mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13956 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			358 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			358 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // 
 | |
| // This file implements the LiveVariable analysis pass.  For each machine
 | |
| // instruction in the function, this pass calculates the set of registers that
 | |
| // are immediately dead after the instruction (i.e., the instruction calculates
 | |
| // the value, but it is never used) and the set of registers that are used by
 | |
| // the instruction, but are never used after the instruction (i.e., they are
 | |
| // killed).
 | |
| //
 | |
| // This class computes live variables using are sparse implementation based on
 | |
| // the machine code SSA form.  This class computes live variable information for
 | |
| // each virtual and _register allocatable_ physical register in a function.  It
 | |
| // uses the dominance properties of SSA form to efficiently compute live
 | |
| // variables for virtual registers, and assumes that physical registers are only
 | |
| // live within a single basic block (allowing it to do a single local analysis
 | |
| // to resolve physical register lifetimes in each basic block).  If a physical
 | |
| // register is not register allocatable, it is not tracked.  This is useful for
 | |
| // things like the stack pointer and condition codes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "Support/DepthFirstIterator.h"
 | |
| #include "Support/STLExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis");
 | |
| 
 | |
| /// getIndexMachineBasicBlock() - Given a block index, return the
 | |
| /// MachineBasicBlock corresponding to it.
 | |
| MachineBasicBlock *LiveVariables::getIndexMachineBasicBlock(unsigned Idx) {
 | |
|   if (BBIdxMap.empty()) {
 | |
|     BBIdxMap.resize(BBMap.size());
 | |
|     for (std::map<MachineBasicBlock*, unsigned>::iterator I = BBMap.begin(),
 | |
|            E = BBMap.end(); I != E; ++I) {
 | |
|       assert(BBIdxMap.size() > I->second && "Indices are not sequential");
 | |
|       assert(BBIdxMap[I->second] == 0 && "Multiple idx collision!");
 | |
|       BBIdxMap[I->second] = I->first;
 | |
|     }
 | |
|   }
 | |
|   assert(Idx < BBIdxMap.size() && "BB Index out of range!");
 | |
|   return BBIdxMap[Idx];
 | |
| }
 | |
| 
 | |
| LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
 | |
|   assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
 | |
|          "getVarInfo: not a virtual register!");
 | |
|   RegIdx -= MRegisterInfo::FirstVirtualRegister;
 | |
|   if (RegIdx >= VirtRegInfo.size()) {
 | |
|     if (RegIdx >= 2*VirtRegInfo.size())
 | |
|       VirtRegInfo.resize(RegIdx*2);
 | |
|     else
 | |
|       VirtRegInfo.resize(2*VirtRegInfo.size());
 | |
|   }
 | |
|   return VirtRegInfo[RegIdx];
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
 | |
| 					    MachineBasicBlock *MBB) {
 | |
|   unsigned BBNum = getMachineBasicBlockIndex(MBB);
 | |
| 
 | |
|   // Check to see if this basic block is one of the killing blocks.  If so,
 | |
|   // remove it...
 | |
|   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
 | |
|     if (VRInfo.Kills[i].first == MBB) {
 | |
|       VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   if (MBB == VRInfo.DefBlock) return;  // Terminate recursion
 | |
| 
 | |
|   if (VRInfo.AliveBlocks.size() <= BBNum)
 | |
|     VRInfo.AliveBlocks.resize(BBNum+1);  // Make space...
 | |
| 
 | |
|   if (VRInfo.AliveBlocks[BBNum])
 | |
|     return;  // We already know the block is live
 | |
| 
 | |
|   // Mark the variable known alive in this bb
 | |
|   VRInfo.AliveBlocks[BBNum] = true;
 | |
| 
 | |
|   for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
 | |
|          E = MBB->pred_end(); PI != E; ++PI)
 | |
|     MarkVirtRegAliveInBlock(VRInfo, *PI);
 | |
| }
 | |
| 
 | |
| void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
 | |
| 				     MachineInstr *MI) {
 | |
|   // Check to see if this basic block is already a kill block...
 | |
|   if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) {
 | |
|     // Yes, this register is killed in this basic block already.  Increase the
 | |
|     // live range by updating the kill instruction.
 | |
|     VRInfo.Kills.back().second = MI;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
 | |
|     assert(VRInfo.Kills[i].first != MBB && "entry should be at end!");
 | |
| #endif
 | |
| 
 | |
|   assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!");
 | |
| 
 | |
|   // Add a new kill entry for this basic block.
 | |
|   VRInfo.Kills.push_back(std::make_pair(MBB, MI));
 | |
| 
 | |
|   // Update all dominating blocks to mark them known live.
 | |
|   const BasicBlock *BB = MBB->getBasicBlock();
 | |
|   for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
 | |
|          E = MBB->pred_end(); PI != E; ++PI)
 | |
|     MarkVirtRegAliveInBlock(VRInfo, *PI);
 | |
| }
 | |
| 
 | |
| void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
 | |
|   PhysRegInfo[Reg] = MI;
 | |
|   PhysRegUsed[Reg] = true;
 | |
| 
 | |
|   for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
 | |
|        unsigned Alias = *AliasSet; ++AliasSet) {
 | |
|     PhysRegInfo[Alias] = MI;
 | |
|     PhysRegUsed[Alias] = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
 | |
|   // Does this kill a previous version of this register?
 | |
|   if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
 | |
|     if (PhysRegUsed[Reg])
 | |
|       RegistersKilled.insert(std::make_pair(LastUse, Reg));
 | |
|     else
 | |
|       RegistersDead.insert(std::make_pair(LastUse, Reg));
 | |
|   }
 | |
|   PhysRegInfo[Reg] = MI;
 | |
|   PhysRegUsed[Reg] = false;
 | |
| 
 | |
|   for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
 | |
|        unsigned Alias = *AliasSet; ++AliasSet) {
 | |
|     if (MachineInstr *LastUse = PhysRegInfo[Alias]) {
 | |
|       if (PhysRegUsed[Alias])
 | |
|         RegistersKilled.insert(std::make_pair(LastUse, Alias));
 | |
|       else
 | |
| 	RegistersDead.insert(std::make_pair(LastUse, Alias));
 | |
|     }
 | |
|     PhysRegInfo[Alias] = MI;
 | |
|     PhysRegUsed[Alias] = false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
 | |
|   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
 | |
|   RegInfo = MF.getTarget().getRegisterInfo();
 | |
|   assert(RegInfo && "Target doesn't have register information?");
 | |
| 
 | |
|   // First time though, initialize AllocatablePhysicalRegisters for the target
 | |
|   if (AllocatablePhysicalRegisters.empty()) {
 | |
|     // Make space, initializing to false...
 | |
|     AllocatablePhysicalRegisters.resize(RegInfo->getNumRegs());
 | |
| 
 | |
|     // Loop over all of the register classes...
 | |
|     for (MRegisterInfo::regclass_iterator RCI = RegInfo->regclass_begin(),
 | |
|            E = RegInfo->regclass_end(); RCI != E; ++RCI)
 | |
|       // Loop over all of the allocatable registers in the function...
 | |
|       for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF),
 | |
|              E = (*RCI)->allocation_order_end(MF); I != E; ++I)
 | |
|         AllocatablePhysicalRegisters[*I] = true;  // The reg is allocatable!
 | |
|   }
 | |
| 
 | |
|   // Build BBMap... 
 | |
|   unsigned BBNum = 0;
 | |
|   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
 | |
|     BBMap[I] = BBNum++;
 | |
| 
 | |
|   // PhysRegInfo - Keep track of which instruction was the last use of a
 | |
|   // physical register.  This is a purely local property, because all physical
 | |
|   // register references as presumed dead across basic blocks.
 | |
|   //
 | |
|   MachineInstr *PhysRegInfoA[RegInfo->getNumRegs()];
 | |
|   bool          PhysRegUsedA[RegInfo->getNumRegs()];
 | |
|   std::fill(PhysRegInfoA, PhysRegInfoA+RegInfo->getNumRegs(), (MachineInstr*)0);
 | |
|   PhysRegInfo = PhysRegInfoA;
 | |
|   PhysRegUsed = PhysRegUsedA;
 | |
| 
 | |
|   /// Get some space for a respectable number of registers...
 | |
|   VirtRegInfo.resize(64);
 | |
|   
 | |
|   // Calculate live variable information in depth first order on the CFG of the
 | |
|   // function.  This guarantees that we will see the definition of a virtual
 | |
|   // register before its uses due to dominance properties of SSA (except for PHI
 | |
|   // nodes, which are treated as a special case).
 | |
|   //
 | |
|   MachineBasicBlock *Entry = MF.begin();
 | |
|   for (df_iterator<MachineBasicBlock*> DFI = df_begin(Entry), E = df_end(Entry);
 | |
|        DFI != E; ++DFI) {
 | |
|     MachineBasicBlock *MBB = *DFI;
 | |
|     unsigned BBNum = getMachineBasicBlockIndex(MBB);
 | |
| 
 | |
|     // Loop over all of the instructions, processing them.
 | |
|     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
 | |
| 	 I != E; ++I) {
 | |
|       MachineInstr *MI = I;
 | |
|       const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
 | |
| 
 | |
|       // Process all of the operands of the instruction...
 | |
|       unsigned NumOperandsToProcess = MI->getNumOperands();
 | |
| 
 | |
|       // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
 | |
|       // of the uses.  They will be handled in other basic blocks.
 | |
|       if (MI->getOpcode() == TargetInstrInfo::PHI)      
 | |
| 	NumOperandsToProcess = 1;
 | |
| 
 | |
|       // Loop over implicit uses, using them.
 | |
|       for (const unsigned *ImplicitUses = MID.ImplicitUses;
 | |
|            *ImplicitUses; ++ImplicitUses)
 | |
| 	HandlePhysRegUse(*ImplicitUses, MI);
 | |
| 
 | |
|       // Process all explicit uses...
 | |
|       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
 | |
| 	MachineOperand &MO = MI->getOperand(i);
 | |
| 	if (MO.isUse() && MO.isRegister() && MO.getReg()) {
 | |
| 	  if (MRegisterInfo::isVirtualRegister(MO.getReg())){
 | |
| 	    HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
 | |
| 	  } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
 | |
|                      AllocatablePhysicalRegisters[MO.getReg()]) {
 | |
| 	    HandlePhysRegUse(MO.getReg(), MI);
 | |
| 	  }
 | |
| 	}
 | |
|       }
 | |
| 
 | |
|       // Loop over implicit defs, defining them.
 | |
|       for (const unsigned *ImplicitDefs = MID.ImplicitDefs;
 | |
|            *ImplicitDefs; ++ImplicitDefs)
 | |
|         HandlePhysRegDef(*ImplicitDefs, MI);
 | |
| 
 | |
|       // Process all explicit defs...
 | |
|       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
 | |
| 	MachineOperand &MO = MI->getOperand(i);
 | |
| 	if (MO.isDef() && MO.isRegister() && MO.getReg()) {
 | |
| 	  if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
 | |
| 	    VarInfo &VRInfo = getVarInfo(MO.getReg());
 | |
| 
 | |
| 	    assert(VRInfo.DefBlock == 0 && "Variable multiply defined!");
 | |
| 	    VRInfo.DefBlock = MBB;                           // Created here...
 | |
| 	    VRInfo.DefInst = MI;
 | |
| 	    VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead
 | |
| 	  } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
 | |
|                      AllocatablePhysicalRegisters[MO.getReg()]) {
 | |
| 	    HandlePhysRegDef(MO.getReg(), MI);
 | |
| 	  }
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Handle any virtual assignments from PHI nodes which might be at the
 | |
|     // bottom of this basic block.  We check all of our successor blocks to see
 | |
|     // if they have PHI nodes, and if so, we simulate an assignment at the end
 | |
|     // of the current block.
 | |
|     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
 | |
|            E = MBB->succ_end(); SI != E; ++SI) {
 | |
|       MachineBasicBlock *Succ = *SI;
 | |
|       
 | |
|       // PHI nodes are guaranteed to be at the top of the block...
 | |
|       for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end();
 | |
| 	   MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) {
 | |
| 	for (unsigned i = 1; ; i += 2) {
 | |
|           assert(MI->getNumOperands() > i+1 &&
 | |
|                  "Didn't find an entry for our predecessor??");
 | |
| 	  if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) {
 | |
| 	    MachineOperand &MO = MI->getOperand(i);
 | |
| 	    if (!MO.getVRegValueOrNull()) {
 | |
| 	      VarInfo &VRInfo = getVarInfo(MO.getReg());
 | |
| 
 | |
| 	      // Only mark it alive only in the block we are representing...
 | |
| 	      MarkVirtRegAliveInBlock(VRInfo, MBB);
 | |
| 	      break;   // Found the PHI entry for this block...
 | |
| 	    }
 | |
| 	  }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Loop over PhysRegInfo, killing any registers that are available at the
 | |
|     // end of the basic block.  This also resets the PhysRegInfo map.
 | |
|     for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
 | |
|       if (PhysRegInfo[i])
 | |
| 	HandlePhysRegDef(i, 0);
 | |
|   }
 | |
| 
 | |
|   // Convert the information we have gathered into VirtRegInfo and transform it
 | |
|   // into a form usable by RegistersKilled.
 | |
|   //
 | |
|   for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
 | |
|     for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
 | |
|       if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst)
 | |
| 	RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
 | |
| 		    i + MRegisterInfo::FirstVirtualRegister));
 | |
| 
 | |
|       else
 | |
| 	RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
 | |
| 		    i + MRegisterInfo::FirstVirtualRegister));
 | |
|     }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// instructionChanged - When the address of an instruction changes, this
 | |
| /// method should be called so that live variables can update its internal
 | |
| /// data structures.  This removes the records for OldMI, transfering them to
 | |
| /// the records for NewMI.
 | |
| void LiveVariables::instructionChanged(MachineInstr *OldMI,
 | |
|                                        MachineInstr *NewMI) {
 | |
|   // If the instruction defines any virtual registers, update the VarInfo for
 | |
|   // the instruction.
 | |
|   for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = OldMI->getOperand(i);
 | |
|     if (MO.isRegister() && MO.isDef() && MO.getReg() &&
 | |
|         MRegisterInfo::isVirtualRegister(MO.getReg())) {
 | |
|       unsigned Reg = MO.getReg();
 | |
|       VarInfo &VI = getVarInfo(Reg);
 | |
|       if (VI.DefInst == OldMI)
 | |
|         VI.DefInst = NewMI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Move the killed information over...
 | |
|   killed_iterator I, E;
 | |
|   tie(I, E) = killed_range(OldMI);
 | |
|   std::vector<unsigned> Regs;
 | |
|   for (killed_iterator A = I; A != E; ++A)
 | |
|     Regs.push_back(A->second);
 | |
|   RegistersKilled.erase(I, E);
 | |
| 
 | |
|   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
 | |
|     RegistersKilled.insert(std::make_pair(NewMI, Regs[i]));
 | |
|   Regs.clear();
 | |
| 
 | |
| 
 | |
|   // Move the dead information over...
 | |
|   tie(I, E) = dead_range(OldMI);
 | |
|   for (killed_iterator A = I; A != E; ++A)
 | |
|     Regs.push_back(A->second);
 | |
|   RegistersDead.erase(I, E);
 | |
| 
 | |
|   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
 | |
|     RegistersDead.insert(std::make_pair(NewMI, Regs[i]));
 | |
| }
 |