     return new SCEVCouldNotCompute();
 | |
| 
 | |
|   // If the start is a non-zero constant, shift the range to simplify things.
 | |
|   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
 | |
|     if (!SC->getValue()->isNullValue()) {
 | |
|       std::vector<SCEVHandle> Operands(op_begin(), op_end());
 | |
|       Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
 | |
|       SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
 | |
|       if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
 | |
|         return ShiftedAddRec->getNumIterationsInRange(
 | |
|                                               Range.subtract(SC->getValue()));
 | |
|       // This is strange and shouldn't happen.
 | |
|       return new SCEVCouldNotCompute();
 | |
|     }
 | |
| 
 | |
|   // The only time we can solve this is when we have all constant indices.
 | |
|   // Otherwise, we cannot determine the overflow conditions.
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     if (!isa<SCEVConstant>(getOperand(i)))
 | |
|       return new SCEVCouldNotCompute();
 | |
| 
 | |
| 
 | |
|   // Okay at this point we know that all elements of the chrec are constants and
 | |
|   // that the start element is zero.
 | |
| 
 | |
|   // First check to see if the range contains zero.  If not, the first
 | |
|   // iteration exits.
 | |
|   ConstantInt *Zero = ConstantInt::get(getType(), 0);
 | |
|   if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
 | |
| 
 | |
|   if (isAffine()) {
 | |
|     // If this is an affine expression then we have this situation:
 | |
|     //   Solve {0,+,A} in Range  ===  Ax in Range
 | |
| 
 | |
|     // Since we know that zero is in the range, we know that the upper value of
 | |
|     // the range must be the first possible exit value.  Also note that we
 | |
|     // already checked for a full range.
 | |
|     ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
 | |
|     ConstantInt *A     = cast<SCEVConstant>(getOperand(1))->getValue();
 | |
|     ConstantInt *One   = ConstantInt::get(getType(), 1);
 | |
| 
 | |
|     // The exit value should be (Upper+A-1)/A.
 | |
|     Constant *ExitValue = Upper;
 | |
|     if (A != One) {
 | |
|       ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
 | |
|       ExitValue = ConstantExpr::getDiv(ExitValue, A);
 | |
|     }
 | |
|     assert(isa<ConstantInt>(ExitValue) &&
 | |
|            "Constant folding of integers not implemented?");
 | |
| 
 | |
|     // Evaluate at the exit value.  If we really did fall out of the valid
 | |
|     // range, then we computed our trip count, otherwise wrap around or other
 | |
|     // things must have happened.
 | |
|     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
 | |
|     if (Range.contains(Val))
 | |
|       return new SCEVCouldNotCompute();  // Something strange happened
 | |
| 
 | |
|     // Ensure that the previous value is in the range.  This is a sanity check.
 | |
|     assert(Range.contains(EvaluateConstantChrecAtConstant(this,
 | |
|                               ConstantExpr::getSub(ExitValue, One))) &&
 | |
|            "Linear scev computation is off in a bad way!");
 | |
|     return SCEVConstant::get(cast<ConstantInt>(ExitValue));
 | |
|   } else if (isQuadratic()) {
 | |
|     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
 | |
|     // quadratic equation to solve it.  To do this, we must frame our problem in
 | |
|     // terms of figuring out when zero is crossed, instead of when
 | |
|     // Range.getUpper() is crossed.
 | |
|     std::vector<SCEVHandle> NewOps(op_begin(), op_end());
 | |
|     NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
 | |
|     SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
 | |
| 
 | |
|     // Next, solve the constructed addrec
 | |
|     std::pair<SCEVHandle,SCEVHandle> Roots =
 | |
|       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
 | |
|     SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
 | |
|     SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
 | |
|     if (R1) {
 | |
|       // Pick the smallest positive root value.
 | |
|       assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
 | |
|       if (ConstantBool *CB =
 | |
|           dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
 | |
|                                                         R2->getValue()))) {
 | |
|         if (CB != ConstantBool::True)
 | |
|           std::swap(R1, R2);   // R1 is the minimum root now.
 | |
| 
 | |
|         // Make sure the root is not off by one.  The returned iteration should
 | |
|         // not be in the range, but the previous one should be.  When solving
 | |
|         // for "X*X < 5", for example, we should not return a root of 2.
 | |
|         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
 | |
|                                                              R1->getValue());
 | |
|         if (Range.contains(R1Val)) {
 | |
|           // The next iteration must be out of the range...
 | |
|           Constant *NextVal =
 | |
|             ConstantExpr::getAdd(R1->getValue(),
 | |
|                                  ConstantInt::get(R1->getType(), 1));
 | |
| 
 | |
|           R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
 | |
|           if (!Range.contains(R1Val))
 | |
|             return SCEVUnknown::get(NextVal);
 | |
|           return new SCEVCouldNotCompute();  // Something strange happened
 | |
|         }
 | |
| 
 | |
|         // If R1 was not in the range, then it is a good return value.  Make
 | |
|         // sure that R1-1 WAS in the range though, just in case.
 | |
|         Constant *NextVal =
 | |
|           ConstantExpr::getSub(R1->getValue(),
 | |
|                                ConstantInt::get(R1->getType(), 1));
 | |
|         R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
 | |
|         if (Range.contains(R1Val))
 | |
|           return R1;
 | |
|         return new SCEVCouldNotCompute();  // Something strange happened
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fallback, if this is a general polynomial, figure out the progression
 | |
|   // through brute force: evaluate until we find an iteration that fails the
 | |
|   // test.  This is likely to be slow, but getting an accurate trip count is
 | |
|   // incredibly important, we will be able to simplify the exit test a lot, and
 | |
|   // we are almost guaranteed to get a trip count in this case.
 | |
|   ConstantInt *TestVal = ConstantInt::get(getType(), 0);
 | |
|   ConstantInt *One     = ConstantInt::get(getType(), 1);
 | |
|   ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
 | |
|   do {
 | |
|     ++NumBruteForceEvaluations;
 | |
|     SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
 | |
|     if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
 | |
|       return new SCEVCouldNotCompute();
 | |
| 
 | |
|     // Check to see if we found the value!
 | |
|     if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
 | |
|       return SCEVConstant::get(TestVal);
 | |
| 
 | |
|     // Increment to test the next index.
 | |
|     TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
 | |
|   } while (TestVal != EndVal);
 | |
| 
 | |
|   return new SCEVCouldNotCompute();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                   ScalarEvolution Class Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool ScalarEvolution::runOnFunction(Function &F) {
 | |
|   Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::releaseMemory() {
 | |
|   delete (ScalarEvolutionsImpl*)Impl;
 | |
|   Impl = 0;
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequiredTransitive<LoopInfo>();
 | |
| }
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
 | |
|   return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
 | |
| }
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
 | |
|   return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
 | |
|   return !isa<SCEVCouldNotCompute>(getIterationCount(L));
 | |
| }
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
 | |
|   return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
 | |
|   return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
 | |
| }
 | |
| 
 | |
| static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
 | |
|                           const Loop *L) {
 | |
|   // Print all inner loops first
 | |
|   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | |
|     PrintLoopInfo(OS, SE, *I);
 | |
| 
 | |
|   std::cerr << "Loop " << L->getHeader()->getName() << ": ";
 | |
| 
 | |
|   std::vector<BasicBlock*> ExitBlocks;
 | |
|   L->getExitBlocks(ExitBlocks);
 | |
|   if (ExitBlocks.size() != 1)
 | |
|     std::cerr << "<multiple exits> ";
 | |
| 
 | |
|   if (SE->hasLoopInvariantIterationCount(L)) {
 | |
|     std::cerr << *SE->getIterationCount(L) << " iterations! ";
 | |
|   } else {
 | |
|     std::cerr << "Unpredictable iteration count. ";
 | |
|   }
 | |
| 
 | |
|   std::cerr << "\n";
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
 | |
|   Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
 | |
|   LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
 | |
| 
 | |
|   OS << "Classifying expressions for: " << F.getName() << "\n";
 | |
|   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
 | |
|     if (I->getType()->isInteger()) {
 | |
|       OS << *I;
 | |
|       OS << "  --> ";
 | |
|       SCEVHandle SV = getSCEV(&*I);
 | |
|       SV->print(OS);
 | |
|       OS << "\t\t";
 | |
| 
 | |
|       if ((*I).getType()->isIntegral()) {
 | |
|         ConstantRange Bounds = SV->getValueRange();
 | |
|         if (!Bounds.isFullSet())
 | |
|           OS << "Bounds: " << Bounds << " ";
 | |
|       }
 | |
| 
 | |
|       if (const Loop *L = LI.getLoopFor((*I).getParent())) {
 | |
|         OS << "Exits: ";
 | |
|         SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
 | |
|         if (isa<SCEVCouldNotCompute>(ExitValue)) {
 | |
|           OS << "<<Unknown>>";
 | |
|         } else {
 | |
|           OS << *ExitValue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
| 
 | |
|       OS << "\n";
 | |
|     }
 | |
| 
 | |
|   OS << "Determining loop execution counts for: " << F.getName() << "\n";
 | |
|   for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
 | |
|     PrintLoopInfo(OS, this, *I);
 | |
| }
 | |
| 
 |