mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	occurs due to unordered comparison macros in math.h git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14221 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3121 lines
		
	
	
		
			125 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3121 lines
		
	
	
		
			125 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// InstructionCombining - Combine instructions to form fewer, simple
 | 
						|
// instructions.  This pass does not modify the CFG This pass is where algebraic
 | 
						|
// simplification happens.
 | 
						|
//
 | 
						|
// This pass combines things like:
 | 
						|
//    %Y = add int %X, 1
 | 
						|
//    %Z = add int %Y, 1
 | 
						|
// into:
 | 
						|
//    %Z = add int %X, 2
 | 
						|
//
 | 
						|
// This is a simple worklist driven algorithm.
 | 
						|
//
 | 
						|
// This pass guarantees that the following canonicalizations are performed on
 | 
						|
// the program:
 | 
						|
//    1. If a binary operator has a constant operand, it is moved to the RHS
 | 
						|
//    2. Bitwise operators with constant operands are always grouped so that
 | 
						|
//       shifts are performed first, then or's, then and's, then xor's.
 | 
						|
//    3. SetCC instructions are converted from <,>,<=,>= to ==,!= if possible
 | 
						|
//    4. All SetCC instructions on boolean values are replaced with logical ops
 | 
						|
//    5. add X, X is represented as (X*2) => (X << 1)
 | 
						|
//    6. Multiplies with a power-of-two constant argument are transformed into
 | 
						|
//       shifts.
 | 
						|
//    N. This list is incomplete
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/InstIterator.h"
 | 
						|
#include "llvm/Support/InstVisitor.h"
 | 
						|
#include "Support/Debug.h"
 | 
						|
#include "Support/Statistic.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> NumCombined ("instcombine", "Number of insts combined");
 | 
						|
  Statistic<> NumConstProp("instcombine", "Number of constant folds");
 | 
						|
  Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated");
 | 
						|
 | 
						|
  class InstCombiner : public FunctionPass,
 | 
						|
                       public InstVisitor<InstCombiner, Instruction*> {
 | 
						|
    // Worklist of all of the instructions that need to be simplified.
 | 
						|
    std::vector<Instruction*> WorkList;
 | 
						|
    TargetData *TD;
 | 
						|
 | 
						|
    /// AddUsersToWorkList - When an instruction is simplified, add all users of
 | 
						|
    /// the instruction to the work lists because they might get more simplified
 | 
						|
    /// now.
 | 
						|
    ///
 | 
						|
    void AddUsersToWorkList(Instruction &I) {
 | 
						|
      for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
 | 
						|
           UI != UE; ++UI)
 | 
						|
        WorkList.push_back(cast<Instruction>(*UI));
 | 
						|
    }
 | 
						|
 | 
						|
    /// AddUsesToWorkList - When an instruction is simplified, add operands to
 | 
						|
    /// the work lists because they might get more simplified now.
 | 
						|
    ///
 | 
						|
    void AddUsesToWorkList(Instruction &I) {
 | 
						|
      for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
 | 
						|
        if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
 | 
						|
          WorkList.push_back(Op);
 | 
						|
    }
 | 
						|
 | 
						|
    // removeFromWorkList - remove all instances of I from the worklist.
 | 
						|
    void removeFromWorkList(Instruction *I);
 | 
						|
  public:
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<TargetData>();
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    }
 | 
						|
 | 
						|
    TargetData &getTargetData() const { return *TD; }
 | 
						|
 | 
						|
    // Visitation implementation - Implement instruction combining for different
 | 
						|
    // instruction types.  The semantics are as follows:
 | 
						|
    // Return Value:
 | 
						|
    //    null        - No change was made
 | 
						|
    //     I          - Change was made, I is still valid, I may be dead though
 | 
						|
    //   otherwise    - Change was made, replace I with returned instruction
 | 
						|
    //   
 | 
						|
    Instruction *visitAdd(BinaryOperator &I);
 | 
						|
    Instruction *visitSub(BinaryOperator &I);
 | 
						|
    Instruction *visitMul(BinaryOperator &I);
 | 
						|
    Instruction *visitDiv(BinaryOperator &I);
 | 
						|
    Instruction *visitRem(BinaryOperator &I);
 | 
						|
    Instruction *visitAnd(BinaryOperator &I);
 | 
						|
    Instruction *visitOr (BinaryOperator &I);
 | 
						|
    Instruction *visitXor(BinaryOperator &I);
 | 
						|
    Instruction *visitSetCondInst(BinaryOperator &I);
 | 
						|
    Instruction *visitShiftInst(ShiftInst &I);
 | 
						|
    Instruction *visitCastInst(CastInst &CI);
 | 
						|
    Instruction *visitSelectInst(SelectInst &CI);
 | 
						|
    Instruction *visitCallInst(CallInst &CI);
 | 
						|
    Instruction *visitInvokeInst(InvokeInst &II);
 | 
						|
    Instruction *visitPHINode(PHINode &PN);
 | 
						|
    Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
 | 
						|
    Instruction *visitAllocationInst(AllocationInst &AI);
 | 
						|
    Instruction *visitFreeInst(FreeInst &FI);
 | 
						|
    Instruction *visitLoadInst(LoadInst &LI);
 | 
						|
    Instruction *visitBranchInst(BranchInst &BI);
 | 
						|
 | 
						|
    // visitInstruction - Specify what to return for unhandled instructions...
 | 
						|
    Instruction *visitInstruction(Instruction &I) { return 0; }
 | 
						|
 | 
						|
  private:
 | 
						|
    Instruction *visitCallSite(CallSite CS);
 | 
						|
    bool transformConstExprCastCall(CallSite CS);
 | 
						|
 | 
						|
  public:
 | 
						|
    // InsertNewInstBefore - insert an instruction New before instruction Old
 | 
						|
    // in the program.  Add the new instruction to the worklist.
 | 
						|
    //
 | 
						|
    Value *InsertNewInstBefore(Instruction *New, Instruction &Old) {
 | 
						|
      assert(New && New->getParent() == 0 &&
 | 
						|
             "New instruction already inserted into a basic block!");
 | 
						|
      BasicBlock *BB = Old.getParent();
 | 
						|
      BB->getInstList().insert(&Old, New);  // Insert inst
 | 
						|
      WorkList.push_back(New);              // Add to worklist
 | 
						|
      return New;
 | 
						|
    }
 | 
						|
 | 
						|
    // ReplaceInstUsesWith - This method is to be used when an instruction is
 | 
						|
    // found to be dead, replacable with another preexisting expression.  Here
 | 
						|
    // we add all uses of I to the worklist, replace all uses of I with the new
 | 
						|
    // value, then return I, so that the inst combiner will know that I was
 | 
						|
    // modified.
 | 
						|
    //
 | 
						|
    Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
 | 
						|
      AddUsersToWorkList(I);         // Add all modified instrs to worklist
 | 
						|
      if (&I != V) {
 | 
						|
        I.replaceAllUsesWith(V);
 | 
						|
        return &I;
 | 
						|
      } else {
 | 
						|
        // If we are replacing the instruction with itself, this must be in a
 | 
						|
        // segment of unreachable code, so just clobber the instruction.
 | 
						|
        I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
 | 
						|
        return &I;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // EraseInstFromFunction - When dealing with an instruction that has side
 | 
						|
    // effects or produces a void value, we can't rely on DCE to delete the
 | 
						|
    // instruction.  Instead, visit methods should return the value returned by
 | 
						|
    // this function.
 | 
						|
    Instruction *EraseInstFromFunction(Instruction &I) {
 | 
						|
      assert(I.use_empty() && "Cannot erase instruction that is used!");
 | 
						|
      AddUsesToWorkList(I);
 | 
						|
      removeFromWorkList(&I);
 | 
						|
      I.getParent()->getInstList().erase(&I);
 | 
						|
      return 0;  // Don't do anything with FI
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  private:
 | 
						|
    /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
 | 
						|
    /// InsertBefore instruction.  This is specialized a bit to avoid inserting
 | 
						|
    /// casts that are known to not do anything...
 | 
						|
    ///
 | 
						|
    Value *InsertOperandCastBefore(Value *V, const Type *DestTy,
 | 
						|
                                   Instruction *InsertBefore);
 | 
						|
 | 
						|
    // SimplifyCommutative - This performs a few simplifications for commutative
 | 
						|
    // operators...
 | 
						|
    bool SimplifyCommutative(BinaryOperator &I);
 | 
						|
 | 
						|
    Instruction *OptAndOp(Instruction *Op, ConstantIntegral *OpRHS,
 | 
						|
                          ConstantIntegral *AndRHS, BinaryOperator &TheAnd);
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterOpt<InstCombiner> X("instcombine", "Combine redundant instructions");
 | 
						|
}
 | 
						|
 | 
						|
// getComplexity:  Assign a complexity or rank value to LLVM Values...
 | 
						|
//   0 -> Constant, 1 -> Other, 2 -> Argument, 2 -> Unary, 3 -> OtherInst
 | 
						|
static unsigned getComplexity(Value *V) {
 | 
						|
  if (isa<Instruction>(V)) {
 | 
						|
    if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
 | 
						|
      return 2;
 | 
						|
    return 3;
 | 
						|
  }
 | 
						|
  if (isa<Argument>(V)) return 2;
 | 
						|
  return isa<Constant>(V) ? 0 : 1;
 | 
						|
}
 | 
						|
 | 
						|
// isOnlyUse - Return true if this instruction will be deleted if we stop using
 | 
						|
// it.
 | 
						|
static bool isOnlyUse(Value *V) {
 | 
						|
  return V->hasOneUse() || isa<Constant>(V);
 | 
						|
}
 | 
						|
 | 
						|
// getPromotedType - Return the specified type promoted as it would be to pass
 | 
						|
// though a va_arg area...
 | 
						|
static const Type *getPromotedType(const Type *Ty) {
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::SByteTyID:
 | 
						|
  case Type::ShortTyID:  return Type::IntTy;
 | 
						|
  case Type::UByteTyID:
 | 
						|
  case Type::UShortTyID: return Type::UIntTy;
 | 
						|
  case Type::FloatTyID:  return Type::DoubleTy;
 | 
						|
  default:               return Ty;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// SimplifyCommutative - This performs a few simplifications for commutative
 | 
						|
// operators:
 | 
						|
//
 | 
						|
//  1. Order operands such that they are listed from right (least complex) to
 | 
						|
//     left (most complex).  This puts constants before unary operators before
 | 
						|
//     binary operators.
 | 
						|
//
 | 
						|
//  2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
 | 
						|
//  3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | 
						|
//
 | 
						|
bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
 | 
						|
  bool Changed = false;
 | 
						|
  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
 | 
						|
    Changed = !I.swapOperands();
 | 
						|
  
 | 
						|
  if (!I.isAssociative()) return Changed;
 | 
						|
  Instruction::BinaryOps Opcode = I.getOpcode();
 | 
						|
  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
 | 
						|
    if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
 | 
						|
      if (isa<Constant>(I.getOperand(1))) {
 | 
						|
        Constant *Folded = ConstantExpr::get(I.getOpcode(),
 | 
						|
                                             cast<Constant>(I.getOperand(1)),
 | 
						|
                                             cast<Constant>(Op->getOperand(1)));
 | 
						|
        I.setOperand(0, Op->getOperand(0));
 | 
						|
        I.setOperand(1, Folded);
 | 
						|
        return true;
 | 
						|
      } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
 | 
						|
        if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
 | 
						|
            isOnlyUse(Op) && isOnlyUse(Op1)) {
 | 
						|
          Constant *C1 = cast<Constant>(Op->getOperand(1));
 | 
						|
          Constant *C2 = cast<Constant>(Op1->getOperand(1));
 | 
						|
 | 
						|
          // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | 
						|
          Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
 | 
						|
          Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
 | 
						|
                                                    Op1->getOperand(0),
 | 
						|
                                                    Op1->getName(), &I);
 | 
						|
          WorkList.push_back(New);
 | 
						|
          I.setOperand(0, New);
 | 
						|
          I.setOperand(1, Folded);
 | 
						|
          return true;
 | 
						|
        }      
 | 
						|
    }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
 | 
						|
// if the LHS is a constant zero (which is the 'negate' form).
 | 
						|
//
 | 
						|
static inline Value *dyn_castNegVal(Value *V) {
 | 
						|
  if (BinaryOperator::isNeg(V))
 | 
						|
    return BinaryOperator::getNegArgument(cast<BinaryOperator>(V));
 | 
						|
 | 
						|
  // Constants can be considered to be negated values if they can be folded...
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return ConstantExpr::getNeg(C);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline Value *dyn_castNotVal(Value *V) {
 | 
						|
  if (BinaryOperator::isNot(V))
 | 
						|
    return BinaryOperator::getNotArgument(cast<BinaryOperator>(V));
 | 
						|
 | 
						|
  // Constants can be considered to be not'ed values...
 | 
						|
  if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(V))
 | 
						|
    return ConstantExpr::getNot(C);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// dyn_castFoldableMul - If this value is a multiply that can be folded into
 | 
						|
// other computations (because it has a constant operand), return the
 | 
						|
// non-constant operand of the multiply.
 | 
						|
//
 | 
						|
static inline Value *dyn_castFoldableMul(Value *V) {
 | 
						|
  if (V->hasOneUse() && V->getType()->isInteger())
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
      if (I->getOpcode() == Instruction::Mul)
 | 
						|
        if (isa<Constant>(I->getOperand(1)))
 | 
						|
          return I->getOperand(0);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// dyn_castMaskingAnd - If this value is an And instruction masking a value with
 | 
						|
// a constant, return the constant being anded with.
 | 
						|
//
 | 
						|
template<class ValueType>
 | 
						|
static inline Constant *dyn_castMaskingAnd(ValueType *V) {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    if (I->getOpcode() == Instruction::And)
 | 
						|
      return dyn_cast<Constant>(I->getOperand(1));
 | 
						|
 | 
						|
  // If this is a constant, it acts just like we were masking with it.
 | 
						|
  return dyn_cast<Constant>(V);
 | 
						|
}
 | 
						|
 | 
						|
// Log2 - Calculate the log base 2 for the specified value if it is exactly a
 | 
						|
// power of 2.
 | 
						|
static unsigned Log2(uint64_t Val) {
 | 
						|
  assert(Val > 1 && "Values 0 and 1 should be handled elsewhere!");
 | 
						|
  unsigned Count = 0;
 | 
						|
  while (Val != 1) {
 | 
						|
    if (Val & 1) return 0;    // Multiple bits set?
 | 
						|
    Val >>= 1;
 | 
						|
    ++Count;
 | 
						|
  }
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// AssociativeOpt - Perform an optimization on an associative operator.  This
 | 
						|
/// function is designed to check a chain of associative operators for a
 | 
						|
/// potential to apply a certain optimization.  Since the optimization may be
 | 
						|
/// applicable if the expression was reassociated, this checks the chain, then
 | 
						|
/// reassociates the expression as necessary to expose the optimization
 | 
						|
/// opportunity.  This makes use of a special Functor, which must define
 | 
						|
/// 'shouldApply' and 'apply' methods.
 | 
						|
///
 | 
						|
template<typename Functor>
 | 
						|
Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
 | 
						|
  unsigned Opcode = Root.getOpcode();
 | 
						|
  Value *LHS = Root.getOperand(0);
 | 
						|
 | 
						|
  // Quick check, see if the immediate LHS matches...
 | 
						|
  if (F.shouldApply(LHS))
 | 
						|
    return F.apply(Root);
 | 
						|
 | 
						|
  // Otherwise, if the LHS is not of the same opcode as the root, return.
 | 
						|
  Instruction *LHSI = dyn_cast<Instruction>(LHS);
 | 
						|
  while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
 | 
						|
    // Should we apply this transform to the RHS?
 | 
						|
    bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
 | 
						|
 | 
						|
    // If not to the RHS, check to see if we should apply to the LHS...
 | 
						|
    if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
 | 
						|
      cast<BinaryOperator>(LHSI)->swapOperands();   // Make the LHS the RHS
 | 
						|
      ShouldApply = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the functor wants to apply the optimization to the RHS of LHSI,
 | 
						|
    // reassociate the expression from ((? op A) op B) to (? op (A op B))
 | 
						|
    if (ShouldApply) {
 | 
						|
      BasicBlock *BB = Root.getParent();
 | 
						|
      
 | 
						|
      // Now all of the instructions are in the current basic block, go ahead
 | 
						|
      // and perform the reassociation.
 | 
						|
      Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
 | 
						|
 | 
						|
      // First move the selected RHS to the LHS of the root...
 | 
						|
      Root.setOperand(0, LHSI->getOperand(1));
 | 
						|
 | 
						|
      // Make what used to be the LHS of the root be the user of the root...
 | 
						|
      Value *ExtraOperand = TmpLHSI->getOperand(1);
 | 
						|
      if (&Root == TmpLHSI) {
 | 
						|
        Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
      Root.replaceAllUsesWith(TmpLHSI);          // Users now use TmpLHSI
 | 
						|
      TmpLHSI->setOperand(1, &Root);             // TmpLHSI now uses the root
 | 
						|
      TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
 | 
						|
      BasicBlock::iterator ARI = &Root; ++ARI;
 | 
						|
      BB->getInstList().insert(ARI, TmpLHSI);    // Move TmpLHSI to after Root
 | 
						|
      ARI = Root;
 | 
						|
 | 
						|
      // Now propagate the ExtraOperand down the chain of instructions until we
 | 
						|
      // get to LHSI.
 | 
						|
      while (TmpLHSI != LHSI) {
 | 
						|
        Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
 | 
						|
        // Move the instruction to immediately before the chain we are
 | 
						|
        // constructing to avoid breaking dominance properties.
 | 
						|
        NextLHSI->getParent()->getInstList().remove(NextLHSI);
 | 
						|
        BB->getInstList().insert(ARI, NextLHSI);
 | 
						|
        ARI = NextLHSI;
 | 
						|
 | 
						|
        Value *NextOp = NextLHSI->getOperand(1);
 | 
						|
        NextLHSI->setOperand(1, ExtraOperand);
 | 
						|
        TmpLHSI = NextLHSI;
 | 
						|
        ExtraOperand = NextOp;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Now that the instructions are reassociated, have the functor perform
 | 
						|
      // the transformation...
 | 
						|
      return F.apply(Root);
 | 
						|
    }
 | 
						|
    
 | 
						|
    LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// AddRHS - Implements: X + X --> X << 1
 | 
						|
struct AddRHS {
 | 
						|
  Value *RHS;
 | 
						|
  AddRHS(Value *rhs) : RHS(rhs) {}
 | 
						|
  bool shouldApply(Value *LHS) const { return LHS == RHS; }
 | 
						|
  Instruction *apply(BinaryOperator &Add) const {
 | 
						|
    return new ShiftInst(Instruction::Shl, Add.getOperand(0),
 | 
						|
                         ConstantInt::get(Type::UByteTy, 1));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
 | 
						|
//                 iff C1&C2 == 0
 | 
						|
struct AddMaskingAnd {
 | 
						|
  Constant *C2;
 | 
						|
  AddMaskingAnd(Constant *c) : C2(c) {}
 | 
						|
  bool shouldApply(Value *LHS) const {
 | 
						|
    if (Constant *C1 = dyn_castMaskingAnd(LHS))
 | 
						|
      return ConstantExpr::getAnd(C1, C2)->isNullValue();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  Instruction *apply(BinaryOperator &Add) const {
 | 
						|
    return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
static Value *FoldOperationIntoSelectOperand(Instruction &BI, Value *SO,
 | 
						|
                                             InstCombiner *IC) {
 | 
						|
  // Figure out if the constant is the left or the right argument.
 | 
						|
  bool ConstIsRHS = isa<Constant>(BI.getOperand(1));
 | 
						|
  Constant *ConstOperand = cast<Constant>(BI.getOperand(ConstIsRHS));
 | 
						|
 | 
						|
  if (Constant *SOC = dyn_cast<Constant>(SO)) {
 | 
						|
    if (ConstIsRHS)
 | 
						|
      return ConstantExpr::get(BI.getOpcode(), SOC, ConstOperand);
 | 
						|
    return ConstantExpr::get(BI.getOpcode(), ConstOperand, SOC);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Op0 = SO, *Op1 = ConstOperand;
 | 
						|
  if (!ConstIsRHS)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
  Instruction *New;
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&BI))
 | 
						|
    New = BinaryOperator::create(BO->getOpcode(), Op0, Op1);
 | 
						|
  else if (ShiftInst *SI = dyn_cast<ShiftInst>(&BI))
 | 
						|
    New = new ShiftInst(SI->getOpcode(), Op0, Op1);
 | 
						|
  else {
 | 
						|
    assert(0 && "Unknown binary instruction type!");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return IC->InsertNewInstBefore(New, BI);
 | 
						|
}
 | 
						|
 | 
						|
// FoldBinOpIntoSelect - Given an instruction with a select as one operand and a
 | 
						|
// constant as the other operand, try to fold the binary operator into the
 | 
						|
// select arguments.
 | 
						|
static Instruction *FoldBinOpIntoSelect(Instruction &BI, SelectInst *SI,
 | 
						|
                                        InstCombiner *IC) {
 | 
						|
  // Don't modify shared select instructions
 | 
						|
  if (!SI->hasOneUse()) return 0;
 | 
						|
  Value *TV = SI->getOperand(1);
 | 
						|
  Value *FV = SI->getOperand(2);
 | 
						|
 | 
						|
  if (isa<Constant>(TV) || isa<Constant>(FV)) {
 | 
						|
    Value *SelectTrueVal = FoldOperationIntoSelectOperand(BI, TV, IC);
 | 
						|
    Value *SelectFalseVal = FoldOperationIntoSelectOperand(BI, FV, IC);
 | 
						|
 | 
						|
    return new SelectInst(SI->getCondition(), SelectTrueVal,
 | 
						|
                          SelectFalseVal);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | 
						|
 | 
						|
  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | 
						|
    // X + 0 --> X
 | 
						|
    if (!I.getType()->isFloatingPoint() && // -0 + +0 = +0, so it's not a noop
 | 
						|
        RHSC->isNullValue())
 | 
						|
      return ReplaceInstUsesWith(I, LHS);
 | 
						|
    
 | 
						|
    // X + (signbit) --> X ^ signbit
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
 | 
						|
      unsigned NumBits = CI->getType()->getPrimitiveSize()*8;
 | 
						|
      uint64_t Val = CI->getRawValue() & (1ULL << NumBits)-1;
 | 
						|
      if (Val == (1ULL << NumBits-1))
 | 
						|
        return BinaryOperator::createXor(LHS, RHS);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // X + X --> X << 1
 | 
						|
  if (I.getType()->isInteger())
 | 
						|
    if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
 | 
						|
 | 
						|
  // -A + B  -->  B - A
 | 
						|
  if (Value *V = dyn_castNegVal(LHS))
 | 
						|
    return BinaryOperator::createSub(RHS, V);
 | 
						|
 | 
						|
  // A + -B  -->  A - B
 | 
						|
  if (!isa<Constant>(RHS))
 | 
						|
    if (Value *V = dyn_castNegVal(RHS))
 | 
						|
      return BinaryOperator::createSub(LHS, V);
 | 
						|
 | 
						|
  // X*C + X --> X * (C+1)
 | 
						|
  if (dyn_castFoldableMul(LHS) == RHS) {
 | 
						|
    Constant *CP1 =
 | 
						|
      ConstantExpr::getAdd(
 | 
						|
                        cast<Constant>(cast<Instruction>(LHS)->getOperand(1)),
 | 
						|
                        ConstantInt::get(I.getType(), 1));
 | 
						|
    return BinaryOperator::createMul(RHS, CP1);
 | 
						|
  }
 | 
						|
 | 
						|
  // X + X*C --> X * (C+1)
 | 
						|
  if (dyn_castFoldableMul(RHS) == LHS) {
 | 
						|
    Constant *CP1 =
 | 
						|
      ConstantExpr::getAdd(
 | 
						|
                        cast<Constant>(cast<Instruction>(RHS)->getOperand(1)),
 | 
						|
                        ConstantInt::get(I.getType(), 1));
 | 
						|
    return BinaryOperator::createMul(LHS, CP1);
 | 
						|
  }
 | 
						|
 | 
						|
  // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
 | 
						|
  if (Constant *C2 = dyn_castMaskingAnd(RHS))
 | 
						|
    if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R;
 | 
						|
 | 
						|
  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
 | 
						|
    if (Instruction *ILHS = dyn_cast<Instruction>(LHS)) {
 | 
						|
      switch (ILHS->getOpcode()) {
 | 
						|
      case Instruction::Xor:
 | 
						|
        // ~X + C --> (C-1) - X
 | 
						|
        if (ConstantInt *XorRHS = dyn_cast<ConstantInt>(ILHS->getOperand(1)))
 | 
						|
          if (XorRHS->isAllOnesValue())
 | 
						|
            return BinaryOperator::createSub(ConstantExpr::getSub(CRHS,
 | 
						|
                                            ConstantInt::get(I.getType(), 1)),
 | 
						|
                                          ILHS->getOperand(0));
 | 
						|
        break;
 | 
						|
      case Instruction::Select:
 | 
						|
        // Try to fold constant add into select arguments.
 | 
						|
        if (Instruction *R = FoldBinOpIntoSelect(I,cast<SelectInst>(ILHS),this))
 | 
						|
          return R;
 | 
						|
 | 
						|
      default: break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
// isSignBit - Return true if the value represented by the constant only has the
 | 
						|
// highest order bit set.
 | 
						|
static bool isSignBit(ConstantInt *CI) {
 | 
						|
  unsigned NumBits = CI->getType()->getPrimitiveSize()*8;
 | 
						|
  return (CI->getRawValue() & ~(-1LL << NumBits)) == (1ULL << (NumBits-1));
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getTypeSizeInBits(const Type *Ty) {
 | 
						|
  return Ty == Type::BoolTy ? 1 : Ty->getPrimitiveSize()*8;
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveNoopCast - Strip off nonconverting casts from the value.
 | 
						|
///
 | 
						|
static Value *RemoveNoopCast(Value *V) {
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(V)) {
 | 
						|
    const Type *CTy = CI->getType();
 | 
						|
    const Type *OpTy = CI->getOperand(0)->getType();
 | 
						|
    if (CTy->isInteger() && OpTy->isInteger()) {
 | 
						|
      if (CTy->getPrimitiveSize() == OpTy->getPrimitiveSize())
 | 
						|
        return RemoveNoopCast(CI->getOperand(0));
 | 
						|
    } else if (isa<PointerType>(CTy) && isa<PointerType>(OpTy))
 | 
						|
      return RemoveNoopCast(CI->getOperand(0));
 | 
						|
  }
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSub(BinaryOperator &I) {
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  if (Op0 == Op1)         // sub X, X  -> 0
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  // If this is a 'B = x-(-A)', change to B = x+A...
 | 
						|
  if (Value *V = dyn_castNegVal(Op1))
 | 
						|
    return BinaryOperator::createAdd(Op0, V);
 | 
						|
 | 
						|
  if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
 | 
						|
    // Replace (-1 - A) with (~A)...
 | 
						|
    if (C->isAllOnesValue())
 | 
						|
      return BinaryOperator::createNot(Op1);
 | 
						|
 | 
						|
    // C - ~X == X + (1+C)
 | 
						|
    if (BinaryOperator::isNot(Op1))
 | 
						|
      return BinaryOperator::createAdd(
 | 
						|
                    BinaryOperator::getNotArgument(cast<BinaryOperator>(Op1)),
 | 
						|
                    ConstantExpr::getAdd(C, ConstantInt::get(I.getType(), 1)));
 | 
						|
    // -((uint)X >> 31) -> ((int)X >> 31)
 | 
						|
    // -((int)X >> 31) -> ((uint)X >> 31)
 | 
						|
    if (C->isNullValue()) {
 | 
						|
      Value *NoopCastedRHS = RemoveNoopCast(Op1);
 | 
						|
      if (ShiftInst *SI = dyn_cast<ShiftInst>(NoopCastedRHS))
 | 
						|
        if (SI->getOpcode() == Instruction::Shr)
 | 
						|
          if (ConstantUInt *CU = dyn_cast<ConstantUInt>(SI->getOperand(1))) {
 | 
						|
            const Type *NewTy;
 | 
						|
            if (SI->getType()->isSigned())
 | 
						|
              NewTy = SI->getType()->getUnsignedVersion();
 | 
						|
            else
 | 
						|
              NewTy = SI->getType()->getSignedVersion();
 | 
						|
            // Check to see if we are shifting out everything but the sign bit.
 | 
						|
            if (CU->getValue() == SI->getType()->getPrimitiveSize()*8-1) {
 | 
						|
              // Ok, the transformation is safe.  Insert a cast of the incoming
 | 
						|
              // value, then the new shift, then the new cast.
 | 
						|
              Instruction *FirstCast = new CastInst(SI->getOperand(0), NewTy,
 | 
						|
                                                 SI->getOperand(0)->getName());
 | 
						|
              Value *InV = InsertNewInstBefore(FirstCast, I);
 | 
						|
              Instruction *NewShift = new ShiftInst(Instruction::Shr, FirstCast,
 | 
						|
                                                    CU, SI->getName());
 | 
						|
              if (NewShift->getType() == I.getType())
 | 
						|
                return NewShift;
 | 
						|
              else {
 | 
						|
                InV = InsertNewInstBefore(NewShift, I);
 | 
						|
                return new CastInst(NewShift, I.getType());
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant sub into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | 
						|
      if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
  }
 | 
						|
 | 
						|
  if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1))
 | 
						|
    if (Op1I->hasOneUse()) {
 | 
						|
      // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
 | 
						|
      // is not used by anyone else...
 | 
						|
      //
 | 
						|
      if (Op1I->getOpcode() == Instruction::Sub &&
 | 
						|
          !Op1I->getType()->isFloatingPoint()) {
 | 
						|
        // Swap the two operands of the subexpr...
 | 
						|
        Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
 | 
						|
        Op1I->setOperand(0, IIOp1);
 | 
						|
        Op1I->setOperand(1, IIOp0);
 | 
						|
        
 | 
						|
        // Create the new top level add instruction...
 | 
						|
        return BinaryOperator::createAdd(Op0, Op1);
 | 
						|
      }
 | 
						|
 | 
						|
      // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
 | 
						|
      //
 | 
						|
      if (Op1I->getOpcode() == Instruction::And &&
 | 
						|
          (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
 | 
						|
        Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
 | 
						|
 | 
						|
        Value *NewNot =
 | 
						|
          InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
 | 
						|
        return BinaryOperator::createAnd(Op0, NewNot);
 | 
						|
      }
 | 
						|
 | 
						|
      // X - X*C --> X * (1-C)
 | 
						|
      if (dyn_castFoldableMul(Op1I) == Op0) {
 | 
						|
        Constant *CP1 =
 | 
						|
          ConstantExpr::getSub(ConstantInt::get(I.getType(), 1),
 | 
						|
                         cast<Constant>(cast<Instruction>(Op1)->getOperand(1)));
 | 
						|
        assert(CP1 && "Couldn't constant fold 1-C?");
 | 
						|
        return BinaryOperator::createMul(Op0, CP1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // X*C - X --> X * (C-1)
 | 
						|
  if (dyn_castFoldableMul(Op0) == Op1) {
 | 
						|
    Constant *CP1 =
 | 
						|
     ConstantExpr::getSub(cast<Constant>(cast<Instruction>(Op0)->getOperand(1)),
 | 
						|
                        ConstantInt::get(I.getType(), 1));
 | 
						|
    assert(CP1 && "Couldn't constant fold C - 1?");
 | 
						|
    return BinaryOperator::createMul(Op1, CP1);
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// isSignBitCheck - Given an exploded setcc instruction, return true if it is
 | 
						|
/// really just returns true if the most significant (sign) bit is set.
 | 
						|
static bool isSignBitCheck(unsigned Opcode, Value *LHS, ConstantInt *RHS) {
 | 
						|
  if (RHS->getType()->isSigned()) {
 | 
						|
    // True if source is LHS < 0 or LHS <= -1
 | 
						|
    return Opcode == Instruction::SetLT && RHS->isNullValue() ||
 | 
						|
           Opcode == Instruction::SetLE && RHS->isAllOnesValue();
 | 
						|
  } else {
 | 
						|
    ConstantUInt *RHSC = cast<ConstantUInt>(RHS);
 | 
						|
    // True if source is LHS > 127 or LHS >= 128, where the constants depend on
 | 
						|
    // the size of the integer type.
 | 
						|
    if (Opcode == Instruction::SetGE)
 | 
						|
      return RHSC->getValue() == 1ULL<<(RHS->getType()->getPrimitiveSize()*8-1);
 | 
						|
    if (Opcode == Instruction::SetGT)
 | 
						|
      return RHSC->getValue() ==
 | 
						|
        (1ULL << (RHS->getType()->getPrimitiveSize()*8-1))-1;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitMul(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *Op0 = I.getOperand(0);
 | 
						|
 | 
						|
  // Simplify mul instructions with a constant RHS...
 | 
						|
  if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
 | 
						|
      // ((X << C1)*C2) == (X * (C2 << C1))
 | 
						|
      if (ShiftInst *SI = dyn_cast<ShiftInst>(Op0))
 | 
						|
        if (SI->getOpcode() == Instruction::Shl)
 | 
						|
          if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
 | 
						|
            return BinaryOperator::createMul(SI->getOperand(0),
 | 
						|
                                             ConstantExpr::getShl(CI, ShOp));
 | 
						|
      
 | 
						|
      if (CI->isNullValue())
 | 
						|
        return ReplaceInstUsesWith(I, Op1);  // X * 0  == 0
 | 
						|
      if (CI->equalsInt(1))                  // X * 1  == X
 | 
						|
        return ReplaceInstUsesWith(I, Op0);
 | 
						|
      if (CI->isAllOnesValue())              // X * -1 == 0 - X
 | 
						|
        return BinaryOperator::createNeg(Op0, I.getName());
 | 
						|
 | 
						|
      int64_t Val = (int64_t)cast<ConstantInt>(CI)->getRawValue();
 | 
						|
      if (uint64_t C = Log2(Val))            // Replace X*(2^C) with X << C
 | 
						|
        return new ShiftInst(Instruction::Shl, Op0,
 | 
						|
                             ConstantUInt::get(Type::UByteTy, C));
 | 
						|
    } else {
 | 
						|
      ConstantFP *Op1F = cast<ConstantFP>(Op1);
 | 
						|
      if (Op1F->isNullValue())
 | 
						|
        return ReplaceInstUsesWith(I, Op1);
 | 
						|
 | 
						|
      // "In IEEE floating point, x*1 is not equivalent to x for nans.  However,
 | 
						|
      // ANSI says we can drop signals, so we can do this anyway." (from GCC)
 | 
						|
      if (Op1F->getValue() == 1.0)
 | 
						|
        return ReplaceInstUsesWith(I, Op0);  // Eliminate 'mul double %X, 1.0'
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant mul into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
      if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
 | 
						|
    if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
 | 
						|
      return BinaryOperator::createMul(Op0v, Op1v);
 | 
						|
 | 
						|
  // If one of the operands of the multiply is a cast from a boolean value, then
 | 
						|
  // we know the bool is either zero or one, so this is a 'masking' multiply.
 | 
						|
  // See if we can simplify things based on how the boolean was originally
 | 
						|
  // formed.
 | 
						|
  CastInst *BoolCast = 0;
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(0)))
 | 
						|
    if (CI->getOperand(0)->getType() == Type::BoolTy)
 | 
						|
      BoolCast = CI;
 | 
						|
  if (!BoolCast)
 | 
						|
    if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(1)))
 | 
						|
      if (CI->getOperand(0)->getType() == Type::BoolTy)
 | 
						|
        BoolCast = CI;
 | 
						|
  if (BoolCast) {
 | 
						|
    if (SetCondInst *SCI = dyn_cast<SetCondInst>(BoolCast->getOperand(0))) {
 | 
						|
      Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
 | 
						|
      const Type *SCOpTy = SCIOp0->getType();
 | 
						|
 | 
						|
      // If the setcc is true iff the sign bit of X is set, then convert this
 | 
						|
      // multiply into a shift/and combination.
 | 
						|
      if (isa<ConstantInt>(SCIOp1) &&
 | 
						|
          isSignBitCheck(SCI->getOpcode(), SCIOp0, cast<ConstantInt>(SCIOp1))) {
 | 
						|
        // Shift the X value right to turn it into "all signbits".
 | 
						|
        Constant *Amt = ConstantUInt::get(Type::UByteTy,
 | 
						|
                                          SCOpTy->getPrimitiveSize()*8-1);
 | 
						|
        if (SCIOp0->getType()->isUnsigned()) {
 | 
						|
          const Type *NewTy = SCIOp0->getType()->getSignedVersion();
 | 
						|
          SCIOp0 = InsertNewInstBefore(new CastInst(SCIOp0, NewTy,
 | 
						|
                                                    SCIOp0->getName()), I);
 | 
						|
        }
 | 
						|
 | 
						|
        Value *V =
 | 
						|
          InsertNewInstBefore(new ShiftInst(Instruction::Shr, SCIOp0, Amt,
 | 
						|
                                            BoolCast->getOperand(0)->getName()+
 | 
						|
                                            ".mask"), I);
 | 
						|
 | 
						|
        // If the multiply type is not the same as the source type, sign extend
 | 
						|
        // or truncate to the multiply type.
 | 
						|
        if (I.getType() != V->getType())
 | 
						|
          V = InsertNewInstBefore(new CastInst(V, I.getType(), V->getName()),I);
 | 
						|
        
 | 
						|
        Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
 | 
						|
        return BinaryOperator::createAnd(V, OtherOp);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitDiv(BinaryOperator &I) {
 | 
						|
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
 | 
						|
    // div X, 1 == X
 | 
						|
    if (RHS->equalsInt(1))
 | 
						|
      return ReplaceInstUsesWith(I, I.getOperand(0));
 | 
						|
 | 
						|
    // div X, -1 == -X
 | 
						|
    if (RHS->isAllOnesValue())
 | 
						|
      return BinaryOperator::createNeg(I.getOperand(0));
 | 
						|
 | 
						|
    // Check to see if this is an unsigned division with an exact power of 2,
 | 
						|
    // if so, convert to a right shift.
 | 
						|
    if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
 | 
						|
      if (uint64_t Val = C->getValue())    // Don't break X / 0
 | 
						|
        if (uint64_t C = Log2(Val))
 | 
						|
          return new ShiftInst(Instruction::Shr, I.getOperand(0),
 | 
						|
                               ConstantUInt::get(Type::UByteTy, C));
 | 
						|
  }
 | 
						|
 | 
						|
  // 0 / X == 0, we don't need to preserve faults!
 | 
						|
  if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
 | 
						|
    if (LHS->equalsInt(0))
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitRem(BinaryOperator &I) {
 | 
						|
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
 | 
						|
    if (RHS->equalsInt(1))  // X % 1 == 0
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
    if (RHS->isAllOnesValue())  // X % -1 == 0
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
    // Check to see if this is an unsigned remainder with an exact power of 2,
 | 
						|
    // if so, convert to a bitwise and.
 | 
						|
    if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
 | 
						|
      if (uint64_t Val = C->getValue())    // Don't break X % 0 (divide by zero)
 | 
						|
        if (!(Val & (Val-1)))              // Power of 2
 | 
						|
          return BinaryOperator::createAnd(I.getOperand(0),
 | 
						|
                                        ConstantUInt::get(I.getType(), Val-1));
 | 
						|
  }
 | 
						|
 | 
						|
  // 0 % X == 0, we don't need to preserve faults!
 | 
						|
  if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
 | 
						|
    if (LHS->equalsInt(0))
 | 
						|
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// isMaxValueMinusOne - return true if this is Max-1
 | 
						|
static bool isMaxValueMinusOne(const ConstantInt *C) {
 | 
						|
  if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C)) {
 | 
						|
    // Calculate -1 casted to the right type...
 | 
						|
    unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
 | 
						|
    uint64_t Val = ~0ULL;                // All ones
 | 
						|
    Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | 
						|
    return CU->getValue() == Val-1;
 | 
						|
  }
 | 
						|
 | 
						|
  const ConstantSInt *CS = cast<ConstantSInt>(C);
 | 
						|
  
 | 
						|
  // Calculate 0111111111..11111
 | 
						|
  unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
 | 
						|
  int64_t Val = INT64_MAX;             // All ones
 | 
						|
  Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | 
						|
  return CS->getValue() == Val-1;
 | 
						|
}
 | 
						|
 | 
						|
// isMinValuePlusOne - return true if this is Min+1
 | 
						|
static bool isMinValuePlusOne(const ConstantInt *C) {
 | 
						|
  if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
 | 
						|
    return CU->getValue() == 1;
 | 
						|
 | 
						|
  const ConstantSInt *CS = cast<ConstantSInt>(C);
 | 
						|
  
 | 
						|
  // Calculate 1111111111000000000000 
 | 
						|
  unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
 | 
						|
  int64_t Val = -1;                    // All ones
 | 
						|
  Val <<= TypeBits-1;                  // Shift over to the right spot
 | 
						|
  return CS->getValue() == Val+1;
 | 
						|
}
 | 
						|
 | 
						|
// isOneBitSet - Return true if there is exactly one bit set in the specified
 | 
						|
// constant.
 | 
						|
static bool isOneBitSet(const ConstantInt *CI) {
 | 
						|
  uint64_t V = CI->getRawValue();
 | 
						|
  return V && (V & (V-1)) == 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getSetCondCode - Encode a setcc opcode into a three bit mask.  These bits
 | 
						|
/// are carefully arranged to allow folding of expressions such as:
 | 
						|
///
 | 
						|
///      (A < B) | (A > B) --> (A != B)
 | 
						|
///
 | 
						|
/// Bit value '4' represents that the comparison is true if A > B, bit value '2'
 | 
						|
/// represents that the comparison is true if A == B, and bit value '1' is true
 | 
						|
/// if A < B.
 | 
						|
///
 | 
						|
static unsigned getSetCondCode(const SetCondInst *SCI) {
 | 
						|
  switch (SCI->getOpcode()) {
 | 
						|
    // False -> 0
 | 
						|
  case Instruction::SetGT: return 1;
 | 
						|
  case Instruction::SetEQ: return 2;
 | 
						|
  case Instruction::SetGE: return 3;
 | 
						|
  case Instruction::SetLT: return 4;
 | 
						|
  case Instruction::SetNE: return 5;
 | 
						|
  case Instruction::SetLE: return 6;
 | 
						|
    // True -> 7
 | 
						|
  default:
 | 
						|
    assert(0 && "Invalid SetCC opcode!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getSetCCValue - This is the complement of getSetCondCode, which turns an
 | 
						|
/// opcode and two operands into either a constant true or false, or a brand new
 | 
						|
/// SetCC instruction.
 | 
						|
static Value *getSetCCValue(unsigned Opcode, Value *LHS, Value *RHS) {
 | 
						|
  switch (Opcode) {
 | 
						|
  case 0: return ConstantBool::False;
 | 
						|
  case 1: return new SetCondInst(Instruction::SetGT, LHS, RHS);
 | 
						|
  case 2: return new SetCondInst(Instruction::SetEQ, LHS, RHS);
 | 
						|
  case 3: return new SetCondInst(Instruction::SetGE, LHS, RHS);
 | 
						|
  case 4: return new SetCondInst(Instruction::SetLT, LHS, RHS);
 | 
						|
  case 5: return new SetCondInst(Instruction::SetNE, LHS, RHS);
 | 
						|
  case 6: return new SetCondInst(Instruction::SetLE, LHS, RHS);
 | 
						|
  case 7: return ConstantBool::True;
 | 
						|
  default: assert(0 && "Illegal SetCCCode!"); return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// FoldSetCCLogical - Implements (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
 | 
						|
struct FoldSetCCLogical {
 | 
						|
  InstCombiner &IC;
 | 
						|
  Value *LHS, *RHS;
 | 
						|
  FoldSetCCLogical(InstCombiner &ic, SetCondInst *SCI)
 | 
						|
    : IC(ic), LHS(SCI->getOperand(0)), RHS(SCI->getOperand(1)) {}
 | 
						|
  bool shouldApply(Value *V) const {
 | 
						|
    if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
 | 
						|
      return (SCI->getOperand(0) == LHS && SCI->getOperand(1) == RHS ||
 | 
						|
              SCI->getOperand(0) == RHS && SCI->getOperand(1) == LHS);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  Instruction *apply(BinaryOperator &Log) const {
 | 
						|
    SetCondInst *SCI = cast<SetCondInst>(Log.getOperand(0));
 | 
						|
    if (SCI->getOperand(0) != LHS) {
 | 
						|
      assert(SCI->getOperand(1) == LHS);
 | 
						|
      SCI->swapOperands();  // Swap the LHS and RHS of the SetCC
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned LHSCode = getSetCondCode(SCI);
 | 
						|
    unsigned RHSCode = getSetCondCode(cast<SetCondInst>(Log.getOperand(1)));
 | 
						|
    unsigned Code;
 | 
						|
    switch (Log.getOpcode()) {
 | 
						|
    case Instruction::And: Code = LHSCode & RHSCode; break;
 | 
						|
    case Instruction::Or:  Code = LHSCode | RHSCode; break;
 | 
						|
    case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
 | 
						|
    default: assert(0 && "Illegal logical opcode!"); return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    Value *RV = getSetCCValue(Code, LHS, RHS);
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(RV))
 | 
						|
      return I;
 | 
						|
    // Otherwise, it's a constant boolean value...
 | 
						|
    return IC.ReplaceInstUsesWith(Log, RV);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
 | 
						|
// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
 | 
						|
// guaranteed to be either a shift instruction or a binary operator.
 | 
						|
Instruction *InstCombiner::OptAndOp(Instruction *Op,
 | 
						|
                                    ConstantIntegral *OpRHS,
 | 
						|
                                    ConstantIntegral *AndRHS,
 | 
						|
                                    BinaryOperator &TheAnd) {
 | 
						|
  Value *X = Op->getOperand(0);
 | 
						|
  Constant *Together = 0;
 | 
						|
  if (!isa<ShiftInst>(Op))
 | 
						|
    Together = ConstantExpr::getAnd(AndRHS, OpRHS);
 | 
						|
 | 
						|
  switch (Op->getOpcode()) {
 | 
						|
  case Instruction::Xor:
 | 
						|
    if (Together->isNullValue()) {
 | 
						|
      // (X ^ C1) & C2 --> (X & C2) iff (C1&C2) == 0
 | 
						|
      return BinaryOperator::createAnd(X, AndRHS);
 | 
						|
    } else if (Op->hasOneUse()) {
 | 
						|
      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
 | 
						|
      std::string OpName = Op->getName(); Op->setName("");
 | 
						|
      Instruction *And = BinaryOperator::createAnd(X, AndRHS, OpName);
 | 
						|
      InsertNewInstBefore(And, TheAnd);
 | 
						|
      return BinaryOperator::createXor(And, Together);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Or:
 | 
						|
    // (X | C1) & C2 --> X & C2 iff C1 & C1 == 0
 | 
						|
    if (Together->isNullValue())
 | 
						|
      return BinaryOperator::createAnd(X, AndRHS);
 | 
						|
    else {
 | 
						|
      if (Together == AndRHS) // (X | C) & C --> C
 | 
						|
        return ReplaceInstUsesWith(TheAnd, AndRHS);
 | 
						|
      
 | 
						|
      if (Op->hasOneUse() && Together != OpRHS) {
 | 
						|
        // (X | C1) & C2 --> (X | (C1&C2)) & C2
 | 
						|
        std::string Op0Name = Op->getName(); Op->setName("");
 | 
						|
        Instruction *Or = BinaryOperator::createOr(X, Together, Op0Name);
 | 
						|
        InsertNewInstBefore(Or, TheAnd);
 | 
						|
        return BinaryOperator::createAnd(Or, AndRHS);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Add:
 | 
						|
    if (Op->hasOneUse()) {
 | 
						|
      // Adding a one to a single bit bit-field should be turned into an XOR
 | 
						|
      // of the bit.  First thing to check is to see if this AND is with a
 | 
						|
      // single bit constant.
 | 
						|
      uint64_t AndRHSV = cast<ConstantInt>(AndRHS)->getRawValue();
 | 
						|
 | 
						|
      // Clear bits that are not part of the constant.
 | 
						|
      AndRHSV &= (1ULL << AndRHS->getType()->getPrimitiveSize()*8)-1;
 | 
						|
 | 
						|
      // If there is only one bit set...
 | 
						|
      if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
 | 
						|
        // Ok, at this point, we know that we are masking the result of the
 | 
						|
        // ADD down to exactly one bit.  If the constant we are adding has
 | 
						|
        // no bits set below this bit, then we can eliminate the ADD.
 | 
						|
        uint64_t AddRHS = cast<ConstantInt>(OpRHS)->getRawValue();
 | 
						|
            
 | 
						|
        // Check to see if any bits below the one bit set in AndRHSV are set.
 | 
						|
        if ((AddRHS & (AndRHSV-1)) == 0) {
 | 
						|
          // If not, the only thing that can effect the output of the AND is
 | 
						|
          // the bit specified by AndRHSV.  If that bit is set, the effect of
 | 
						|
          // the XOR is to toggle the bit.  If it is clear, then the ADD has
 | 
						|
          // no effect.
 | 
						|
          if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
 | 
						|
            TheAnd.setOperand(0, X);
 | 
						|
            return &TheAnd;
 | 
						|
          } else {
 | 
						|
            std::string Name = Op->getName(); Op->setName("");
 | 
						|
            // Pull the XOR out of the AND.
 | 
						|
            Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS, Name);
 | 
						|
            InsertNewInstBefore(NewAnd, TheAnd);
 | 
						|
            return BinaryOperator::createXor(NewAnd, AndRHS);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Shl: {
 | 
						|
    // We know that the AND will not produce any of the bits shifted in, so if
 | 
						|
    // the anded constant includes them, clear them now!
 | 
						|
    //
 | 
						|
    Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
 | 
						|
    Constant *CI = ConstantExpr::getAnd(AndRHS,
 | 
						|
                                        ConstantExpr::getShl(AllOne, OpRHS));
 | 
						|
    if (CI != AndRHS) {
 | 
						|
      TheAnd.setOperand(1, CI);
 | 
						|
      return &TheAnd;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  } 
 | 
						|
  case Instruction::Shr:
 | 
						|
    // We know that the AND will not produce any of the bits shifted in, so if
 | 
						|
    // the anded constant includes them, clear them now!  This only applies to
 | 
						|
    // unsigned shifts, because a signed shr may bring in set bits!
 | 
						|
    //
 | 
						|
    if (AndRHS->getType()->isUnsigned()) {
 | 
						|
      Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
 | 
						|
      Constant *CI = ConstantExpr::getAnd(AndRHS,
 | 
						|
                                          ConstantExpr::getShr(AllOne, OpRHS));
 | 
						|
      if (CI != AndRHS) {
 | 
						|
        TheAnd.setOperand(1, CI);
 | 
						|
        return &TheAnd;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  // and X, X = X   and X, 0 == 0
 | 
						|
  if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
 | 
						|
    return ReplaceInstUsesWith(I, Op1);
 | 
						|
 | 
						|
  // and X, -1 == X
 | 
						|
  if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
 | 
						|
    if (RHS->isAllOnesValue())
 | 
						|
      return ReplaceInstUsesWith(I, Op0);
 | 
						|
 | 
						|
    // Optimize a variety of ((val OP C1) & C2) combinations...
 | 
						|
    if (isa<BinaryOperator>(Op0) || isa<ShiftInst>(Op0)) {
 | 
						|
      Instruction *Op0I = cast<Instruction>(Op0);
 | 
						|
      Value *X = Op0I->getOperand(0);
 | 
						|
      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
 | 
						|
        if (Instruction *Res = OptAndOp(Op0I, Op0CI, RHS, I))
 | 
						|
          return Res;
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant and into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
      if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Op0NotVal = dyn_castNotVal(Op0);
 | 
						|
  Value *Op1NotVal = dyn_castNotVal(Op1);
 | 
						|
 | 
						|
  if (Op0NotVal == Op1 || Op1NotVal == Op0)  // A & ~A  == ~A & A == 0
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
 | 
						|
  // (~A & ~B) == (~(A | B)) - Demorgan's Law
 | 
						|
  if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
 | 
						|
    Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
 | 
						|
                                               I.getName()+".demorgan");
 | 
						|
    InsertNewInstBefore(Or, I);
 | 
						|
    return BinaryOperator::createNot(Or);
 | 
						|
  }
 | 
						|
 | 
						|
  // (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
 | 
						|
  if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
 | 
						|
    if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
 | 
						|
      return R;
 | 
						|
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitOr(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  // or X, X = X   or X, 0 == X
 | 
						|
  if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
 | 
						|
    return ReplaceInstUsesWith(I, Op0);
 | 
						|
 | 
						|
  // or X, -1 == -1
 | 
						|
  if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
 | 
						|
    if (RHS->isAllOnesValue())
 | 
						|
      return ReplaceInstUsesWith(I, Op1);
 | 
						|
 | 
						|
    if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
 | 
						|
      // (X & C1) | C2 --> (X | C2) & (C1|C2)
 | 
						|
      if (Op0I->getOpcode() == Instruction::And && isOnlyUse(Op0))
 | 
						|
        if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
 | 
						|
          std::string Op0Name = Op0I->getName(); Op0I->setName("");
 | 
						|
          Instruction *Or = BinaryOperator::createOr(Op0I->getOperand(0), RHS,
 | 
						|
                                                     Op0Name);
 | 
						|
          InsertNewInstBefore(Or, I);
 | 
						|
          return BinaryOperator::createAnd(Or, ConstantExpr::getOr(RHS, Op0CI));
 | 
						|
        }
 | 
						|
 | 
						|
      // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
 | 
						|
      if (Op0I->getOpcode() == Instruction::Xor && isOnlyUse(Op0))
 | 
						|
        if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
 | 
						|
          std::string Op0Name = Op0I->getName(); Op0I->setName("");
 | 
						|
          Instruction *Or = BinaryOperator::createOr(Op0I->getOperand(0), RHS,
 | 
						|
                                                     Op0Name);
 | 
						|
          InsertNewInstBefore(Or, I);
 | 
						|
          return BinaryOperator::createXor(Or,
 | 
						|
                                ConstantExpr::getAnd(Op0CI,
 | 
						|
                                                   ConstantExpr::getNot(RHS)));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant and into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
      if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
  }
 | 
						|
 | 
						|
  // (A & C1)|(A & C2) == A & (C1|C2)
 | 
						|
  if (Instruction *LHS = dyn_cast<BinaryOperator>(Op0))
 | 
						|
    if (Instruction *RHS = dyn_cast<BinaryOperator>(Op1))
 | 
						|
      if (LHS->getOperand(0) == RHS->getOperand(0))
 | 
						|
        if (Constant *C0 = dyn_castMaskingAnd(LHS))
 | 
						|
          if (Constant *C1 = dyn_castMaskingAnd(RHS))
 | 
						|
            return BinaryOperator::createAnd(LHS->getOperand(0),
 | 
						|
                                             ConstantExpr::getOr(C0, C1));
 | 
						|
 | 
						|
  Value *Op0NotVal = dyn_castNotVal(Op0);
 | 
						|
  Value *Op1NotVal = dyn_castNotVal(Op1);
 | 
						|
 | 
						|
  if (Op1 == Op0NotVal)   // ~A | A == -1
 | 
						|
    return ReplaceInstUsesWith(I, 
 | 
						|
                               ConstantIntegral::getAllOnesValue(I.getType()));
 | 
						|
 | 
						|
  if (Op0 == Op1NotVal)   // A | ~A == -1
 | 
						|
    return ReplaceInstUsesWith(I, 
 | 
						|
                               ConstantIntegral::getAllOnesValue(I.getType()));
 | 
						|
 | 
						|
  // (~A | ~B) == (~(A & B)) - Demorgan's Law
 | 
						|
  if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
 | 
						|
    Value *And = InsertNewInstBefore(
 | 
						|
                BinaryOperator::createAnd(Op0NotVal,
 | 
						|
                                          Op1NotVal,I.getName()+".demorgan"),I);
 | 
						|
    return BinaryOperator::createNot(And);
 | 
						|
  }
 | 
						|
 | 
						|
  // (setcc1 A, B) | (setcc2 A, B) --> (setcc3 A, B)
 | 
						|
  if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
 | 
						|
    if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
 | 
						|
      return R;
 | 
						|
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
// XorSelf - Implements: X ^ X --> 0
 | 
						|
struct XorSelf {
 | 
						|
  Value *RHS;
 | 
						|
  XorSelf(Value *rhs) : RHS(rhs) {}
 | 
						|
  bool shouldApply(Value *LHS) const { return LHS == RHS; }
 | 
						|
  Instruction *apply(BinaryOperator &Xor) const {
 | 
						|
    return &Xor;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitXor(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  // xor X, X = 0, even if X is nested in a sequence of Xor's.
 | 
						|
  if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
 | 
						|
    assert(Result == &I && "AssociativeOpt didn't work?");
 | 
						|
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
 | 
						|
    // xor X, 0 == X
 | 
						|
    if (RHS->isNullValue())
 | 
						|
      return ReplaceInstUsesWith(I, Op0);
 | 
						|
 | 
						|
    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
 | 
						|
      // xor (setcc A, B), true = not (setcc A, B) = setncc A, B
 | 
						|
      if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0I))
 | 
						|
        if (RHS == ConstantBool::True && SCI->hasOneUse())
 | 
						|
          return new SetCondInst(SCI->getInverseCondition(),
 | 
						|
                                 SCI->getOperand(0), SCI->getOperand(1));
 | 
						|
 | 
						|
      // ~(c-X) == X-c-1 == X+(-c-1)
 | 
						|
      if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
 | 
						|
        if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
 | 
						|
          Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
 | 
						|
          Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
 | 
						|
                                              ConstantInt::get(I.getType(), 1));
 | 
						|
          return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
 | 
						|
        }
 | 
						|
 | 
						|
      // ~(~X & Y) --> (X | ~Y)
 | 
						|
      if (Op0I->getOpcode() == Instruction::And && RHS->isAllOnesValue()) {
 | 
						|
        if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
 | 
						|
        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
 | 
						|
          Instruction *NotY =
 | 
						|
            BinaryOperator::createNot(Op0I->getOperand(1), 
 | 
						|
                                      Op0I->getOperand(1)->getName()+".not");
 | 
						|
          InsertNewInstBefore(NotY, I);
 | 
						|
          return BinaryOperator::createOr(Op0NotVal, NotY);
 | 
						|
        }
 | 
						|
      }
 | 
						|
          
 | 
						|
      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
 | 
						|
        switch (Op0I->getOpcode()) {
 | 
						|
        case Instruction::Add:
 | 
						|
          // ~(X-c) --> (-c-1)-X
 | 
						|
          if (RHS->isAllOnesValue()) {
 | 
						|
            Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
 | 
						|
            return BinaryOperator::createSub(
 | 
						|
                           ConstantExpr::getSub(NegOp0CI,
 | 
						|
                                             ConstantInt::get(I.getType(), 1)),
 | 
						|
                                          Op0I->getOperand(0));
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        case Instruction::And:
 | 
						|
          // (X & C1) ^ C2 --> (X & C1) | C2 iff (C1&C2) == 0
 | 
						|
          if (ConstantExpr::getAnd(RHS, Op0CI)->isNullValue())
 | 
						|
            return BinaryOperator::createOr(Op0, RHS);
 | 
						|
          break;
 | 
						|
        case Instruction::Or:
 | 
						|
          // (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | 
						|
          if (ConstantExpr::getAnd(RHS, Op0CI) == RHS)
 | 
						|
            return BinaryOperator::createAnd(Op0, ConstantExpr::getNot(RHS));
 | 
						|
          break;
 | 
						|
        default: break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to fold constant and into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
      if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Value *X = dyn_castNotVal(Op0))   // ~A ^ A == -1
 | 
						|
    if (X == Op1)
 | 
						|
      return ReplaceInstUsesWith(I,
 | 
						|
                                ConstantIntegral::getAllOnesValue(I.getType()));
 | 
						|
 | 
						|
  if (Value *X = dyn_castNotVal(Op1))   // A ^ ~A == -1
 | 
						|
    if (X == Op0)
 | 
						|
      return ReplaceInstUsesWith(I,
 | 
						|
                                ConstantIntegral::getAllOnesValue(I.getType()));
 | 
						|
 | 
						|
  if (Instruction *Op1I = dyn_cast<Instruction>(Op1))
 | 
						|
    if (Op1I->getOpcode() == Instruction::Or) {
 | 
						|
      if (Op1I->getOperand(0) == Op0) {              // B^(B|A) == (A|B)^B
 | 
						|
        cast<BinaryOperator>(Op1I)->swapOperands();
 | 
						|
        I.swapOperands();
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
      } else if (Op1I->getOperand(1) == Op0) {       // B^(A|B) == (A|B)^B
 | 
						|
        I.swapOperands();
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
      }      
 | 
						|
    } else if (Op1I->getOpcode() == Instruction::Xor) {
 | 
						|
      if (Op0 == Op1I->getOperand(0))                        // A^(A^B) == B
 | 
						|
        return ReplaceInstUsesWith(I, Op1I->getOperand(1));
 | 
						|
      else if (Op0 == Op1I->getOperand(1))                   // A^(B^A) == B
 | 
						|
        return ReplaceInstUsesWith(I, Op1I->getOperand(0));
 | 
						|
    }
 | 
						|
 | 
						|
  if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
 | 
						|
    if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) {
 | 
						|
      if (Op0I->getOperand(0) == Op1)                // (B|A)^B == (A|B)^B
 | 
						|
        cast<BinaryOperator>(Op0I)->swapOperands();
 | 
						|
      if (Op0I->getOperand(1) == Op1) {              // (A|B)^B == A & ~B
 | 
						|
        Value *NotB = InsertNewInstBefore(BinaryOperator::createNot(Op1,
 | 
						|
                                                     Op1->getName()+".not"), I);
 | 
						|
        return BinaryOperator::createAnd(Op0I->getOperand(0), NotB);
 | 
						|
      }
 | 
						|
    } else if (Op0I->getOpcode() == Instruction::Xor) {
 | 
						|
      if (Op1 == Op0I->getOperand(0))                        // (A^B)^A == B
 | 
						|
        return ReplaceInstUsesWith(I, Op0I->getOperand(1));
 | 
						|
      else if (Op1 == Op0I->getOperand(1))                   // (B^A)^A == B
 | 
						|
        return ReplaceInstUsesWith(I, Op0I->getOperand(0));
 | 
						|
    }
 | 
						|
 | 
						|
  // (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1^C2 == 0
 | 
						|
  if (Constant *C1 = dyn_castMaskingAnd(Op0))
 | 
						|
    if (Constant *C2 = dyn_castMaskingAnd(Op1))
 | 
						|
      if (ConstantExpr::getAnd(C1, C2)->isNullValue())
 | 
						|
        return BinaryOperator::createOr(Op0, Op1);
 | 
						|
 | 
						|
  // (setcc1 A, B) ^ (setcc2 A, B) --> (setcc3 A, B)
 | 
						|
  if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
 | 
						|
    if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
 | 
						|
      return R;
 | 
						|
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
// AddOne, SubOne - Add or subtract a constant one from an integer constant...
 | 
						|
static Constant *AddOne(ConstantInt *C) {
 | 
						|
  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
 | 
						|
}
 | 
						|
static Constant *SubOne(ConstantInt *C) {
 | 
						|
  return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
 | 
						|
}
 | 
						|
 | 
						|
// isTrueWhenEqual - Return true if the specified setcondinst instruction is
 | 
						|
// true when both operands are equal...
 | 
						|
//
 | 
						|
static bool isTrueWhenEqual(Instruction &I) {
 | 
						|
  return I.getOpcode() == Instruction::SetEQ ||
 | 
						|
         I.getOpcode() == Instruction::SetGE ||
 | 
						|
         I.getOpcode() == Instruction::SetLE;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSetCondInst(BinaryOperator &I) {
 | 
						|
  bool Changed = SimplifyCommutative(I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
  const Type *Ty = Op0->getType();
 | 
						|
 | 
						|
  // setcc X, X
 | 
						|
  if (Op0 == Op1)
 | 
						|
    return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I)));
 | 
						|
 | 
						|
  // setcc <global/alloca*>, 0 - Global/Stack value addresses are never null!
 | 
						|
  if (isa<ConstantPointerNull>(Op1) && 
 | 
						|
      (isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0)))
 | 
						|
    return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I)));
 | 
						|
 | 
						|
 | 
						|
  // setcc's with boolean values can always be turned into bitwise operations
 | 
						|
  if (Ty == Type::BoolTy) {
 | 
						|
    // If this is <, >, or !=, we can change this into a simple xor instruction
 | 
						|
    if (!isTrueWhenEqual(I))
 | 
						|
      return BinaryOperator::createXor(Op0, Op1);
 | 
						|
 | 
						|
    // Otherwise we need to make a temporary intermediate instruction and insert
 | 
						|
    // it into the instruction stream.  This is what we are after:
 | 
						|
    //
 | 
						|
    //  seteq bool %A, %B -> ~(A^B)
 | 
						|
    //  setle bool %A, %B -> ~A | B
 | 
						|
    //  setge bool %A, %B -> A | ~B
 | 
						|
    //
 | 
						|
    if (I.getOpcode() == Instruction::SetEQ) {  // seteq case
 | 
						|
      Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
 | 
						|
      InsertNewInstBefore(Xor, I);
 | 
						|
      return BinaryOperator::createNot(Xor);
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle the setXe cases...
 | 
						|
    assert(I.getOpcode() == Instruction::SetGE ||
 | 
						|
           I.getOpcode() == Instruction::SetLE);
 | 
						|
 | 
						|
    if (I.getOpcode() == Instruction::SetGE)
 | 
						|
      std::swap(Op0, Op1);                   // Change setge -> setle
 | 
						|
 | 
						|
    // Now we just have the SetLE case.
 | 
						|
    Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
 | 
						|
    InsertNewInstBefore(Not, I);
 | 
						|
    return BinaryOperator::createOr(Not, Op1);
 | 
						|
  }
 | 
						|
 | 
						|
  // See if we are doing a comparison between a constant and an instruction that
 | 
						|
  // can be folded into the comparison.
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
 | 
						|
      if (LHSI->hasOneUse())
 | 
						|
        switch (LHSI->getOpcode()) {
 | 
						|
        case Instruction::And:
 | 
						|
          if (isa<ConstantInt>(LHSI->getOperand(1))) {
 | 
						|
          
 | 
						|
 | 
						|
            // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
 | 
						|
            // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
 | 
						|
            // happens a LOT in code produced by the C front-end, for bitfield
 | 
						|
            // access.
 | 
						|
            if (LHSI->getOperand(0)->hasOneUse())
 | 
						|
              if (ShiftInst *Shift = dyn_cast<ShiftInst>(LHSI->getOperand(0)))
 | 
						|
                if (ConstantUInt *ShAmt =
 | 
						|
                    dyn_cast<ConstantUInt>(Shift->getOperand(1))) {
 | 
						|
                  ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
 | 
						|
                  
 | 
						|
                  // We can fold this as long as we can't shift unknown bits
 | 
						|
                  // into the mask.  This can only happen with signed shift
 | 
						|
                  // rights, as they sign-extend.
 | 
						|
                  const Type *Ty = Shift->getType();
 | 
						|
                  if (Shift->getOpcode() != Instruction::Shr ||
 | 
						|
                      Shift->getType()->isUnsigned() ||
 | 
						|
                      // To test for the bad case of the signed shr, see if any
 | 
						|
                      // of the bits shifted in could be tested after the mask.
 | 
						|
                      ConstantExpr::getAnd(ConstantExpr::getShl(ConstantInt::getAllOnesValue(Ty), ConstantUInt::get(Type::UByteTy, Ty->getPrimitiveSize()*8-ShAmt->getValue())), AndCST)->isNullValue()) {
 | 
						|
                    unsigned ShiftOp = Shift->getOpcode() == Instruction::Shl
 | 
						|
                      ? Instruction::Shr : Instruction::Shl;
 | 
						|
                    I.setOperand(1, ConstantExpr::get(ShiftOp, CI, ShAmt));
 | 
						|
                    LHSI->setOperand(1,ConstantExpr::get(ShiftOp,AndCST,ShAmt));
 | 
						|
                    LHSI->setOperand(0, Shift->getOperand(0));
 | 
						|
                    WorkList.push_back(Shift); // Shift is probably dead.
 | 
						|
                    AddUsesToWorkList(I);
 | 
						|
                    return &I;
 | 
						|
                  }
 | 
						|
                }
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        case Instruction::Div:
 | 
						|
          if (0 && isa<ConstantInt>(LHSI->getOperand(1))) {
 | 
						|
            std::cerr << "COULD FOLD: " << *LHSI;
 | 
						|
            std::cerr << "COULD FOLD: " << I << "\n";
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        case Instruction::Select:
 | 
						|
          // If either operand of the select is a constant, we can fold the
 | 
						|
          // comparison into the select arms, which will cause one to be
 | 
						|
          // constant folded and the select turned into a bitwise or.
 | 
						|
          Value *Op1 = 0, *Op2 = 0;
 | 
						|
          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
 | 
						|
            // Fold the known value into the constant operand.
 | 
						|
            Op1 = ConstantExpr::get(I.getOpcode(), C, CI);
 | 
						|
            // Insert a new SetCC of the other select operand.
 | 
						|
            Op2 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
 | 
						|
                                                      LHSI->getOperand(2), CI,
 | 
						|
                                                      I.getName()), I);
 | 
						|
          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
 | 
						|
            // Fold the known value into the constant operand.
 | 
						|
            Op2 = ConstantExpr::get(I.getOpcode(), C, CI);
 | 
						|
            // Insert a new SetCC of the other select operand.
 | 
						|
            Op1 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
 | 
						|
                                                      LHSI->getOperand(1), CI,
 | 
						|
                                                      I.getName()), I);
 | 
						|
          }
 | 
						|
 | 
						|
          if (Op1)
 | 
						|
            return new SelectInst(LHSI->getOperand(0), Op1, Op2);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
    // Simplify seteq and setne instructions...
 | 
						|
    if (I.getOpcode() == Instruction::SetEQ ||
 | 
						|
        I.getOpcode() == Instruction::SetNE) {
 | 
						|
      bool isSetNE = I.getOpcode() == Instruction::SetNE;
 | 
						|
 | 
						|
      // If the first operand is (and|or|xor) with a constant, and the second
 | 
						|
      // operand is a constant, simplify a bit.
 | 
						|
      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
 | 
						|
        switch (BO->getOpcode()) {
 | 
						|
        case Instruction::Add:
 | 
						|
          if (CI->isNullValue()) {
 | 
						|
            // Replace ((add A, B) != 0) with (A != -B) if A or B is
 | 
						|
            // efficiently invertible, or if the add has just this one use.
 | 
						|
            Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
 | 
						|
            if (Value *NegVal = dyn_castNegVal(BOp1))
 | 
						|
              return new SetCondInst(I.getOpcode(), BOp0, NegVal);
 | 
						|
            else if (Value *NegVal = dyn_castNegVal(BOp0))
 | 
						|
              return new SetCondInst(I.getOpcode(), NegVal, BOp1);
 | 
						|
            else if (BO->hasOneUse()) {
 | 
						|
              Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
 | 
						|
              BO->setName("");
 | 
						|
              InsertNewInstBefore(Neg, I);
 | 
						|
              return new SetCondInst(I.getOpcode(), BOp0, Neg);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        case Instruction::Xor:
 | 
						|
          // For the xor case, we can xor two constants together, eliminating
 | 
						|
          // the explicit xor.
 | 
						|
          if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
 | 
						|
            return BinaryOperator::create(I.getOpcode(), BO->getOperand(0),
 | 
						|
                                  ConstantExpr::getXor(CI, BOC));
 | 
						|
 | 
						|
          // FALLTHROUGH
 | 
						|
        case Instruction::Sub:
 | 
						|
          // Replace (([sub|xor] A, B) != 0) with (A != B)
 | 
						|
          if (CI->isNullValue())
 | 
						|
            return new SetCondInst(I.getOpcode(), BO->getOperand(0),
 | 
						|
                                   BO->getOperand(1));
 | 
						|
          break;
 | 
						|
 | 
						|
        case Instruction::Or:
 | 
						|
          // If bits are being or'd in that are not present in the constant we
 | 
						|
          // are comparing against, then the comparison could never succeed!
 | 
						|
          if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
 | 
						|
            Constant *NotCI = ConstantExpr::getNot(CI);
 | 
						|
            if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
 | 
						|
              return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
 | 
						|
          }
 | 
						|
          break;
 | 
						|
 | 
						|
        case Instruction::And:
 | 
						|
          if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | 
						|
            // If bits are being compared against that are and'd out, then the
 | 
						|
            // comparison can never succeed!
 | 
						|
            if (!ConstantExpr::getAnd(CI,
 | 
						|
                                      ConstantExpr::getNot(BOC))->isNullValue())
 | 
						|
              return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
 | 
						|
 | 
						|
            // If we have ((X & C) == C), turn it into ((X & C) != 0).
 | 
						|
            if (CI == BOC && isOneBitSet(CI))
 | 
						|
              return new SetCondInst(isSetNE ? Instruction::SetEQ :
 | 
						|
                                     Instruction::SetNE, Op0,
 | 
						|
                                     Constant::getNullValue(CI->getType()));
 | 
						|
 | 
						|
            // Replace (and X, (1 << size(X)-1) != 0) with x < 0, converting X
 | 
						|
            // to be a signed value as appropriate.
 | 
						|
            if (isSignBit(BOC)) {
 | 
						|
              Value *X = BO->getOperand(0);
 | 
						|
              // If 'X' is not signed, insert a cast now...
 | 
						|
              if (!BOC->getType()->isSigned()) {
 | 
						|
                const Type *DestTy = BOC->getType()->getSignedVersion();
 | 
						|
                CastInst *NewCI = new CastInst(X,DestTy,X->getName()+".signed");
 | 
						|
                InsertNewInstBefore(NewCI, I);
 | 
						|
                X = NewCI;
 | 
						|
              }
 | 
						|
              return new SetCondInst(isSetNE ? Instruction::SetLT :
 | 
						|
                                         Instruction::SetGE, X,
 | 
						|
                                     Constant::getNullValue(X->getType()));
 | 
						|
            }
 | 
						|
          }
 | 
						|
        default: break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {  // Not a SetEQ/SetNE
 | 
						|
      // If the LHS is a cast from an integral value of the same size, 
 | 
						|
      if (CastInst *Cast = dyn_cast<CastInst>(Op0)) {
 | 
						|
        Value *CastOp = Cast->getOperand(0);
 | 
						|
        const Type *SrcTy = CastOp->getType();
 | 
						|
        unsigned SrcTySize = SrcTy->getPrimitiveSize();
 | 
						|
        if (SrcTy != Cast->getType() && SrcTy->isInteger() &&
 | 
						|
            SrcTySize == Cast->getType()->getPrimitiveSize()) {
 | 
						|
          assert((SrcTy->isSigned() ^ Cast->getType()->isSigned()) && 
 | 
						|
                 "Source and destination signednesses should differ!");
 | 
						|
          if (Cast->getType()->isSigned()) {
 | 
						|
            // If this is a signed comparison, check for comparisons in the
 | 
						|
            // vicinity of zero.
 | 
						|
            if (I.getOpcode() == Instruction::SetLT && CI->isNullValue())
 | 
						|
              // X < 0  => x > 127
 | 
						|
              return BinaryOperator::createSetGT(CastOp,
 | 
						|
                         ConstantUInt::get(SrcTy, (1ULL << (SrcTySize*8-1))-1));
 | 
						|
            else if (I.getOpcode() == Instruction::SetGT &&
 | 
						|
                     cast<ConstantSInt>(CI)->getValue() == -1)
 | 
						|
              // X > -1  => x < 128
 | 
						|
              return BinaryOperator::createSetLT(CastOp,
 | 
						|
                         ConstantUInt::get(SrcTy, 1ULL << (SrcTySize*8-1)));
 | 
						|
          } else {
 | 
						|
            ConstantUInt *CUI = cast<ConstantUInt>(CI);
 | 
						|
            if (I.getOpcode() == Instruction::SetLT &&
 | 
						|
                CUI->getValue() == 1ULL << (SrcTySize*8-1))
 | 
						|
              // X < 128 => X > -1
 | 
						|
              return BinaryOperator::createSetGT(CastOp,
 | 
						|
                                                 ConstantSInt::get(SrcTy, -1));
 | 
						|
            else if (I.getOpcode() == Instruction::SetGT &&
 | 
						|
                     CUI->getValue() == (1ULL << (SrcTySize*8-1))-1)
 | 
						|
              // X > 127 => X < 0
 | 
						|
              return BinaryOperator::createSetLT(CastOp,
 | 
						|
                                                 Constant::getNullValue(SrcTy));
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Check to see if we are comparing against the minimum or maximum value...
 | 
						|
    if (CI->isMinValue()) {
 | 
						|
      if (I.getOpcode() == Instruction::SetLT)       // A < MIN -> FALSE
 | 
						|
        return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
      if (I.getOpcode() == Instruction::SetGE)       // A >= MIN -> TRUE
 | 
						|
        return ReplaceInstUsesWith(I, ConstantBool::True);
 | 
						|
      if (I.getOpcode() == Instruction::SetLE)       // A <= MIN -> A == MIN
 | 
						|
        return BinaryOperator::createSetEQ(Op0, Op1);
 | 
						|
      if (I.getOpcode() == Instruction::SetGT)       // A > MIN -> A != MIN
 | 
						|
        return BinaryOperator::createSetNE(Op0, Op1);
 | 
						|
 | 
						|
    } else if (CI->isMaxValue()) {
 | 
						|
      if (I.getOpcode() == Instruction::SetGT)       // A > MAX -> FALSE
 | 
						|
        return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
      if (I.getOpcode() == Instruction::SetLE)       // A <= MAX -> TRUE
 | 
						|
        return ReplaceInstUsesWith(I, ConstantBool::True);
 | 
						|
      if (I.getOpcode() == Instruction::SetGE)       // A >= MAX -> A == MAX
 | 
						|
        return BinaryOperator::createSetEQ(Op0, Op1);
 | 
						|
      if (I.getOpcode() == Instruction::SetLT)       // A < MAX -> A != MAX
 | 
						|
        return BinaryOperator::createSetNE(Op0, Op1);
 | 
						|
 | 
						|
      // Comparing against a value really close to min or max?
 | 
						|
    } else if (isMinValuePlusOne(CI)) {
 | 
						|
      if (I.getOpcode() == Instruction::SetLT)       // A < MIN+1 -> A == MIN
 | 
						|
        return BinaryOperator::createSetEQ(Op0, SubOne(CI));
 | 
						|
      if (I.getOpcode() == Instruction::SetGE)       // A >= MIN-1 -> A != MIN
 | 
						|
        return BinaryOperator::createSetNE(Op0, SubOne(CI));
 | 
						|
 | 
						|
    } else if (isMaxValueMinusOne(CI)) {
 | 
						|
      if (I.getOpcode() == Instruction::SetGT)       // A > MAX-1 -> A == MAX
 | 
						|
        return BinaryOperator::createSetEQ(Op0, AddOne(CI));
 | 
						|
      if (I.getOpcode() == Instruction::SetLE)       // A <= MAX-1 -> A != MAX
 | 
						|
        return BinaryOperator::createSetNE(Op0, AddOne(CI));
 | 
						|
    }
 | 
						|
 | 
						|
    // If we still have a setle or setge instruction, turn it into the
 | 
						|
    // appropriate setlt or setgt instruction.  Since the border cases have
 | 
						|
    // already been handled above, this requires little checking.
 | 
						|
    //
 | 
						|
    if (I.getOpcode() == Instruction::SetLE)
 | 
						|
      return BinaryOperator::createSetLT(Op0, AddOne(CI));
 | 
						|
    if (I.getOpcode() == Instruction::SetGE)
 | 
						|
      return BinaryOperator::createSetGT(Op0, SubOne(CI));
 | 
						|
  }
 | 
						|
 | 
						|
  // Test to see if the operands of the setcc are casted versions of other
 | 
						|
  // values.  If the cast can be stripped off both arguments, we do so now.
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
 | 
						|
    Value *CastOp0 = CI->getOperand(0);
 | 
						|
    if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) &&
 | 
						|
        (isa<Constant>(Op1) || isa<CastInst>(Op1)) &&
 | 
						|
        (I.getOpcode() == Instruction::SetEQ ||
 | 
						|
         I.getOpcode() == Instruction::SetNE)) {
 | 
						|
      // We keep moving the cast from the left operand over to the right
 | 
						|
      // operand, where it can often be eliminated completely.
 | 
						|
      Op0 = CastOp0;
 | 
						|
      
 | 
						|
      // If operand #1 is a cast instruction, see if we can eliminate it as
 | 
						|
      // well.
 | 
						|
      if (CastInst *CI2 = dyn_cast<CastInst>(Op1))
 | 
						|
        if (CI2->getOperand(0)->getType()->isLosslesslyConvertibleTo(
 | 
						|
                                                               Op0->getType()))
 | 
						|
          Op1 = CI2->getOperand(0);
 | 
						|
      
 | 
						|
      // If Op1 is a constant, we can fold the cast into the constant.
 | 
						|
      if (Op1->getType() != Op0->getType())
 | 
						|
        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
 | 
						|
          Op1 = ConstantExpr::getCast(Op1C, Op0->getType());
 | 
						|
        } else {
 | 
						|
          // Otherwise, cast the RHS right before the setcc
 | 
						|
          Op1 = new CastInst(Op1, Op0->getType(), Op1->getName());
 | 
						|
          InsertNewInstBefore(cast<Instruction>(Op1), I);
 | 
						|
        }
 | 
						|
      return BinaryOperator::create(I.getOpcode(), Op0, Op1);
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle the special case of: setcc (cast bool to X), <cst>
 | 
						|
    // This comes up when you have code like
 | 
						|
    //   int X = A < B;
 | 
						|
    //   if (X) ...
 | 
						|
    // For generality, we handle any zero-extension of any operand comparison
 | 
						|
    // with a constant.
 | 
						|
    if (ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
      const Type *SrcTy = CastOp0->getType();
 | 
						|
      const Type *DestTy = Op0->getType();
 | 
						|
      if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
 | 
						|
          (SrcTy->isUnsigned() || SrcTy == Type::BoolTy)) {
 | 
						|
        // Ok, we have an expansion of operand 0 into a new type.  Get the
 | 
						|
        // constant value, masink off bits which are not set in the RHS.  These
 | 
						|
        // could be set if the destination value is signed.
 | 
						|
        uint64_t ConstVal = ConstantRHS->getRawValue();
 | 
						|
        ConstVal &= (1ULL << DestTy->getPrimitiveSize()*8)-1;
 | 
						|
 | 
						|
        // If the constant we are comparing it with has high bits set, which
 | 
						|
        // don't exist in the original value, the values could never be equal,
 | 
						|
        // because the source would be zero extended.
 | 
						|
        unsigned SrcBits =
 | 
						|
          SrcTy == Type::BoolTy ? 1 : SrcTy->getPrimitiveSize()*8;
 | 
						|
        bool HasSignBit = ConstVal & (1ULL << (DestTy->getPrimitiveSize()*8-1));
 | 
						|
        if (ConstVal & ~((1ULL << SrcBits)-1)) {
 | 
						|
          switch (I.getOpcode()) {
 | 
						|
          default: assert(0 && "Unknown comparison type!");
 | 
						|
          case Instruction::SetEQ:
 | 
						|
            return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
          case Instruction::SetNE:
 | 
						|
            return ReplaceInstUsesWith(I, ConstantBool::True);
 | 
						|
          case Instruction::SetLT:
 | 
						|
          case Instruction::SetLE:
 | 
						|
            if (DestTy->isSigned() && HasSignBit)
 | 
						|
              return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
            return ReplaceInstUsesWith(I, ConstantBool::True);
 | 
						|
          case Instruction::SetGT:
 | 
						|
          case Instruction::SetGE:
 | 
						|
            if (DestTy->isSigned() && HasSignBit)
 | 
						|
              return ReplaceInstUsesWith(I, ConstantBool::True);
 | 
						|
            return ReplaceInstUsesWith(I, ConstantBool::False);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Otherwise, we can replace the setcc with a setcc of the smaller
 | 
						|
        // operand value.
 | 
						|
        Op1 = ConstantExpr::getCast(cast<Constant>(Op1), SrcTy);
 | 
						|
        return BinaryOperator::create(I.getOpcode(), CastOp0, Op1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed ? &I : 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
 | 
						|
  assert(I.getOperand(1)->getType() == Type::UByteTy);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
  bool isLeftShift = I.getOpcode() == Instruction::Shl;
 | 
						|
 | 
						|
  // shl X, 0 == X and shr X, 0 == X
 | 
						|
  // shl 0, X == 0 and shr 0, X == 0
 | 
						|
  if (Op1 == Constant::getNullValue(Type::UByteTy) ||
 | 
						|
      Op0 == Constant::getNullValue(Op0->getType()))
 | 
						|
    return ReplaceInstUsesWith(I, Op0);
 | 
						|
 | 
						|
  // shr int -1, X = -1   (for any arithmetic shift rights of ~0)
 | 
						|
  if (!isLeftShift)
 | 
						|
    if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
 | 
						|
      if (CSI->isAllOnesValue())
 | 
						|
        return ReplaceInstUsesWith(I, CSI);
 | 
						|
 | 
						|
  // Try to fold constant and into select arguments.
 | 
						|
  if (isa<Constant>(Op0))
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | 
						|
      if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
 | 
						|
  if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1)) {
 | 
						|
    // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
 | 
						|
    // of a signed value.
 | 
						|
    //
 | 
						|
    unsigned TypeBits = Op0->getType()->getPrimitiveSize()*8;
 | 
						|
    if (CUI->getValue() >= TypeBits) {
 | 
						|
      if (!Op0->getType()->isSigned() || isLeftShift)
 | 
						|
        return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
 | 
						|
      else {
 | 
						|
        I.setOperand(1, ConstantUInt::get(Type::UByteTy, TypeBits-1));
 | 
						|
        return &I;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // ((X*C1) << C2) == (X * (C1 << C2))
 | 
						|
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
 | 
						|
      if (BO->getOpcode() == Instruction::Mul && isLeftShift)
 | 
						|
        if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
 | 
						|
          return BinaryOperator::createMul(BO->getOperand(0),
 | 
						|
                                           ConstantExpr::getShl(BOOp, CUI));
 | 
						|
    
 | 
						|
    // Try to fold constant and into select arguments.
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | 
						|
      if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
 | 
						|
        return R;
 | 
						|
 | 
						|
    // If the operand is an bitwise operator with a constant RHS, and the
 | 
						|
    // shift is the only use, we can pull it out of the shift.
 | 
						|
    if (Op0->hasOneUse())
 | 
						|
      if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0))
 | 
						|
        if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
 | 
						|
          bool isValid = true;     // Valid only for And, Or, Xor
 | 
						|
          bool highBitSet = false; // Transform if high bit of constant set?
 | 
						|
 | 
						|
          switch (Op0BO->getOpcode()) {
 | 
						|
          default: isValid = false; break;   // Do not perform transform!
 | 
						|
          case Instruction::Or:
 | 
						|
          case Instruction::Xor:
 | 
						|
            highBitSet = false;
 | 
						|
            break;
 | 
						|
          case Instruction::And:
 | 
						|
            highBitSet = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          // If this is a signed shift right, and the high bit is modified
 | 
						|
          // by the logical operation, do not perform the transformation.
 | 
						|
          // The highBitSet boolean indicates the value of the high bit of
 | 
						|
          // the constant which would cause it to be modified for this
 | 
						|
          // operation.
 | 
						|
          //
 | 
						|
          if (isValid && !isLeftShift && !I.getType()->isUnsigned()) {
 | 
						|
            uint64_t Val = Op0C->getRawValue();
 | 
						|
            isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
 | 
						|
          }
 | 
						|
 | 
						|
          if (isValid) {
 | 
						|
            Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, CUI);
 | 
						|
 | 
						|
            Instruction *NewShift =
 | 
						|
              new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), CUI,
 | 
						|
                            Op0BO->getName());
 | 
						|
            Op0BO->setName("");
 | 
						|
            InsertNewInstBefore(NewShift, I);
 | 
						|
 | 
						|
            return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
 | 
						|
                                          NewRHS);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
    // If this is a shift of a shift, see if we can fold the two together...
 | 
						|
    if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0))
 | 
						|
      if (ConstantUInt *ShiftAmt1C =
 | 
						|
                                 dyn_cast<ConstantUInt>(Op0SI->getOperand(1))) {
 | 
						|
        unsigned ShiftAmt1 = ShiftAmt1C->getValue();
 | 
						|
        unsigned ShiftAmt2 = CUI->getValue();
 | 
						|
        
 | 
						|
        // Check for (A << c1) << c2   and   (A >> c1) >> c2
 | 
						|
        if (I.getOpcode() == Op0SI->getOpcode()) {
 | 
						|
          unsigned Amt = ShiftAmt1+ShiftAmt2;   // Fold into one big shift...
 | 
						|
          if (Op0->getType()->getPrimitiveSize()*8 < Amt)
 | 
						|
            Amt = Op0->getType()->getPrimitiveSize()*8;
 | 
						|
          return new ShiftInst(I.getOpcode(), Op0SI->getOperand(0),
 | 
						|
                               ConstantUInt::get(Type::UByteTy, Amt));
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Check for (A << c1) >> c2 or visaversa.  If we are dealing with
 | 
						|
        // signed types, we can only support the (A >> c1) << c2 configuration,
 | 
						|
        // because it can not turn an arbitrary bit of A into a sign bit.
 | 
						|
        if (I.getType()->isUnsigned() || isLeftShift) {
 | 
						|
          // Calculate bitmask for what gets shifted off the edge...
 | 
						|
          Constant *C = ConstantIntegral::getAllOnesValue(I.getType());
 | 
						|
          if (isLeftShift)
 | 
						|
            C = ConstantExpr::getShl(C, ShiftAmt1C);
 | 
						|
          else
 | 
						|
            C = ConstantExpr::getShr(C, ShiftAmt1C);
 | 
						|
          
 | 
						|
          Instruction *Mask =
 | 
						|
            BinaryOperator::createAnd(Op0SI->getOperand(0), C,
 | 
						|
                                      Op0SI->getOperand(0)->getName()+".mask");
 | 
						|
          InsertNewInstBefore(Mask, I);
 | 
						|
          
 | 
						|
          // Figure out what flavor of shift we should use...
 | 
						|
          if (ShiftAmt1 == ShiftAmt2)
 | 
						|
            return ReplaceInstUsesWith(I, Mask);  // (A << c) >> c  === A & c2
 | 
						|
          else if (ShiftAmt1 < ShiftAmt2) {
 | 
						|
            return new ShiftInst(I.getOpcode(), Mask,
 | 
						|
                         ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1));
 | 
						|
          } else {
 | 
						|
            return new ShiftInst(Op0SI->getOpcode(), Mask,
 | 
						|
                         ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// isEliminableCastOfCast - Return true if it is valid to eliminate the CI
 | 
						|
// instruction.
 | 
						|
//
 | 
						|
static inline bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy,
 | 
						|
                                          const Type *DstTy) {
 | 
						|
 | 
						|
  // It is legal to eliminate the instruction if casting A->B->A if the sizes
 | 
						|
  // are identical and the bits don't get reinterpreted (for example 
 | 
						|
  // int->float->int would not be allowed)
 | 
						|
  if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Allow free casting and conversion of sizes as long as the sign doesn't
 | 
						|
  // change...
 | 
						|
  if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
 | 
						|
    unsigned SrcSize = SrcTy->getPrimitiveSize();
 | 
						|
    unsigned MidSize = MidTy->getPrimitiveSize();
 | 
						|
    unsigned DstSize = DstTy->getPrimitiveSize();
 | 
						|
 | 
						|
    // Cases where we are monotonically decreasing the size of the type are
 | 
						|
    // always ok, regardless of what sign changes are going on.
 | 
						|
    //
 | 
						|
    if (SrcSize >= MidSize && MidSize >= DstSize)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Cases where the source and destination type are the same, but the middle
 | 
						|
    // type is bigger are noops.
 | 
						|
    //
 | 
						|
    if (SrcSize == DstSize && MidSize > SrcSize)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If we are monotonically growing, things are more complex.
 | 
						|
    //
 | 
						|
    if (SrcSize <= MidSize && MidSize <= DstSize) {
 | 
						|
      // We have eight combinations of signedness to worry about. Here's the
 | 
						|
      // table:
 | 
						|
      static const int SignTable[8] = {
 | 
						|
        // CODE, SrcSigned, MidSigned, DstSigned, Comment
 | 
						|
        1,     //   U          U          U       Always ok
 | 
						|
        1,     //   U          U          S       Always ok
 | 
						|
        3,     //   U          S          U       Ok iff SrcSize != MidSize
 | 
						|
        3,     //   U          S          S       Ok iff SrcSize != MidSize
 | 
						|
        0,     //   S          U          U       Never ok
 | 
						|
        2,     //   S          U          S       Ok iff MidSize == DstSize
 | 
						|
        1,     //   S          S          U       Always ok
 | 
						|
        1,     //   S          S          S       Always ok
 | 
						|
      };
 | 
						|
 | 
						|
      // Choose an action based on the current entry of the signtable that this
 | 
						|
      // cast of cast refers to...
 | 
						|
      unsigned Row = SrcTy->isSigned()*4+MidTy->isSigned()*2+DstTy->isSigned();
 | 
						|
      switch (SignTable[Row]) {
 | 
						|
      case 0: return false;              // Never ok
 | 
						|
      case 1: return true;               // Always ok
 | 
						|
      case 2: return MidSize == DstSize; // Ok iff MidSize == DstSize
 | 
						|
      case 3:                            // Ok iff SrcSize != MidSize
 | 
						|
        return SrcSize != MidSize || SrcTy == Type::BoolTy;
 | 
						|
      default: assert(0 && "Bad entry in sign table!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we cannot succeed.  Specifically we do not want to allow things
 | 
						|
  // like:  short -> ushort -> uint, because this can create wrong results if
 | 
						|
  // the input short is negative!
 | 
						|
  //
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool ValueRequiresCast(const Value *V, const Type *Ty) {
 | 
						|
  if (V->getType() == Ty || isa<Constant>(V)) return false;
 | 
						|
  if (const CastInst *CI = dyn_cast<CastInst>(V))
 | 
						|
    if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
 | 
						|
/// InsertBefore instruction.  This is specialized a bit to avoid inserting
 | 
						|
/// casts that are known to not do anything...
 | 
						|
///
 | 
						|
Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy,
 | 
						|
                                             Instruction *InsertBefore) {
 | 
						|
  if (V->getType() == DestTy) return V;
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return ConstantExpr::getCast(C, DestTy);
 | 
						|
 | 
						|
  CastInst *CI = new CastInst(V, DestTy, V->getName());
 | 
						|
  InsertNewInstBefore(CI, *InsertBefore);
 | 
						|
  return CI;
 | 
						|
}
 | 
						|
 | 
						|
// CastInst simplification
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitCastInst(CastInst &CI) {
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
 | 
						|
  // If the user is casting a value to the same type, eliminate this cast
 | 
						|
  // instruction...
 | 
						|
  if (CI.getType() == Src->getType())
 | 
						|
    return ReplaceInstUsesWith(CI, Src);
 | 
						|
 | 
						|
  // If casting the result of another cast instruction, try to eliminate this
 | 
						|
  // one!
 | 
						|
  //
 | 
						|
  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {
 | 
						|
    if (isEliminableCastOfCast(CSrc->getOperand(0)->getType(),
 | 
						|
                               CSrc->getType(), CI.getType())) {
 | 
						|
      // This instruction now refers directly to the cast's src operand.  This
 | 
						|
      // has a good chance of making CSrc dead.
 | 
						|
      CI.setOperand(0, CSrc->getOperand(0));
 | 
						|
      return &CI;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is an A->B->A cast, and we are dealing with integral types, try
 | 
						|
    // to convert this into a logical 'and' instruction.
 | 
						|
    //
 | 
						|
    if (CSrc->getOperand(0)->getType() == CI.getType() &&
 | 
						|
        CI.getType()->isInteger() && CSrc->getType()->isInteger() &&
 | 
						|
        CI.getType()->isUnsigned() && CSrc->getType()->isUnsigned() &&
 | 
						|
        CSrc->getType()->getPrimitiveSize() < CI.getType()->getPrimitiveSize()){
 | 
						|
      assert(CSrc->getType() != Type::ULongTy &&
 | 
						|
             "Cannot have type bigger than ulong!");
 | 
						|
      uint64_t AndValue = (1ULL << CSrc->getType()->getPrimitiveSize()*8)-1;
 | 
						|
      Constant *AndOp = ConstantUInt::get(CI.getType(), AndValue);
 | 
						|
      return BinaryOperator::createAnd(CSrc->getOperand(0), AndOp);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a cast to bool, turn it into the appropriate setne instruction.
 | 
						|
  if (CI.getType() == Type::BoolTy)
 | 
						|
    return BinaryOperator::createSetNE(CI.getOperand(0),
 | 
						|
                       Constant::getNullValue(CI.getOperand(0)->getType()));
 | 
						|
 | 
						|
  // If casting the result of a getelementptr instruction with no offset, turn
 | 
						|
  // this into a cast of the original pointer!
 | 
						|
  //
 | 
						|
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
 | 
						|
    bool AllZeroOperands = true;
 | 
						|
    for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
 | 
						|
      if (!isa<Constant>(GEP->getOperand(i)) ||
 | 
						|
          !cast<Constant>(GEP->getOperand(i))->isNullValue()) {
 | 
						|
        AllZeroOperands = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (AllZeroOperands) {
 | 
						|
      CI.setOperand(0, GEP->getOperand(0));
 | 
						|
      return &CI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are casting a malloc or alloca to a pointer to a type of the same
 | 
						|
  // size, rewrite the allocation instruction to allocate the "right" type.
 | 
						|
  //
 | 
						|
  if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
 | 
						|
    if (AI->hasOneUse() && !AI->isArrayAllocation())
 | 
						|
      if (const PointerType *PTy = dyn_cast<PointerType>(CI.getType())) {
 | 
						|
        // Get the type really allocated and the type casted to...
 | 
						|
        const Type *AllocElTy = AI->getAllocatedType();
 | 
						|
        unsigned AllocElTySize = TD->getTypeSize(AllocElTy);
 | 
						|
        const Type *CastElTy = PTy->getElementType();
 | 
						|
        unsigned CastElTySize = TD->getTypeSize(CastElTy);
 | 
						|
 | 
						|
        // If the allocation is for an even multiple of the cast type size
 | 
						|
        if (CastElTySize && (AllocElTySize % CastElTySize == 0)) {
 | 
						|
          Value *Amt = ConstantUInt::get(Type::UIntTy, 
 | 
						|
                                         AllocElTySize/CastElTySize);
 | 
						|
          std::string Name = AI->getName(); AI->setName("");
 | 
						|
          AllocationInst *New;
 | 
						|
          if (isa<MallocInst>(AI))
 | 
						|
            New = new MallocInst(CastElTy, Amt, Name);
 | 
						|
          else
 | 
						|
            New = new AllocaInst(CastElTy, Amt, Name);
 | 
						|
          InsertNewInstBefore(New, *AI);
 | 
						|
          return ReplaceInstUsesWith(CI, New);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
  // If the source value is an instruction with only this use, we can attempt to
 | 
						|
  // propagate the cast into the instruction.  Also, only handle integral types
 | 
						|
  // for now.
 | 
						|
  if (Instruction *SrcI = dyn_cast<Instruction>(Src))
 | 
						|
    if (SrcI->hasOneUse() && Src->getType()->isIntegral() &&
 | 
						|
        CI.getType()->isInteger()) {  // Don't mess with casts to bool here
 | 
						|
      const Type *DestTy = CI.getType();
 | 
						|
      unsigned SrcBitSize = getTypeSizeInBits(Src->getType());
 | 
						|
      unsigned DestBitSize = getTypeSizeInBits(DestTy);
 | 
						|
 | 
						|
      Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
 | 
						|
      Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
 | 
						|
 | 
						|
      switch (SrcI->getOpcode()) {
 | 
						|
      case Instruction::Add:
 | 
						|
      case Instruction::Mul:
 | 
						|
      case Instruction::And:
 | 
						|
      case Instruction::Or:
 | 
						|
      case Instruction::Xor:
 | 
						|
        // If we are discarding information, or just changing the sign, rewrite.
 | 
						|
        if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
 | 
						|
          // Don't insert two casts if they cannot be eliminated.  We allow two
 | 
						|
          // casts to be inserted if the sizes are the same.  This could only be
 | 
						|
          // converting signedness, which is a noop.
 | 
						|
          if (DestBitSize == SrcBitSize || !ValueRequiresCast(Op1, DestTy) ||
 | 
						|
              !ValueRequiresCast(Op0, DestTy)) {
 | 
						|
            Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
 | 
						|
            Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI);
 | 
						|
            return BinaryOperator::create(cast<BinaryOperator>(SrcI)
 | 
						|
                             ->getOpcode(), Op0c, Op1c);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Instruction::Shl:
 | 
						|
        // Allow changing the sign of the source operand.  Do not allow changing
 | 
						|
        // the size of the shift, UNLESS the shift amount is a constant.  We
 | 
						|
        // mush not change variable sized shifts to a smaller size, because it
 | 
						|
        // is undefined to shift more bits out than exist in the value.
 | 
						|
        if (DestBitSize == SrcBitSize ||
 | 
						|
            (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
 | 
						|
          Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
 | 
						|
          return new ShiftInst(Instruction::Shl, Op0c, Op1);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// GetSelectFoldableOperands - We want to turn code that looks like this:
 | 
						|
///   %C = or %A, %B
 | 
						|
///   %D = select %cond, %C, %A
 | 
						|
/// into:
 | 
						|
///   %C = select %cond, %B, 0
 | 
						|
///   %D = or %A, %C
 | 
						|
///
 | 
						|
/// Assuming that the specified instruction is an operand to the select, return
 | 
						|
/// a bitmask indicating which operands of this instruction are foldable if they
 | 
						|
/// equal the other incoming value of the select.
 | 
						|
///
 | 
						|
static unsigned GetSelectFoldableOperands(Instruction *I) {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    return 3;              // Can fold through either operand.
 | 
						|
  case Instruction::Sub:   // Can only fold on the amount subtracted.
 | 
						|
  case Instruction::Shl:   // Can only fold on the shift amount.
 | 
						|
  case Instruction::Shr:
 | 
						|
    return 1;           
 | 
						|
  default:
 | 
						|
    return 0;              // Cannot fold
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// GetSelectFoldableConstant - For the same transformation as the previous
 | 
						|
/// function, return the identity constant that goes into the select.
 | 
						|
static Constant *GetSelectFoldableConstant(Instruction *I) {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: assert(0 && "This cannot happen!"); abort();
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    return Constant::getNullValue(I->getType());
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::Shr:
 | 
						|
    return Constant::getNullValue(Type::UByteTy);
 | 
						|
  case Instruction::And:
 | 
						|
    return ConstantInt::getAllOnesValue(I->getType());
 | 
						|
  case Instruction::Mul:
 | 
						|
    return ConstantInt::get(I->getType(), 1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
 | 
						|
  Value *CondVal = SI.getCondition();
 | 
						|
  Value *TrueVal = SI.getTrueValue();
 | 
						|
  Value *FalseVal = SI.getFalseValue();
 | 
						|
 | 
						|
  // select true, X, Y  -> X
 | 
						|
  // select false, X, Y -> Y
 | 
						|
  if (ConstantBool *C = dyn_cast<ConstantBool>(CondVal))
 | 
						|
    if (C == ConstantBool::True)
 | 
						|
      return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
    else {
 | 
						|
      assert(C == ConstantBool::False);
 | 
						|
      return ReplaceInstUsesWith(SI, FalseVal);
 | 
						|
    }
 | 
						|
 | 
						|
  // select C, X, X -> X
 | 
						|
  if (TrueVal == FalseVal)
 | 
						|
    return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
 | 
						|
  if (SI.getType() == Type::BoolTy)
 | 
						|
    if (ConstantBool *C = dyn_cast<ConstantBool>(TrueVal)) {
 | 
						|
      if (C == ConstantBool::True) {
 | 
						|
        // Change: A = select B, true, C --> A = or B, C
 | 
						|
        return BinaryOperator::createOr(CondVal, FalseVal);
 | 
						|
      } else {
 | 
						|
        // Change: A = select B, false, C --> A = and !B, C
 | 
						|
        Value *NotCond =
 | 
						|
          InsertNewInstBefore(BinaryOperator::createNot(CondVal,
 | 
						|
                                             "not."+CondVal->getName()), SI);
 | 
						|
        return BinaryOperator::createAnd(NotCond, FalseVal);
 | 
						|
      }
 | 
						|
    } else if (ConstantBool *C = dyn_cast<ConstantBool>(FalseVal)) {
 | 
						|
      if (C == ConstantBool::False) {
 | 
						|
        // Change: A = select B, C, false --> A = and B, C
 | 
						|
        return BinaryOperator::createAnd(CondVal, TrueVal);
 | 
						|
      } else {
 | 
						|
        // Change: A = select B, C, true --> A = or !B, C
 | 
						|
        Value *NotCond =
 | 
						|
          InsertNewInstBefore(BinaryOperator::createNot(CondVal,
 | 
						|
                                             "not."+CondVal->getName()), SI);
 | 
						|
        return BinaryOperator::createOr(NotCond, TrueVal);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Selecting between two integer constants?
 | 
						|
  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
 | 
						|
    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
 | 
						|
      // select C, 1, 0 -> cast C to int
 | 
						|
      if (FalseValC->isNullValue() && TrueValC->getRawValue() == 1) {
 | 
						|
        return new CastInst(CondVal, SI.getType());
 | 
						|
      } else if (TrueValC->isNullValue() && FalseValC->getRawValue() == 1) {
 | 
						|
        // select C, 0, 1 -> cast !C to int
 | 
						|
        Value *NotCond =
 | 
						|
          InsertNewInstBefore(BinaryOperator::createNot(CondVal,
 | 
						|
                                               "not."+CondVal->getName()), SI);
 | 
						|
        return new CastInst(NotCond, SI.getType());
 | 
						|
      }
 | 
						|
 | 
						|
      // If one of the constants is zero (we know they can't both be) and we
 | 
						|
      // have a setcc instruction with zero, and we have an 'and' with the
 | 
						|
      // non-constant value, eliminate this whole mess.  This corresponds to
 | 
						|
      // cases like this: ((X & 27) ? 27 : 0)
 | 
						|
      if (TrueValC->isNullValue() || FalseValC->isNullValue())
 | 
						|
        if (Instruction *IC = dyn_cast<Instruction>(SI.getCondition()))
 | 
						|
          if ((IC->getOpcode() == Instruction::SetEQ ||
 | 
						|
               IC->getOpcode() == Instruction::SetNE) &&
 | 
						|
              isa<ConstantInt>(IC->getOperand(1)) &&
 | 
						|
              cast<Constant>(IC->getOperand(1))->isNullValue())
 | 
						|
            if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
 | 
						|
              if (ICA->getOpcode() == Instruction::And &&
 | 
						|
                  isa<ConstantInt>(ICA->getOperand(1)) && 
 | 
						|
                  (ICA->getOperand(1) == TrueValC || 
 | 
						|
                   ICA->getOperand(1) == FalseValC) && 
 | 
						|
                  isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
 | 
						|
                // Okay, now we know that everything is set up, we just don't
 | 
						|
                // know whether we have a setne or seteq and whether the true or
 | 
						|
                // false val is the zero.
 | 
						|
                bool ShouldNotVal = !TrueValC->isNullValue();
 | 
						|
                ShouldNotVal ^= IC->getOpcode() == Instruction::SetNE;
 | 
						|
                Value *V = ICA;
 | 
						|
                if (ShouldNotVal)
 | 
						|
                  V = InsertNewInstBefore(BinaryOperator::create(
 | 
						|
                                  Instruction::Xor, V, ICA->getOperand(1)), SI);
 | 
						|
                return ReplaceInstUsesWith(SI, V);
 | 
						|
              }
 | 
						|
    }
 | 
						|
 | 
						|
  // See if we are selecting two values based on a comparison of the two values.
 | 
						|
  if (SetCondInst *SCI = dyn_cast<SetCondInst>(CondVal)) {
 | 
						|
    if (SCI->getOperand(0) == TrueVal && SCI->getOperand(1) == FalseVal) {
 | 
						|
      // Transform (X == Y) ? X : Y  -> Y
 | 
						|
      if (SCI->getOpcode() == Instruction::SetEQ)
 | 
						|
        return ReplaceInstUsesWith(SI, FalseVal);
 | 
						|
      // Transform (X != Y) ? X : Y  -> X
 | 
						|
      if (SCI->getOpcode() == Instruction::SetNE)
 | 
						|
        return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
      // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
 | 
						|
 | 
						|
    } else if (SCI->getOperand(0) == FalseVal && SCI->getOperand(1) == TrueVal){
 | 
						|
      // Transform (X == Y) ? Y : X  -> X
 | 
						|
      if (SCI->getOpcode() == Instruction::SetEQ)
 | 
						|
        return ReplaceInstUsesWith(SI, FalseVal);
 | 
						|
      // Transform (X != Y) ? Y : X  -> Y
 | 
						|
      if (SCI->getOpcode() == Instruction::SetNE)
 | 
						|
        return ReplaceInstUsesWith(SI, TrueVal);
 | 
						|
      // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // See if we can fold the select into one of our operands.
 | 
						|
  if (SI.getType()->isInteger()) {
 | 
						|
    // See the comment above GetSelectFoldableOperands for a description of the
 | 
						|
    // transformation we are doing here.
 | 
						|
    if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
 | 
						|
      if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
 | 
						|
          !isa<Constant>(FalseVal))
 | 
						|
        if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
 | 
						|
          unsigned OpToFold = 0;
 | 
						|
          if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
 | 
						|
            OpToFold = 1;
 | 
						|
          } else  if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
 | 
						|
            OpToFold = 2;
 | 
						|
          }
 | 
						|
 | 
						|
          if (OpToFold) {
 | 
						|
            Constant *C = GetSelectFoldableConstant(TVI);
 | 
						|
            std::string Name = TVI->getName(); TVI->setName("");
 | 
						|
            Instruction *NewSel =
 | 
						|
              new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C,
 | 
						|
                             Name);
 | 
						|
            InsertNewInstBefore(NewSel, SI);
 | 
						|
            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
 | 
						|
              return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
 | 
						|
            else if (ShiftInst *SI = dyn_cast<ShiftInst>(TVI))
 | 
						|
              return new ShiftInst(SI->getOpcode(), FalseVal, NewSel);
 | 
						|
            else {
 | 
						|
              assert(0 && "Unknown instruction!!");
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
    
 | 
						|
    if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
 | 
						|
      if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
 | 
						|
          !isa<Constant>(TrueVal))
 | 
						|
        if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
 | 
						|
          unsigned OpToFold = 0;
 | 
						|
          if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
 | 
						|
            OpToFold = 1;
 | 
						|
          } else  if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
 | 
						|
            OpToFold = 2;
 | 
						|
          }
 | 
						|
 | 
						|
          if (OpToFold) {
 | 
						|
            Constant *C = GetSelectFoldableConstant(FVI);
 | 
						|
            std::string Name = FVI->getName(); FVI->setName("");
 | 
						|
            Instruction *NewSel =
 | 
						|
              new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold),
 | 
						|
                             Name);
 | 
						|
            InsertNewInstBefore(NewSel, SI);
 | 
						|
            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
 | 
						|
              return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
 | 
						|
            else if (ShiftInst *SI = dyn_cast<ShiftInst>(FVI))
 | 
						|
              return new ShiftInst(SI->getOpcode(), TrueVal, NewSel);
 | 
						|
            else {
 | 
						|
              assert(0 && "Unknown instruction!!");
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// CallInst simplification
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitCallInst(CallInst &CI) {
 | 
						|
  // Intrinsics cannot occur in an invoke, so handle them here instead of in
 | 
						|
  // visitCallSite.
 | 
						|
  if (Function *F = CI.getCalledFunction())
 | 
						|
    switch (F->getIntrinsicID()) {
 | 
						|
    case Intrinsic::memmove:
 | 
						|
    case Intrinsic::memcpy:
 | 
						|
    case Intrinsic::memset:
 | 
						|
      // memmove/cpy/set of zero bytes is a noop.
 | 
						|
      if (Constant *NumBytes = dyn_cast<Constant>(CI.getOperand(3))) {
 | 
						|
        if (NumBytes->isNullValue())
 | 
						|
          return EraseInstFromFunction(CI);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  return visitCallSite(&CI);
 | 
						|
}
 | 
						|
 | 
						|
// InvokeInst simplification
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
 | 
						|
  return visitCallSite(&II);
 | 
						|
}
 | 
						|
 | 
						|
// visitCallSite - Improvements for call and invoke instructions.
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitCallSite(CallSite CS) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // If the callee is a constexpr cast of a function, attempt to move the cast
 | 
						|
  // to the arguments of the call/invoke.
 | 
						|
  if (transformConstExprCastCall(CS)) return 0;
 | 
						|
 | 
						|
  Value *Callee = CS.getCalledValue();
 | 
						|
  const PointerType *PTy = cast<PointerType>(Callee->getType());
 | 
						|
  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | 
						|
  if (FTy->isVarArg()) {
 | 
						|
    // See if we can optimize any arguments passed through the varargs area of
 | 
						|
    // the call.
 | 
						|
    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
 | 
						|
           E = CS.arg_end(); I != E; ++I)
 | 
						|
      if (CastInst *CI = dyn_cast<CastInst>(*I)) {
 | 
						|
        // If this cast does not effect the value passed through the varargs
 | 
						|
        // area, we can eliminate the use of the cast.
 | 
						|
        Value *Op = CI->getOperand(0);
 | 
						|
        if (CI->getType()->isLosslesslyConvertibleTo(Op->getType())) {
 | 
						|
          *I = Op;
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Changed ? CS.getInstruction() : 0;
 | 
						|
}
 | 
						|
 | 
						|
// transformConstExprCastCall - If the callee is a constexpr cast of a function,
 | 
						|
// attempt to move the cast to the arguments of the call/invoke.
 | 
						|
//
 | 
						|
bool InstCombiner::transformConstExprCastCall(CallSite CS) {
 | 
						|
  if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
 | 
						|
  ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
 | 
						|
  if (CE->getOpcode() != Instruction::Cast ||
 | 
						|
      !isa<ConstantPointerRef>(CE->getOperand(0)))
 | 
						|
    return false;
 | 
						|
  ConstantPointerRef *CPR = cast<ConstantPointerRef>(CE->getOperand(0));
 | 
						|
  if (!isa<Function>(CPR->getValue())) return false;
 | 
						|
  Function *Callee = cast<Function>(CPR->getValue());
 | 
						|
  Instruction *Caller = CS.getInstruction();
 | 
						|
 | 
						|
  // Okay, this is a cast from a function to a different type.  Unless doing so
 | 
						|
  // would cause a type conversion of one of our arguments, change this call to
 | 
						|
  // be a direct call with arguments casted to the appropriate types.
 | 
						|
  //
 | 
						|
  const FunctionType *FT = Callee->getFunctionType();
 | 
						|
  const Type *OldRetTy = Caller->getType();
 | 
						|
 | 
						|
  // Check to see if we are changing the return type...
 | 
						|
  if (OldRetTy != FT->getReturnType()) {
 | 
						|
    if (Callee->isExternal() &&
 | 
						|
        !OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType()) &&
 | 
						|
        !Caller->use_empty())
 | 
						|
      return false;   // Cannot transform this return value...
 | 
						|
 | 
						|
    // If the callsite is an invoke instruction, and the return value is used by
 | 
						|
    // a PHI node in a successor, we cannot change the return type of the call
 | 
						|
    // because there is no place to put the cast instruction (without breaking
 | 
						|
    // the critical edge).  Bail out in this case.
 | 
						|
    if (!Caller->use_empty())
 | 
						|
      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
 | 
						|
        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
 | 
						|
             UI != E; ++UI)
 | 
						|
          if (PHINode *PN = dyn_cast<PHINode>(*UI))
 | 
						|
            if (PN->getParent() == II->getNormalDest() ||
 | 
						|
                PN->getParent() == II->getUnwindDest())
 | 
						|
              return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
 | 
						|
  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
 | 
						|
                                    
 | 
						|
  CallSite::arg_iterator AI = CS.arg_begin();
 | 
						|
  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
 | 
						|
    const Type *ParamTy = FT->getParamType(i);
 | 
						|
    bool isConvertible = (*AI)->getType()->isLosslesslyConvertibleTo(ParamTy);
 | 
						|
    if (Callee->isExternal() && !isConvertible) return false;    
 | 
						|
  }
 | 
						|
 | 
						|
  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
 | 
						|
      Callee->isExternal())
 | 
						|
    return false;   // Do not delete arguments unless we have a function body...
 | 
						|
 | 
						|
  // Okay, we decided that this is a safe thing to do: go ahead and start
 | 
						|
  // inserting cast instructions as necessary...
 | 
						|
  std::vector<Value*> Args;
 | 
						|
  Args.reserve(NumActualArgs);
 | 
						|
 | 
						|
  AI = CS.arg_begin();
 | 
						|
  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
 | 
						|
    const Type *ParamTy = FT->getParamType(i);
 | 
						|
    if ((*AI)->getType() == ParamTy) {
 | 
						|
      Args.push_back(*AI);
 | 
						|
    } else {
 | 
						|
      Args.push_back(InsertNewInstBefore(new CastInst(*AI, ParamTy, "tmp"),
 | 
						|
                                         *Caller));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the function takes more arguments than the call was taking, add them
 | 
						|
  // now...
 | 
						|
  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
 | 
						|
    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
 | 
						|
 | 
						|
  // If we are removing arguments to the function, emit an obnoxious warning...
 | 
						|
  if (FT->getNumParams() < NumActualArgs)
 | 
						|
    if (!FT->isVarArg()) {
 | 
						|
      std::cerr << "WARNING: While resolving call to function '"
 | 
						|
                << Callee->getName() << "' arguments were dropped!\n";
 | 
						|
    } else {
 | 
						|
      // Add all of the arguments in their promoted form to the arg list...
 | 
						|
      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
 | 
						|
        const Type *PTy = getPromotedType((*AI)->getType());
 | 
						|
        if (PTy != (*AI)->getType()) {
 | 
						|
          // Must promote to pass through va_arg area!
 | 
						|
          Instruction *Cast = new CastInst(*AI, PTy, "tmp");
 | 
						|
          InsertNewInstBefore(Cast, *Caller);
 | 
						|
          Args.push_back(Cast);
 | 
						|
        } else {
 | 
						|
          Args.push_back(*AI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  if (FT->getReturnType() == Type::VoidTy)
 | 
						|
    Caller->setName("");   // Void type should not have a name...
 | 
						|
 | 
						|
  Instruction *NC;
 | 
						|
  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | 
						|
    NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
 | 
						|
                        Args, Caller->getName(), Caller);
 | 
						|
  } else {
 | 
						|
    NC = new CallInst(Callee, Args, Caller->getName(), Caller);
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert a cast of the return type as necessary...
 | 
						|
  Value *NV = NC;
 | 
						|
  if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
 | 
						|
    if (NV->getType() != Type::VoidTy) {
 | 
						|
      NV = NC = new CastInst(NC, Caller->getType(), "tmp");
 | 
						|
 | 
						|
      // If this is an invoke instruction, we should insert it after the first
 | 
						|
      // non-phi, instruction in the normal successor block.
 | 
						|
      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | 
						|
        BasicBlock::iterator I = II->getNormalDest()->begin();
 | 
						|
        while (isa<PHINode>(I)) ++I;
 | 
						|
        InsertNewInstBefore(NC, *I);
 | 
						|
      } else {
 | 
						|
        // Otherwise, it's a call, just insert cast right after the call instr
 | 
						|
        InsertNewInstBefore(NC, *Caller);
 | 
						|
      }
 | 
						|
      AddUsersToWorkList(*Caller);
 | 
						|
    } else {
 | 
						|
      NV = Constant::getNullValue(Caller->getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
 | 
						|
    Caller->replaceAllUsesWith(NV);
 | 
						|
  Caller->getParent()->getInstList().erase(Caller);
 | 
						|
  removeFromWorkList(Caller);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// PHINode simplification
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitPHINode(PHINode &PN) {
 | 
						|
  if (Value *V = hasConstantValue(&PN))
 | 
						|
    return ReplaceInstUsesWith(PN, V);
 | 
						|
 | 
						|
  // If the only user of this instruction is a cast instruction, and all of the
 | 
						|
  // incoming values are constants, change this PHI to merge together the casted
 | 
						|
  // constants.
 | 
						|
  if (PN.hasOneUse())
 | 
						|
    if (CastInst *CI = dyn_cast<CastInst>(PN.use_back()))
 | 
						|
      if (CI->getType() != PN.getType()) {  // noop casts will be folded
 | 
						|
        bool AllConstant = true;
 | 
						|
        for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | 
						|
          if (!isa<Constant>(PN.getIncomingValue(i))) {
 | 
						|
            AllConstant = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        if (AllConstant) {
 | 
						|
          // Make a new PHI with all casted values.
 | 
						|
          PHINode *New = new PHINode(CI->getType(), PN.getName(), &PN);
 | 
						|
          for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
 | 
						|
            Constant *OldArg = cast<Constant>(PN.getIncomingValue(i));
 | 
						|
            New->addIncoming(ConstantExpr::getCast(OldArg, New->getType()),
 | 
						|
                             PN.getIncomingBlock(i));
 | 
						|
          }
 | 
						|
 | 
						|
          // Update the cast instruction.
 | 
						|
          CI->setOperand(0, New);
 | 
						|
          WorkList.push_back(CI);    // revisit the cast instruction to fold.
 | 
						|
          WorkList.push_back(New);   // Make sure to revisit the new Phi
 | 
						|
          return &PN;                // PN is now dead!
 | 
						|
        }
 | 
						|
      }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static Value *InsertSignExtendToPtrTy(Value *V, const Type *DTy,
 | 
						|
                                      Instruction *InsertPoint,
 | 
						|
                                      InstCombiner *IC) {
 | 
						|
  unsigned PS = IC->getTargetData().getPointerSize();
 | 
						|
  const Type *VTy = V->getType();
 | 
						|
  Instruction *Cast;
 | 
						|
  if (!VTy->isSigned() && VTy->getPrimitiveSize() < PS)
 | 
						|
    // We must insert a cast to ensure we sign-extend.
 | 
						|
    V = IC->InsertNewInstBefore(new CastInst(V, VTy->getSignedVersion(),
 | 
						|
                                             V->getName()), *InsertPoint);
 | 
						|
  return IC->InsertNewInstBefore(new CastInst(V, DTy, V->getName()),
 | 
						|
                                 *InsertPoint);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | 
						|
  Value *PtrOp = GEP.getOperand(0);
 | 
						|
  // Is it 'getelementptr %P, long 0'  or 'getelementptr %P'
 | 
						|
  // If so, eliminate the noop.
 | 
						|
  if (GEP.getNumOperands() == 1)
 | 
						|
    return ReplaceInstUsesWith(GEP, PtrOp);
 | 
						|
 | 
						|
  bool HasZeroPointerIndex = false;
 | 
						|
  if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
 | 
						|
    HasZeroPointerIndex = C->isNullValue();
 | 
						|
 | 
						|
  if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
 | 
						|
    return ReplaceInstUsesWith(GEP, PtrOp);
 | 
						|
 | 
						|
  // Eliminate unneeded casts for indices.
 | 
						|
  bool MadeChange = false;
 | 
						|
  gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
  for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI)
 | 
						|
    if (isa<SequentialType>(*GTI)) {
 | 
						|
      if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
 | 
						|
        Value *Src = CI->getOperand(0);
 | 
						|
        const Type *SrcTy = Src->getType();
 | 
						|
        const Type *DestTy = CI->getType();
 | 
						|
        if (Src->getType()->isInteger()) {
 | 
						|
          if (SrcTy->getPrimitiveSize() == DestTy->getPrimitiveSize()) {
 | 
						|
            // We can always eliminate a cast from ulong or long to the other.
 | 
						|
            // We can always eliminate a cast from uint to int or the other on
 | 
						|
            // 32-bit pointer platforms.
 | 
						|
            if (DestTy->getPrimitiveSize() >= TD->getPointerSize()) {
 | 
						|
              MadeChange = true;
 | 
						|
              GEP.setOperand(i, Src);
 | 
						|
            }
 | 
						|
          } else if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
 | 
						|
                     SrcTy->getPrimitiveSize() == 4) {
 | 
						|
            // We can always eliminate a cast from int to [u]long.  We can
 | 
						|
            // eliminate a cast from uint to [u]long iff the target is a 32-bit
 | 
						|
            // pointer target.
 | 
						|
            if (SrcTy->isSigned() || 
 | 
						|
                SrcTy->getPrimitiveSize() >= TD->getPointerSize()) {
 | 
						|
              MadeChange = true;
 | 
						|
              GEP.setOperand(i, Src);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // If we are using a wider index than needed for this platform, shrink it
 | 
						|
      // to what we need.  If the incoming value needs a cast instruction,
 | 
						|
      // insert it.  This explicit cast can make subsequent optimizations more
 | 
						|
      // obvious.
 | 
						|
      Value *Op = GEP.getOperand(i);
 | 
						|
      if (Op->getType()->getPrimitiveSize() > TD->getPointerSize())
 | 
						|
        if (Constant *C = dyn_cast<Constant>(Op)) {
 | 
						|
          GEP.setOperand(i, ConstantExpr::getCast(C, TD->getIntPtrType()));
 | 
						|
          MadeChange = true;
 | 
						|
        } else {
 | 
						|
          Op = InsertNewInstBefore(new CastInst(Op, TD->getIntPtrType(),
 | 
						|
                                                Op->getName()), GEP);
 | 
						|
          GEP.setOperand(i, Op);
 | 
						|
          MadeChange = true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  if (MadeChange) return &GEP;
 | 
						|
 | 
						|
  // Combine Indices - If the source pointer to this getelementptr instruction
 | 
						|
  // is a getelementptr instruction, combine the indices of the two
 | 
						|
  // getelementptr instructions into a single instruction.
 | 
						|
  //
 | 
						|
  std::vector<Value*> SrcGEPOperands;
 | 
						|
  if (GetElementPtrInst *Src = dyn_cast<GetElementPtrInst>(PtrOp)) {
 | 
						|
    SrcGEPOperands.assign(Src->op_begin(), Src->op_end());
 | 
						|
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PtrOp)) {
 | 
						|
    if (CE->getOpcode() == Instruction::GetElementPtr)
 | 
						|
      SrcGEPOperands.assign(CE->op_begin(), CE->op_end());
 | 
						|
  }
 | 
						|
 | 
						|
  if (!SrcGEPOperands.empty()) {
 | 
						|
    // Note that if our source is a gep chain itself that we wait for that
 | 
						|
    // chain to be resolved before we perform this transformation.  This
 | 
						|
    // avoids us creating a TON of code in some cases.
 | 
						|
    //
 | 
						|
    if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
 | 
						|
        cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
 | 
						|
      return 0;   // Wait until our source is folded to completion.
 | 
						|
 | 
						|
    std::vector<Value *> Indices;
 | 
						|
 | 
						|
    // Find out whether the last index in the source GEP is a sequential idx.
 | 
						|
    bool EndsWithSequential = false;
 | 
						|
    for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
 | 
						|
           E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
 | 
						|
      EndsWithSequential = !isa<StructType>(*I);
 | 
						|
  
 | 
						|
    // Can we combine the two pointer arithmetics offsets?
 | 
						|
    if (EndsWithSequential) {
 | 
						|
      // Replace: gep (gep %P, long B), long A, ...
 | 
						|
      // With:    T = long A+B; gep %P, T, ...
 | 
						|
      //
 | 
						|
      Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
 | 
						|
      if (SO1 == Constant::getNullValue(SO1->getType())) {
 | 
						|
        Sum = GO1;
 | 
						|
      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
 | 
						|
        Sum = SO1;
 | 
						|
      } else {
 | 
						|
        // If they aren't the same type, convert both to an integer of the
 | 
						|
        // target's pointer size.
 | 
						|
        if (SO1->getType() != GO1->getType()) {
 | 
						|
          if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
 | 
						|
            SO1 = ConstantExpr::getCast(SO1C, GO1->getType());
 | 
						|
          } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
 | 
						|
            GO1 = ConstantExpr::getCast(GO1C, SO1->getType());
 | 
						|
          } else {
 | 
						|
            unsigned PS = TD->getPointerSize();
 | 
						|
            Instruction *Cast;
 | 
						|
            if (SO1->getType()->getPrimitiveSize() == PS) {
 | 
						|
              // Convert GO1 to SO1's type.
 | 
						|
              GO1 = InsertSignExtendToPtrTy(GO1, SO1->getType(), &GEP, this);
 | 
						|
 | 
						|
            } else if (GO1->getType()->getPrimitiveSize() == PS) {
 | 
						|
              // Convert SO1 to GO1's type.
 | 
						|
              SO1 = InsertSignExtendToPtrTy(SO1, GO1->getType(), &GEP, this);
 | 
						|
            } else {
 | 
						|
              const Type *PT = TD->getIntPtrType();
 | 
						|
              SO1 = InsertSignExtendToPtrTy(SO1, PT, &GEP, this);
 | 
						|
              GO1 = InsertSignExtendToPtrTy(GO1, PT, &GEP, this);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (isa<Constant>(SO1) && isa<Constant>(GO1))
 | 
						|
          Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
 | 
						|
        else {
 | 
						|
          Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
 | 
						|
          InsertNewInstBefore(cast<Instruction>(Sum), GEP);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Recycle the GEP we already have if possible.
 | 
						|
      if (SrcGEPOperands.size() == 2) {
 | 
						|
        GEP.setOperand(0, SrcGEPOperands[0]);
 | 
						|
        GEP.setOperand(1, Sum);
 | 
						|
        return &GEP;
 | 
						|
      } else {
 | 
						|
        Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
 | 
						|
                       SrcGEPOperands.end()-1);
 | 
						|
        Indices.push_back(Sum);
 | 
						|
        Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
 | 
						|
      }
 | 
						|
    } else if (isa<Constant>(*GEP.idx_begin()) && 
 | 
						|
               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
 | 
						|
               SrcGEPOperands.size() != 1) { 
 | 
						|
      // Otherwise we can do the fold if the first index of the GEP is a zero
 | 
						|
      Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
 | 
						|
                     SrcGEPOperands.end());
 | 
						|
      Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Indices.empty())
 | 
						|
      return new GetElementPtrInst(SrcGEPOperands[0], Indices, GEP.getName());
 | 
						|
 | 
						|
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
 | 
						|
    // GEP of global variable.  If all of the indices for this GEP are
 | 
						|
    // constants, we can promote this to a constexpr instead of an instruction.
 | 
						|
 | 
						|
    // Scan for nonconstants...
 | 
						|
    std::vector<Constant*> Indices;
 | 
						|
    User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
 | 
						|
    for (; I != E && isa<Constant>(*I); ++I)
 | 
						|
      Indices.push_back(cast<Constant>(*I));
 | 
						|
 | 
						|
    if (I == E) {  // If they are all constants...
 | 
						|
      Constant *CE =
 | 
						|
        ConstantExpr::getGetElementPtr(ConstantPointerRef::get(GV), Indices);
 | 
						|
 | 
						|
      // Replace all uses of the GEP with the new constexpr...
 | 
						|
      return ReplaceInstUsesWith(GEP, CE);
 | 
						|
    }
 | 
						|
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PtrOp)) {
 | 
						|
    if (CE->getOpcode() == Instruction::Cast) {
 | 
						|
      if (HasZeroPointerIndex) {
 | 
						|
        // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
 | 
						|
        // into     : GEP [10 x ubyte]* X, long 0, ...
 | 
						|
        //
 | 
						|
        // This occurs when the program declares an array extern like "int X[];"
 | 
						|
        //
 | 
						|
        Constant *X = CE->getOperand(0);
 | 
						|
        const PointerType *CPTy = cast<PointerType>(CE->getType());
 | 
						|
        if (const PointerType *XTy = dyn_cast<PointerType>(X->getType()))
 | 
						|
          if (const ArrayType *XATy =
 | 
						|
              dyn_cast<ArrayType>(XTy->getElementType()))
 | 
						|
            if (const ArrayType *CATy =
 | 
						|
                dyn_cast<ArrayType>(CPTy->getElementType()))
 | 
						|
              if (CATy->getElementType() == XATy->getElementType()) {
 | 
						|
                // At this point, we know that the cast source type is a pointer
 | 
						|
                // to an array of the same type as the destination pointer
 | 
						|
                // array.  Because the array type is never stepped over (there
 | 
						|
                // is a leading zero) we can fold the cast into this GEP.
 | 
						|
                GEP.setOperand(0, X);
 | 
						|
                return &GEP;
 | 
						|
              }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
 | 
						|
  // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
 | 
						|
  if (AI.isArrayAllocation())    // Check C != 1
 | 
						|
    if (const ConstantUInt *C = dyn_cast<ConstantUInt>(AI.getArraySize())) {
 | 
						|
      const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue());
 | 
						|
      AllocationInst *New = 0;
 | 
						|
 | 
						|
      // Create and insert the replacement instruction...
 | 
						|
      if (isa<MallocInst>(AI))
 | 
						|
        New = new MallocInst(NewTy, 0, AI.getName());
 | 
						|
      else {
 | 
						|
        assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
 | 
						|
        New = new AllocaInst(NewTy, 0, AI.getName());
 | 
						|
      }
 | 
						|
 | 
						|
      InsertNewInstBefore(New, AI);
 | 
						|
      
 | 
						|
      // Scan to the end of the allocation instructions, to skip over a block of
 | 
						|
      // allocas if possible...
 | 
						|
      //
 | 
						|
      BasicBlock::iterator It = New;
 | 
						|
      while (isa<AllocationInst>(*It)) ++It;
 | 
						|
 | 
						|
      // Now that I is pointing to the first non-allocation-inst in the block,
 | 
						|
      // insert our getelementptr instruction...
 | 
						|
      //
 | 
						|
      std::vector<Value*> Idx(2, Constant::getNullValue(Type::IntTy));
 | 
						|
      Value *V = new GetElementPtrInst(New, Idx, New->getName()+".sub", It);
 | 
						|
 | 
						|
      // Now make everything use the getelementptr instead of the original
 | 
						|
      // allocation.
 | 
						|
      return ReplaceInstUsesWith(AI, V);
 | 
						|
    }
 | 
						|
 | 
						|
  // If alloca'ing a zero byte object, replace the alloca with a null pointer.
 | 
						|
  // Note that we only do this for alloca's, because malloc should allocate and
 | 
						|
  // return a unique pointer, even for a zero byte allocation.
 | 
						|
  if (isa<AllocaInst>(AI) && TD->getTypeSize(AI.getAllocatedType()) == 0)
 | 
						|
    return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
 | 
						|
  Value *Op = FI.getOperand(0);
 | 
						|
 | 
						|
  // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(Op))
 | 
						|
    if (isa<PointerType>(CI->getOperand(0)->getType())) {
 | 
						|
      FI.setOperand(0, CI->getOperand(0));
 | 
						|
      return &FI;
 | 
						|
    }
 | 
						|
 | 
						|
  // If we have 'free null' delete the instruction.  This can happen in stl code
 | 
						|
  // when lots of inlining happens.
 | 
						|
  if (isa<ConstantPointerNull>(Op))
 | 
						|
    return EraseInstFromFunction(FI);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// GetGEPGlobalInitializer - Given a constant, and a getelementptr
 | 
						|
/// constantexpr, return the constant value being addressed by the constant
 | 
						|
/// expression, or null if something is funny.
 | 
						|
///
 | 
						|
static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) {
 | 
						|
  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
 | 
						|
    return 0;  // Do not allow stepping over the value!
 | 
						|
 | 
						|
  // Loop over all of the operands, tracking down which value we are
 | 
						|
  // addressing...
 | 
						|
  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
 | 
						|
  for (++I; I != E; ++I)
 | 
						|
    if (const StructType *STy = dyn_cast<StructType>(*I)) {
 | 
						|
      ConstantUInt *CU = cast<ConstantUInt>(I.getOperand());
 | 
						|
      assert(CU->getValue() < STy->getNumElements() &&
 | 
						|
             "Struct index out of range!");
 | 
						|
      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
 | 
						|
        C = cast<Constant>(CS->getValues()[CU->getValue()]);
 | 
						|
      } else if (isa<ConstantAggregateZero>(C)) {
 | 
						|
	C = Constant::getNullValue(STy->getElementType(CU->getValue()));
 | 
						|
      } else {
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
 | 
						|
      const ArrayType *ATy = cast<ArrayType>(*I);
 | 
						|
      if ((uint64_t)CI->getRawValue() >= ATy->getNumElements()) return 0;
 | 
						|
      if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
 | 
						|
        C = cast<Constant>(CA->getValues()[CI->getRawValue()]);
 | 
						|
      else if (isa<ConstantAggregateZero>(C))
 | 
						|
        C = Constant::getNullValue(ATy->getElementType());
 | 
						|
      else
 | 
						|
        return 0;
 | 
						|
    } else {
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
 | 
						|
  Value *Op = LI.getOperand(0);
 | 
						|
  if (LI.isVolatile()) return 0;
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(Op))
 | 
						|
    if (C->isNullValue())  // load null -> 0
 | 
						|
      return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
 | 
						|
    else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C))
 | 
						|
      Op = CPR->getValue();
 | 
						|
 | 
						|
  // Instcombine load (constant global) into the value loaded...
 | 
						|
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
 | 
						|
    if (GV->isConstant() && !GV->isExternal())
 | 
						|
      return ReplaceInstUsesWith(LI, GV->getInitializer());
 | 
						|
 | 
						|
  // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded...
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
 | 
						|
    if (CE->getOpcode() == Instruction::GetElementPtr)
 | 
						|
      if (ConstantPointerRef *G=dyn_cast<ConstantPointerRef>(CE->getOperand(0)))
 | 
						|
        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getValue()))
 | 
						|
          if (GV->isConstant() && !GV->isExternal())
 | 
						|
            if (Constant *V = GetGEPGlobalInitializer(GV->getInitializer(), CE))
 | 
						|
              return ReplaceInstUsesWith(LI, V);
 | 
						|
 | 
						|
  // load (cast X) --> cast (load X) iff safe
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(Op)) {
 | 
						|
    const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
 | 
						|
    if (const PointerType *SrcTy =
 | 
						|
        dyn_cast<PointerType>(CI->getOperand(0)->getType())) {
 | 
						|
      const Type *SrcPTy = SrcTy->getElementType();
 | 
						|
      if (SrcPTy->isSized() && DestPTy->isSized() &&
 | 
						|
          TD->getTypeSize(SrcPTy) == TD->getTypeSize(DestPTy) &&
 | 
						|
          (SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
 | 
						|
          (DestPTy->isInteger() || isa<PointerType>(DestPTy))) {
 | 
						|
        // Okay, we are casting from one integer or pointer type to another of
 | 
						|
        // the same size.  Instead of casting the pointer before the load, cast
 | 
						|
        // the result of the loaded value.
 | 
						|
        Value *NewLoad = InsertNewInstBefore(new LoadInst(CI->getOperand(0),
 | 
						|
                                                          CI->getName()), LI);
 | 
						|
        // Now cast the result of the load.
 | 
						|
        return new CastInst(NewLoad, LI.getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
 | 
						|
  // Change br (not X), label True, label False to: br X, label False, True
 | 
						|
  if (BI.isConditional() && !isa<Constant>(BI.getCondition())) {
 | 
						|
    if (Value *V = dyn_castNotVal(BI.getCondition())) {
 | 
						|
      BasicBlock *TrueDest = BI.getSuccessor(0);
 | 
						|
      BasicBlock *FalseDest = BI.getSuccessor(1);
 | 
						|
      // Swap Destinations and condition...
 | 
						|
      BI.setCondition(V);
 | 
						|
      BI.setSuccessor(0, FalseDest);
 | 
						|
      BI.setSuccessor(1, TrueDest);
 | 
						|
      return &BI;
 | 
						|
    } else if (SetCondInst *I = dyn_cast<SetCondInst>(BI.getCondition())) {
 | 
						|
      // Cannonicalize setne -> seteq
 | 
						|
      if ((I->getOpcode() == Instruction::SetNE ||
 | 
						|
           I->getOpcode() == Instruction::SetLE ||
 | 
						|
           I->getOpcode() == Instruction::SetGE) && I->hasOneUse()) {
 | 
						|
        std::string Name = I->getName(); I->setName("");
 | 
						|
        Instruction::BinaryOps NewOpcode =
 | 
						|
          SetCondInst::getInverseCondition(I->getOpcode());
 | 
						|
        Value *NewSCC =  BinaryOperator::create(NewOpcode, I->getOperand(0),
 | 
						|
                                                I->getOperand(1), Name, I);
 | 
						|
        BasicBlock *TrueDest = BI.getSuccessor(0);
 | 
						|
        BasicBlock *FalseDest = BI.getSuccessor(1);
 | 
						|
        // Swap Destinations and condition...
 | 
						|
        BI.setCondition(NewSCC);
 | 
						|
        BI.setSuccessor(0, FalseDest);
 | 
						|
        BI.setSuccessor(1, TrueDest);
 | 
						|
        removeFromWorkList(I);
 | 
						|
        I->getParent()->getInstList().erase(I);
 | 
						|
        WorkList.push_back(cast<Instruction>(NewSCC));
 | 
						|
        return &BI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void InstCombiner::removeFromWorkList(Instruction *I) {
 | 
						|
  WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
 | 
						|
                 WorkList.end());
 | 
						|
}
 | 
						|
 | 
						|
bool InstCombiner::runOnFunction(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  TD = &getAnalysis<TargetData>();
 | 
						|
 | 
						|
  for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)
 | 
						|
    WorkList.push_back(&*i);
 | 
						|
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    Instruction *I = WorkList.back();  // Get an instruction from the worklist
 | 
						|
    WorkList.pop_back();
 | 
						|
 | 
						|
    // Check to see if we can DCE or ConstantPropagate the instruction...
 | 
						|
    // Check to see if we can DIE the instruction...
 | 
						|
    if (isInstructionTriviallyDead(I)) {
 | 
						|
      // Add operands to the worklist...
 | 
						|
      if (I->getNumOperands() < 4)
 | 
						|
        AddUsesToWorkList(*I);
 | 
						|
      ++NumDeadInst;
 | 
						|
 | 
						|
      I->getParent()->getInstList().erase(I);
 | 
						|
      removeFromWorkList(I);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Instruction isn't dead, see if we can constant propagate it...
 | 
						|
    if (Constant *C = ConstantFoldInstruction(I)) {
 | 
						|
      // Add operands to the worklist...
 | 
						|
      AddUsesToWorkList(*I);
 | 
						|
      ReplaceInstUsesWith(*I, C);
 | 
						|
 | 
						|
      ++NumConstProp;
 | 
						|
      I->getParent()->getInstList().erase(I);
 | 
						|
      removeFromWorkList(I);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check to see if any of the operands of this instruction are a
 | 
						|
    // ConstantPointerRef.  Since they sneak in all over the place and inhibit
 | 
						|
    // optimization, we want to strip them out unconditionally!
 | 
						|
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
      if (ConstantPointerRef *CPR =
 | 
						|
          dyn_cast<ConstantPointerRef>(I->getOperand(i))) {
 | 
						|
        I->setOperand(i, CPR->getValue());
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
 | 
						|
    // Now that we have an instruction, try combining it to simplify it...
 | 
						|
    if (Instruction *Result = visit(*I)) {
 | 
						|
      ++NumCombined;
 | 
						|
      // Should we replace the old instruction with a new one?
 | 
						|
      if (Result != I) {
 | 
						|
        DEBUG(std::cerr << "IC: Old = " << *I
 | 
						|
                        << "    New = " << *Result);
 | 
						|
 | 
						|
        // Everything uses the new instruction now.
 | 
						|
        I->replaceAllUsesWith(Result);
 | 
						|
 | 
						|
        // Push the new instruction and any users onto the worklist.
 | 
						|
        WorkList.push_back(Result);
 | 
						|
        AddUsersToWorkList(*Result);
 | 
						|
 | 
						|
        // Move the name to the new instruction first...
 | 
						|
        std::string OldName = I->getName(); I->setName("");
 | 
						|
        Result->setName(OldName);
 | 
						|
 | 
						|
        // Insert the new instruction into the basic block...
 | 
						|
        BasicBlock *InstParent = I->getParent();
 | 
						|
        InstParent->getInstList().insert(I, Result);
 | 
						|
 | 
						|
        // Make sure that we reprocess all operands now that we reduced their
 | 
						|
        // use counts.
 | 
						|
        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
          if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
 | 
						|
            WorkList.push_back(OpI);
 | 
						|
 | 
						|
        // Instructions can end up on the worklist more than once.  Make sure
 | 
						|
        // we do not process an instruction that has been deleted.
 | 
						|
        removeFromWorkList(I);
 | 
						|
 | 
						|
        // Erase the old instruction.
 | 
						|
        InstParent->getInstList().erase(I);
 | 
						|
      } else {
 | 
						|
        DEBUG(std::cerr << "IC: MOD = " << *I);
 | 
						|
 | 
						|
        // If the instruction was modified, it's possible that it is now dead.
 | 
						|
        // if so, remove it.
 | 
						|
        if (isInstructionTriviallyDead(I)) {
 | 
						|
          // Make sure we process all operands now that we are reducing their
 | 
						|
          // use counts.
 | 
						|
          for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
            if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
 | 
						|
              WorkList.push_back(OpI);
 | 
						|
          
 | 
						|
          // Instructions may end up in the worklist more than once.  Erase all
 | 
						|
          // occurrances of this instruction.
 | 
						|
          removeFromWorkList(I);
 | 
						|
          I->getParent()->getInstList().erase(I);
 | 
						|
        } else {
 | 
						|
          WorkList.push_back(Result);
 | 
						|
          AddUsersToWorkList(*Result);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
Pass *llvm::createInstructionCombiningPass() {
 | 
						|
  return new InstCombiner();
 | 
						|
}
 | 
						|
 |