mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	still room for cleanup, but at least the code modification is out of the analysis now. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13135 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			726 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			726 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This transformation analyzes and transforms the induction variables (and
 | 
						|
// computations derived from them) into simpler forms suitable for subsequent
 | 
						|
// analysis and transformation.
 | 
						|
//
 | 
						|
// This transformation make the following changes to each loop with an
 | 
						|
// identifiable induction variable:
 | 
						|
//   1. All loops are transformed to have a SINGLE canonical induction variable
 | 
						|
//      which starts at zero and steps by one.
 | 
						|
//   2. The canonical induction variable is guaranteed to be the first PHI node
 | 
						|
//      in the loop header block.
 | 
						|
//   3. Any pointer arithmetic recurrences are raised to use array subscripts.
 | 
						|
//
 | 
						|
// If the trip count of a loop is computable, this pass also makes the following
 | 
						|
// changes:
 | 
						|
//   1. The exit condition for the loop is canonicalized to compare the
 | 
						|
//      induction value against the exit value.  This turns loops like:
 | 
						|
//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
 | 
						|
//   2. Any use outside of the loop of an expression derived from the indvar
 | 
						|
//      is changed to compute the derived value outside of the loop, eliminating
 | 
						|
//      the dependence on the exit value of the induction variable.  If the only
 | 
						|
//      purpose of the loop is to compute the exit value of some derived
 | 
						|
//      expression, this transformation will make the loop dead.
 | 
						|
//
 | 
						|
// This transformation should be followed by strength reduction after all of the
 | 
						|
// desired loop transformations have been performed.  Additionally, on targets
 | 
						|
// where it is profitable, the loop could be transformed to count down to zero
 | 
						|
// (the "do loop" optimization).
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "Support/CommandLine.h"
 | 
						|
#include "Support/Statistic.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// SCEVExpander - This class uses information about analyze scalars to
 | 
						|
  /// rewrite expressions in canonical form.
 | 
						|
  ///
 | 
						|
  /// Clients should create an instance of this class when rewriting is needed,
 | 
						|
  /// and destroying it when finished to allow the release of the associated
 | 
						|
  /// memory.
 | 
						|
  struct SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
 | 
						|
    ScalarEvolution &SE;
 | 
						|
    LoopInfo &LI;
 | 
						|
    std::map<SCEVHandle, Value*> InsertedExpressions;
 | 
						|
    std::set<Instruction*> InsertedInstructions;
 | 
						|
 | 
						|
    Instruction *InsertPt;
 | 
						|
 | 
						|
    friend class SCEVVisitor<SCEVExpander, Value*>;
 | 
						|
  public:
 | 
						|
    SCEVExpander(ScalarEvolution &se, LoopInfo &li) : SE(se), LI(li) {}
 | 
						|
 | 
						|
    /// isInsertedInstruction - Return true if the specified instruction was
 | 
						|
    /// inserted by the code rewriter.  If so, the client should not modify the
 | 
						|
    /// instruction.
 | 
						|
    bool isInsertedInstruction(Instruction *I) const {
 | 
						|
      return InsertedInstructions.count(I);
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// getOrInsertCanonicalInductionVariable - This method returns the
 | 
						|
    /// canonical induction variable of the specified type for the specified
 | 
						|
    /// loop (inserting one if there is none).  A canonical induction variable
 | 
						|
    /// starts at zero and steps by one on each iteration.
 | 
						|
    Value *getOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty){
 | 
						|
      assert((Ty->isInteger() || Ty->isFloatingPoint()) &&
 | 
						|
             "Can only insert integer or floating point induction variables!");
 | 
						|
      SCEVHandle H = SCEVAddRecExpr::get(SCEVUnknown::getIntegerSCEV(0, Ty),
 | 
						|
                                         SCEVUnknown::getIntegerSCEV(1, Ty), L);
 | 
						|
      return expand(H);
 | 
						|
    }
 | 
						|
 | 
						|
    /// addInsertedValue - Remember the specified instruction as being the
 | 
						|
    /// canonical form for the specified SCEV.
 | 
						|
    void addInsertedValue(Instruction *I, SCEV *S) {
 | 
						|
      InsertedExpressions[S] = (Value*)I;
 | 
						|
      InsertedInstructions.insert(I);
 | 
						|
    }
 | 
						|
 | 
						|
    /// expandCodeFor - Insert code to directly compute the specified SCEV
 | 
						|
    /// expression into the program.  The inserted code is inserted into the
 | 
						|
    /// specified block.
 | 
						|
    ///
 | 
						|
    /// If a particular value sign is required, a type may be specified for the
 | 
						|
    /// result.
 | 
						|
    Value *expandCodeFor(SCEVHandle SH, Instruction *IP, const Type *Ty = 0) {
 | 
						|
      // Expand the code for this SCEV.
 | 
						|
      this->InsertPt = IP;
 | 
						|
      return expandInTy(SH, Ty);
 | 
						|
    }
 | 
						|
 | 
						|
  protected:
 | 
						|
    Value *expand(SCEV *S) {
 | 
						|
      // Check to see if we already expanded this.
 | 
						|
      std::map<SCEVHandle, Value*>::iterator I = InsertedExpressions.find(S);
 | 
						|
      if (I != InsertedExpressions.end())
 | 
						|
        return I->second;
 | 
						|
 | 
						|
      Value *V = visit(S);
 | 
						|
      InsertedExpressions[S] = V;
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
 | 
						|
    Value *expandInTy(SCEV *S, const Type *Ty) {
 | 
						|
      Value *V = expand(S);
 | 
						|
      if (Ty && V->getType() != Ty) {
 | 
						|
        // FIXME: keep track of the cast instruction.
 | 
						|
        if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
          return ConstantExpr::getCast(C, Ty);
 | 
						|
        else if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
          // Check to see if there is already a cast.  If there is, use it.
 | 
						|
          for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 
 | 
						|
               UI != E; ++UI) {
 | 
						|
            if ((*UI)->getType() == Ty)
 | 
						|
              if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
 | 
						|
                BasicBlock::iterator It = I; ++It;
 | 
						|
                while (isa<PHINode>(It)) ++It;
 | 
						|
                if (It != BasicBlock::iterator(CI)) {
 | 
						|
                  // Splice the cast immediately after the operand in question.
 | 
						|
                  I->getParent()->getInstList().splice(It,
 | 
						|
                                                       CI->getParent()->getInstList(),
 | 
						|
                                                       CI);
 | 
						|
                }
 | 
						|
                return CI;
 | 
						|
              }
 | 
						|
          }
 | 
						|
          BasicBlock::iterator IP = I; ++IP;
 | 
						|
          if (InvokeInst *II = dyn_cast<InvokeInst>(I))
 | 
						|
            IP = II->getNormalDest()->begin();
 | 
						|
          while (isa<PHINode>(IP)) ++IP;
 | 
						|
          return new CastInst(V, Ty, V->getName(), IP);
 | 
						|
        } else {
 | 
						|
          // FIXME: check to see if there is already a cast!
 | 
						|
          return new CastInst(V, Ty, V->getName(), InsertPt);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
 | 
						|
    Value *visitConstant(SCEVConstant *S) {
 | 
						|
      return S->getValue();
 | 
						|
    }
 | 
						|
 | 
						|
    Value *visitTruncateExpr(SCEVTruncateExpr *S) {
 | 
						|
      Value *V = expand(S->getOperand());
 | 
						|
      return new CastInst(V, S->getType(), "tmp.", InsertPt);
 | 
						|
    }
 | 
						|
 | 
						|
    Value *visitZeroExtendExpr(SCEVZeroExtendExpr *S) {
 | 
						|
      Value *V = expandInTy(S->getOperand(),V->getType()->getUnsignedVersion());
 | 
						|
      return new CastInst(V, S->getType(), "tmp.", InsertPt);
 | 
						|
    }
 | 
						|
 | 
						|
    Value *visitAddExpr(SCEVAddExpr *S) {
 | 
						|
      const Type *Ty = S->getType();
 | 
						|
      Value *V = expandInTy(S->getOperand(S->getNumOperands()-1), Ty);
 | 
						|
 | 
						|
      // Emit a bunch of add instructions
 | 
						|
      for (int i = S->getNumOperands()-2; i >= 0; --i)
 | 
						|
        V = BinaryOperator::create(Instruction::Add, V,
 | 
						|
                                   expandInTy(S->getOperand(i), Ty),
 | 
						|
                                   "tmp.", InsertPt);
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
 | 
						|
    Value *visitMulExpr(SCEVMulExpr *S);
 | 
						|
 | 
						|
    Value *visitUDivExpr(SCEVUDivExpr *S) {
 | 
						|
      const Type *Ty = S->getType();
 | 
						|
      Value *LHS = expandInTy(S->getLHS(), Ty);
 | 
						|
      Value *RHS = expandInTy(S->getRHS(), Ty);
 | 
						|
      return BinaryOperator::create(Instruction::Div, LHS, RHS, "tmp.",
 | 
						|
                                    InsertPt);
 | 
						|
    }
 | 
						|
 | 
						|
    Value *visitAddRecExpr(SCEVAddRecExpr *S);
 | 
						|
 | 
						|
    Value *visitUnknown(SCEVUnknown *S) {
 | 
						|
      return S->getValue();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
 | 
						|
  const Type *Ty = S->getType();
 | 
						|
  int FirstOp = 0;  // Set if we should emit a subtract.
 | 
						|
  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
 | 
						|
    if (SC->getValue()->isAllOnesValue())
 | 
						|
      FirstOp = 1;
 | 
						|
    
 | 
						|
  int i = S->getNumOperands()-2;
 | 
						|
  Value *V = expandInTy(S->getOperand(i+1), Ty);
 | 
						|
    
 | 
						|
  // Emit a bunch of multiply instructions
 | 
						|
  for (; i >= FirstOp; --i)
 | 
						|
    V = BinaryOperator::create(Instruction::Mul, V,
 | 
						|
                               expandInTy(S->getOperand(i), Ty),
 | 
						|
                               "tmp.", InsertPt);
 | 
						|
  // -1 * ...  --->  0 - ...
 | 
						|
  if (FirstOp == 1)
 | 
						|
    V = BinaryOperator::create(Instruction::Sub, Constant::getNullValue(Ty),
 | 
						|
                               V, "tmp.", InsertPt);
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
 | 
						|
  const Type *Ty = S->getType();
 | 
						|
  const Loop *L = S->getLoop();
 | 
						|
  // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
 | 
						|
  assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
 | 
						|
 | 
						|
  // {X,+,F} --> X + {0,+,F}
 | 
						|
  if (!isa<SCEVConstant>(S->getStart()) ||
 | 
						|
      !cast<SCEVConstant>(S->getStart())->getValue()->isNullValue()) {
 | 
						|
    Value *Start = expandInTy(S->getStart(), Ty);
 | 
						|
    std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
 | 
						|
    NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
 | 
						|
    Value *Rest = expandInTy(SCEVAddRecExpr::get(NewOps, L), Ty);
 | 
						|
 | 
						|
    // FIXME: look for an existing add to use.
 | 
						|
    return BinaryOperator::create(Instruction::Add, Rest, Start, "tmp.",
 | 
						|
                                  InsertPt);
 | 
						|
  }
 | 
						|
 | 
						|
  // {0,+,1} --> Insert a canonical induction variable into the loop!
 | 
						|
  if (S->getNumOperands() == 2 &&
 | 
						|
      S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
 | 
						|
    // Create and insert the PHI node for the induction variable in the
 | 
						|
    // specified loop.
 | 
						|
    BasicBlock *Header = L->getHeader();
 | 
						|
    PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
 | 
						|
    PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
 | 
						|
 | 
						|
    pred_iterator HPI = pred_begin(Header);
 | 
						|
    assert(HPI != pred_end(Header) && "Loop with zero preds???");
 | 
						|
    if (!L->contains(*HPI)) ++HPI;
 | 
						|
    assert(HPI != pred_end(Header) && L->contains(*HPI) &&
 | 
						|
           "No backedge in loop?");
 | 
						|
 | 
						|
    // Insert a unit add instruction right before the terminator corresponding
 | 
						|
    // to the back-edge.
 | 
						|
    Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
 | 
						|
                                          : ConstantInt::get(Ty, 1);
 | 
						|
    Instruction *Add = BinaryOperator::create(Instruction::Add, PN, One,
 | 
						|
                                              "indvar.next",
 | 
						|
                                              (*HPI)->getTerminator());
 | 
						|
 | 
						|
    pred_iterator PI = pred_begin(Header);
 | 
						|
    if (*PI == L->getLoopPreheader())
 | 
						|
      ++PI;
 | 
						|
    PN->addIncoming(Add, *PI);
 | 
						|
    return PN;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the canonical induction variable I for this loop.
 | 
						|
  Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
 | 
						|
 | 
						|
  if (S->getNumOperands() == 2) {   // {0,+,F} --> i*F
 | 
						|
    Value *F = expandInTy(S->getOperand(1), Ty);
 | 
						|
    return BinaryOperator::create(Instruction::Mul, I, F, "tmp.", InsertPt);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a chain of recurrences, turn it into a closed form, using the
 | 
						|
  // folders, then expandCodeFor the closed form.  This allows the folders to
 | 
						|
  // simplify the expression without having to build a bunch of special code
 | 
						|
  // into this folder.
 | 
						|
  SCEVHandle IH = SCEVUnknown::get(I);   // Get I as a "symbolic" SCEV.
 | 
						|
 | 
						|
  SCEVHandle V = S->evaluateAtIteration(IH);
 | 
						|
  //std::cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
 | 
						|
 | 
						|
  return expandInTy(V, Ty);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> NumRemoved ("indvars", "Number of aux indvars removed");
 | 
						|
  Statistic<> NumPointer ("indvars", "Number of pointer indvars promoted");
 | 
						|
  Statistic<> NumInserted("indvars", "Number of canonical indvars added");
 | 
						|
  Statistic<> NumReplaced("indvars", "Number of exit values replaced");
 | 
						|
  Statistic<> NumLFTR    ("indvars", "Number of loop exit tests replaced");
 | 
						|
 | 
						|
  class IndVarSimplify : public FunctionPass {
 | 
						|
    LoopInfo        *LI;
 | 
						|
    ScalarEvolution *SE;
 | 
						|
    bool Changed;
 | 
						|
  public:
 | 
						|
    virtual bool runOnFunction(Function &) {
 | 
						|
      LI = &getAnalysis<LoopInfo>();
 | 
						|
      SE = &getAnalysis<ScalarEvolution>();
 | 
						|
      Changed = false;
 | 
						|
 | 
						|
      // Induction Variables live in the header nodes of loops
 | 
						|
      for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
 | 
						|
        runOnLoop(*I);
 | 
						|
      return Changed;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequiredID(LoopSimplifyID);
 | 
						|
      AU.addRequired<ScalarEvolution>();
 | 
						|
      AU.addRequired<LoopInfo>();
 | 
						|
      AU.addPreservedID(LoopSimplifyID);
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    void runOnLoop(Loop *L);
 | 
						|
    void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
 | 
						|
                                    std::set<Instruction*> &DeadInsts);
 | 
						|
    void LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
 | 
						|
                                   SCEVExpander &RW);
 | 
						|
    void RewriteLoopExitValues(Loop *L);
 | 
						|
 | 
						|
    void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
 | 
						|
  };
 | 
						|
  RegisterOpt<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
 | 
						|
}
 | 
						|
 | 
						|
Pass *llvm::createIndVarSimplifyPass() {
 | 
						|
  return new IndVarSimplify();
 | 
						|
}
 | 
						|
 | 
						|
/// DeleteTriviallyDeadInstructions - If any of the instructions is the
 | 
						|
/// specified set are trivially dead, delete them and see if this makes any of
 | 
						|
/// their operands subsequently dead.
 | 
						|
void IndVarSimplify::
 | 
						|
DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
 | 
						|
  while (!Insts.empty()) {
 | 
						|
    Instruction *I = *Insts.begin();
 | 
						|
    Insts.erase(Insts.begin());
 | 
						|
    if (isInstructionTriviallyDead(I)) {
 | 
						|
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
 | 
						|
          Insts.insert(U);
 | 
						|
      SE->deleteInstructionFromRecords(I);
 | 
						|
      I->getParent()->getInstList().erase(I);
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
 | 
						|
/// recurrence.  If so, change it into an integer recurrence, permitting
 | 
						|
/// analysis by the SCEV routines.
 | 
						|
void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN, 
 | 
						|
                                                BasicBlock *Preheader,
 | 
						|
                                            std::set<Instruction*> &DeadInsts) {
 | 
						|
  assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
 | 
						|
  unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
 | 
						|
  unsigned BackedgeIdx = PreheaderIdx^1;
 | 
						|
  if (GetElementPtrInst *GEPI =
 | 
						|
      dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
 | 
						|
    if (GEPI->getOperand(0) == PN) {
 | 
						|
      assert(GEPI->getNumOperands() == 2 && "GEP types must mismatch!");
 | 
						|
          
 | 
						|
      // Okay, we found a pointer recurrence.  Transform this pointer
 | 
						|
      // recurrence into an integer recurrence.  Compute the value that gets
 | 
						|
      // added to the pointer at every iteration.
 | 
						|
      Value *AddedVal = GEPI->getOperand(1);
 | 
						|
 | 
						|
      // Insert a new integer PHI node into the top of the block.
 | 
						|
      PHINode *NewPhi = new PHINode(AddedVal->getType(),
 | 
						|
                                    PN->getName()+".rec", PN);
 | 
						|
      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()),
 | 
						|
                          Preheader);
 | 
						|
      // Create the new add instruction.
 | 
						|
      Value *NewAdd = BinaryOperator::create(Instruction::Add, NewPhi,
 | 
						|
                                             AddedVal,
 | 
						|
                                             GEPI->getName()+".rec", GEPI);
 | 
						|
      NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
 | 
						|
          
 | 
						|
      // Update the existing GEP to use the recurrence.
 | 
						|
      GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
 | 
						|
          
 | 
						|
      // Update the GEP to use the new recurrence we just inserted.
 | 
						|
      GEPI->setOperand(1, NewAdd);
 | 
						|
 | 
						|
      // Finally, if there are any other users of the PHI node, we must
 | 
						|
      // insert a new GEP instruction that uses the pre-incremented version
 | 
						|
      // of the induction amount.
 | 
						|
      if (!PN->use_empty()) {
 | 
						|
        BasicBlock::iterator InsertPos = PN; ++InsertPos;
 | 
						|
        while (isa<PHINode>(InsertPos)) ++InsertPos;
 | 
						|
        std::string Name = PN->getName(); PN->setName("");
 | 
						|
        Value *PreInc =
 | 
						|
          new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx),
 | 
						|
                                std::vector<Value*>(1, NewPhi), Name,
 | 
						|
                                InsertPos);
 | 
						|
        PN->replaceAllUsesWith(PreInc);
 | 
						|
      }
 | 
						|
 | 
						|
      // Delete the old PHI for sure, and the GEP if its otherwise unused.
 | 
						|
      DeadInsts.insert(PN);
 | 
						|
 | 
						|
      ++NumPointer;
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// LinearFunctionTestReplace - This method rewrites the exit condition of the
 | 
						|
/// loop to be a canonical != comparison against the incremented loop induction
 | 
						|
/// variable.  This pass is able to rewrite the exit tests of any loop where the
 | 
						|
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
 | 
						|
/// is actually a much broader range than just linear tests.
 | 
						|
void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
 | 
						|
                                               SCEVExpander &RW) {
 | 
						|
  // Find the exit block for the loop.  We can currently only handle loops with
 | 
						|
  // a single exit.
 | 
						|
  std::vector<BasicBlock*> ExitBlocks;
 | 
						|
  L->getExitBlocks(ExitBlocks);
 | 
						|
  if (ExitBlocks.size() != 1) return;
 | 
						|
  BasicBlock *ExitBlock = ExitBlocks[0];
 | 
						|
 | 
						|
  // Make sure there is only one predecessor block in the loop.
 | 
						|
  BasicBlock *ExitingBlock = 0;
 | 
						|
  for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
 | 
						|
       PI != PE; ++PI)
 | 
						|
    if (L->contains(*PI)) {
 | 
						|
      if (ExitingBlock == 0)
 | 
						|
        ExitingBlock = *PI;
 | 
						|
      else
 | 
						|
        return;  // Multiple exits from loop to this block.
 | 
						|
    }
 | 
						|
  assert(ExitingBlock && "Loop info is broken");
 | 
						|
 | 
						|
  if (!isa<BranchInst>(ExitingBlock->getTerminator()))
 | 
						|
    return;  // Can't rewrite non-branch yet
 | 
						|
  BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
 | 
						|
  assert(BI->isConditional() && "Must be conditional to be part of loop!");
 | 
						|
 | 
						|
  std::set<Instruction*> InstructionsToDelete;
 | 
						|
  if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()))
 | 
						|
    InstructionsToDelete.insert(Cond);
 | 
						|
 | 
						|
  // If the exiting block is not the same as the backedge block, we must compare
 | 
						|
  // against the preincremented value, otherwise we prefer to compare against
 | 
						|
  // the post-incremented value.
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  pred_iterator HPI = pred_begin(Header);
 | 
						|
  assert(HPI != pred_end(Header) && "Loop with zero preds???");
 | 
						|
  if (!L->contains(*HPI)) ++HPI;
 | 
						|
  assert(HPI != pred_end(Header) && L->contains(*HPI) &&
 | 
						|
         "No backedge in loop?");
 | 
						|
 | 
						|
  SCEVHandle TripCount = IterationCount;
 | 
						|
  Value *IndVar;
 | 
						|
  if (*HPI == ExitingBlock) {
 | 
						|
    // The IterationCount expression contains the number of times that the
 | 
						|
    // backedge actually branches to the loop header.  This is one less than the
 | 
						|
    // number of times the loop executes, so add one to it.
 | 
						|
    Constant *OneC = ConstantInt::get(IterationCount->getType(), 1);
 | 
						|
    TripCount = SCEVAddExpr::get(IterationCount, SCEVUnknown::get(OneC));
 | 
						|
    IndVar = L->getCanonicalInductionVariableIncrement();
 | 
						|
  } else {
 | 
						|
    // We have to use the preincremented value...
 | 
						|
    IndVar = L->getCanonicalInductionVariable();
 | 
						|
  }
 | 
						|
 | 
						|
  // Expand the code for the iteration count into the preheader of the loop.
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator(),
 | 
						|
                                    IndVar->getType());
 | 
						|
 | 
						|
  // Insert a new setne or seteq instruction before the branch.
 | 
						|
  Instruction::BinaryOps Opcode;
 | 
						|
  if (L->contains(BI->getSuccessor(0)))
 | 
						|
    Opcode = Instruction::SetNE;
 | 
						|
  else
 | 
						|
    Opcode = Instruction::SetEQ;
 | 
						|
 | 
						|
  Value *Cond = new SetCondInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
 | 
						|
  BI->setCondition(Cond);
 | 
						|
  ++NumLFTR;
 | 
						|
  Changed = true;
 | 
						|
 | 
						|
  DeleteTriviallyDeadInstructions(InstructionsToDelete);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// RewriteLoopExitValues - Check to see if this loop has a computable
 | 
						|
/// loop-invariant execution count.  If so, this means that we can compute the
 | 
						|
/// final value of any expressions that are recurrent in the loop, and
 | 
						|
/// substitute the exit values from the loop into any instructions outside of
 | 
						|
/// the loop that use the final values of the current expressions.
 | 
						|
void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
 | 
						|
  // Scan all of the instructions in the loop, looking at those that have
 | 
						|
  // extra-loop users and which are recurrences.
 | 
						|
  SCEVExpander Rewriter(*SE, *LI);
 | 
						|
 | 
						|
  // We insert the code into the preheader of the loop if the loop contains
 | 
						|
  // multiple exit blocks, or in the exit block if there is exactly one.
 | 
						|
  BasicBlock *BlockToInsertInto;
 | 
						|
  std::vector<BasicBlock*> ExitBlocks;
 | 
						|
  L->getExitBlocks(ExitBlocks);
 | 
						|
  if (ExitBlocks.size() == 1)
 | 
						|
    BlockToInsertInto = ExitBlocks[0];
 | 
						|
  else
 | 
						|
    BlockToInsertInto = Preheader;
 | 
						|
  BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
 | 
						|
  while (isa<PHINode>(InsertPt)) ++InsertPt;
 | 
						|
 | 
						|
  bool HasConstantItCount = isa<SCEVConstant>(SE->getIterationCount(L));
 | 
						|
 | 
						|
  std::set<Instruction*> InstructionsToDelete;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
 | 
						|
    if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
 | 
						|
      BasicBlock *BB = L->getBlocks()[i];
 | 
						|
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
        if (I->getType()->isInteger()) {      // Is an integer instruction
 | 
						|
          SCEVHandle SH = SE->getSCEV(I);
 | 
						|
          if (SH->hasComputableLoopEvolution(L) ||    // Varies predictably
 | 
						|
              HasConstantItCount) {
 | 
						|
            // Find out if this predictably varying value is actually used
 | 
						|
            // outside of the loop.  "extra" as opposed to "intra".
 | 
						|
            std::vector<User*> ExtraLoopUsers;
 | 
						|
            for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | 
						|
                 UI != E; ++UI)
 | 
						|
              if (!L->contains(cast<Instruction>(*UI)->getParent()))
 | 
						|
                ExtraLoopUsers.push_back(*UI);
 | 
						|
            if (!ExtraLoopUsers.empty()) {
 | 
						|
              // Okay, this instruction has a user outside of the current loop
 | 
						|
              // and varies predictably in this loop.  Evaluate the value it
 | 
						|
              // contains when the loop exits, and insert code for it.
 | 
						|
              SCEVHandle ExitValue = SE->getSCEVAtScope(I, L->getParentLoop());
 | 
						|
              if (!isa<SCEVCouldNotCompute>(ExitValue)) {
 | 
						|
                Changed = true;
 | 
						|
                ++NumReplaced;
 | 
						|
                Value *NewVal = Rewriter.expandCodeFor(ExitValue, InsertPt,
 | 
						|
                                                       I->getType());
 | 
						|
 | 
						|
                // Rewrite any users of the computed value outside of the loop
 | 
						|
                // with the newly computed value.
 | 
						|
                for (unsigned i = 0, e = ExtraLoopUsers.size(); i != e; ++i)
 | 
						|
                  ExtraLoopUsers[i]->replaceUsesOfWith(I, NewVal);
 | 
						|
 | 
						|
                // If this instruction is dead now, schedule it to be removed.
 | 
						|
                if (I->use_empty())
 | 
						|
                  InstructionsToDelete.insert(I);
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
  DeleteTriviallyDeadInstructions(InstructionsToDelete);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void IndVarSimplify::runOnLoop(Loop *L) {
 | 
						|
  // First step.  Check to see if there are any trivial GEP pointer recurrences.
 | 
						|
  // If there are, change them into integer recurrences, permitting analysis by
 | 
						|
  // the SCEV routines.
 | 
						|
  //
 | 
						|
  BasicBlock *Header    = L->getHeader();
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  
 | 
						|
  std::set<Instruction*> DeadInsts;
 | 
						|
  for (BasicBlock::iterator I = Header->begin();
 | 
						|
       PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | 
						|
    if (isa<PointerType>(PN->getType()))
 | 
						|
      EliminatePointerRecurrence(PN, Preheader, DeadInsts);
 | 
						|
 | 
						|
  if (!DeadInsts.empty())
 | 
						|
    DeleteTriviallyDeadInstructions(DeadInsts);
 | 
						|
 | 
						|
 | 
						|
  // Next, transform all loops nesting inside of this loop.
 | 
						|
  for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | 
						|
    runOnLoop(*I);
 | 
						|
 | 
						|
  // Check to see if this loop has a computable loop-invariant execution count.
 | 
						|
  // If so, this means that we can compute the final value of any expressions
 | 
						|
  // that are recurrent in the loop, and substitute the exit values from the
 | 
						|
  // loop into any instructions outside of the loop that use the final values of
 | 
						|
  // the current expressions.
 | 
						|
  //
 | 
						|
  SCEVHandle IterationCount = SE->getIterationCount(L);
 | 
						|
  if (!isa<SCEVCouldNotCompute>(IterationCount))
 | 
						|
    RewriteLoopExitValues(L);
 | 
						|
 | 
						|
  // Next, analyze all of the induction variables in the loop, canonicalizing
 | 
						|
  // auxillary induction variables.
 | 
						|
  std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
 | 
						|
 | 
						|
  for (BasicBlock::iterator I = Header->begin();
 | 
						|
       PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | 
						|
    if (PN->getType()->isInteger()) {  // FIXME: when we have fast-math, enable!
 | 
						|
      SCEVHandle SCEV = SE->getSCEV(PN);
 | 
						|
      if (SCEV->hasComputableLoopEvolution(L))
 | 
						|
        if (SE->shouldSubstituteIndVar(SCEV))  // HACK!
 | 
						|
          IndVars.push_back(std::make_pair(PN, SCEV));
 | 
						|
    }
 | 
						|
 | 
						|
  // If there are no induction variables in the loop, there is nothing more to
 | 
						|
  // do.
 | 
						|
  if (IndVars.empty()) {
 | 
						|
    // Actually, if we know how many times the loop iterates, lets insert a
 | 
						|
    // canonical induction variable to help subsequent passes.
 | 
						|
    if (!isa<SCEVCouldNotCompute>(IterationCount)) {
 | 
						|
      SCEVExpander Rewriter(*SE, *LI);
 | 
						|
      Rewriter.getOrInsertCanonicalInductionVariable(L,
 | 
						|
                                                     IterationCount->getType());
 | 
						|
      LinearFunctionTestReplace(L, IterationCount, Rewriter);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the type of the largest recurrence expression.
 | 
						|
  //
 | 
						|
  const Type *LargestType = IndVars[0].first->getType();
 | 
						|
  bool DifferingSizes = false;
 | 
						|
  for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
 | 
						|
    const Type *Ty = IndVars[i].first->getType();
 | 
						|
    DifferingSizes |= Ty->getPrimitiveSize() != LargestType->getPrimitiveSize();
 | 
						|
    if (Ty->getPrimitiveSize() > LargestType->getPrimitiveSize())
 | 
						|
      LargestType = Ty;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a rewriter object which we'll use to transform the code with.
 | 
						|
  SCEVExpander Rewriter(*SE, *LI);
 | 
						|
 | 
						|
  // Now that we know the largest of of the induction variables in this loop,
 | 
						|
  // insert a canonical induction variable of the largest size.
 | 
						|
  LargestType = LargestType->getUnsignedVersion();
 | 
						|
  Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
 | 
						|
  ++NumInserted;
 | 
						|
  Changed = true;
 | 
						|
 | 
						|
  if (!isa<SCEVCouldNotCompute>(IterationCount))
 | 
						|
    LinearFunctionTestReplace(L, IterationCount, Rewriter);
 | 
						|
 | 
						|
  // Now that we have a canonical induction variable, we can rewrite any
 | 
						|
  // recurrences in terms of the induction variable.  Start with the auxillary
 | 
						|
  // induction variables, and recursively rewrite any of their uses.
 | 
						|
  BasicBlock::iterator InsertPt = Header->begin();
 | 
						|
  while (isa<PHINode>(InsertPt)) ++InsertPt;
 | 
						|
 | 
						|
  // If there were induction variables of other sizes, cast the primary
 | 
						|
  // induction variable to the right size for them, avoiding the need for the
 | 
						|
  // code evaluation methods to insert induction variables of different sizes.
 | 
						|
  if (DifferingSizes) {
 | 
						|
    bool InsertedSizes[17] = { false };
 | 
						|
    InsertedSizes[LargestType->getPrimitiveSize()] = true;
 | 
						|
    for (unsigned i = 0, e = IndVars.size(); i != e; ++i)
 | 
						|
      if (!InsertedSizes[IndVars[i].first->getType()->getPrimitiveSize()]) {
 | 
						|
        PHINode *PN = IndVars[i].first;
 | 
						|
        InsertedSizes[PN->getType()->getPrimitiveSize()] = true;
 | 
						|
        Instruction *New = new CastInst(IndVar,
 | 
						|
                                        PN->getType()->getUnsignedVersion(),
 | 
						|
                                        "indvar", InsertPt);
 | 
						|
        Rewriter.addInsertedValue(New, SE->getSCEV(New));
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there were induction variables of other sizes, cast the primary
 | 
						|
  // induction variable to the right size for them, avoiding the need for the
 | 
						|
  // code evaluation methods to insert induction variables of different sizes.
 | 
						|
  std::map<unsigned, Value*> InsertedSizes;
 | 
						|
  while (!IndVars.empty()) {
 | 
						|
    PHINode *PN = IndVars.back().first;
 | 
						|
    Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt,
 | 
						|
                                           PN->getType());
 | 
						|
    std::string Name = PN->getName();
 | 
						|
    PN->setName("");
 | 
						|
    NewVal->setName(Name);
 | 
						|
 | 
						|
    // Replace the old PHI Node with the inserted computation.
 | 
						|
    PN->replaceAllUsesWith(NewVal);
 | 
						|
    DeadInsts.insert(PN);
 | 
						|
    IndVars.pop_back();
 | 
						|
    ++NumRemoved;
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
#if 0
 | 
						|
  // Now replace all derived expressions in the loop body with simpler
 | 
						|
  // expressions.
 | 
						|
  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
 | 
						|
    if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
 | 
						|
      BasicBlock *BB = L->getBlocks()[i];
 | 
						|
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
        if (I->getType()->isInteger() &&      // Is an integer instruction
 | 
						|
            !I->use_empty() &&
 | 
						|
            !Rewriter.isInsertedInstruction(I)) {
 | 
						|
          SCEVHandle SH = SE->getSCEV(I);
 | 
						|
          Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
 | 
						|
          if (V != I) {
 | 
						|
            if (isa<Instruction>(V)) {
 | 
						|
              std::string Name = I->getName();
 | 
						|
              I->setName("");
 | 
						|
              V->setName(Name);
 | 
						|
            }
 | 
						|
            I->replaceAllUsesWith(V);
 | 
						|
            DeadInsts.insert(I);
 | 
						|
            ++NumRemoved;
 | 
						|
            Changed = true;
 | 
						|
          }          
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
  DeleteTriviallyDeadInstructions(DeadInsts);
 | 
						|
}
 |