mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10725 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			297 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			297 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass reassociates commutative expressions in an order that is designed
 | 
						|
// to promote better constant propagation, GCSE, LICM, PRE...
 | 
						|
//
 | 
						|
// For example: 4 + (x + 5) -> x + (4 + 5)
 | 
						|
//
 | 
						|
// Note that this pass works best if left shifts have been promoted to explicit
 | 
						|
// multiplies before this pass executes.
 | 
						|
//
 | 
						|
// In the implementation of this algorithm, constants are assigned rank = 0,
 | 
						|
// function arguments are rank = 1, and other values are assigned ranks
 | 
						|
// corresponding to the reverse post order traversal of current function
 | 
						|
// (starting at 2), which effectively gives values in deep loops higher rank
 | 
						|
// than values not in loops.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/iOperators.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Constant.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "Support/Debug.h"
 | 
						|
#include "Support/PostOrderIterator.h"
 | 
						|
#include "Support/Statistic.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> NumLinear ("reassociate","Number of insts linearized");
 | 
						|
  Statistic<> NumChanged("reassociate","Number of insts reassociated");
 | 
						|
  Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
 | 
						|
 | 
						|
  class Reassociate : public FunctionPass {
 | 
						|
    std::map<BasicBlock*, unsigned> RankMap;
 | 
						|
    std::map<Value*, unsigned> ValueRankMap;
 | 
						|
  public:
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    void BuildRankMap(Function &F);
 | 
						|
    unsigned getRank(Value *V);
 | 
						|
    bool ReassociateExpr(BinaryOperator *I);
 | 
						|
    bool ReassociateBB(BasicBlock *BB);
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
 | 
						|
}
 | 
						|
 | 
						|
// Public interface to the Reassociate pass
 | 
						|
FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
 | 
						|
 | 
						|
void Reassociate::BuildRankMap(Function &F) {
 | 
						|
  unsigned i = 2;
 | 
						|
 | 
						|
  // Assign distinct ranks to function arguments
 | 
						|
  for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I)
 | 
						|
    ValueRankMap[I] = ++i;
 | 
						|
 | 
						|
  ReversePostOrderTraversal<Function*> RPOT(&F);
 | 
						|
  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
 | 
						|
         E = RPOT.end(); I != E; ++I)
 | 
						|
    RankMap[*I] = ++i << 16;
 | 
						|
}
 | 
						|
 | 
						|
unsigned Reassociate::getRank(Value *V) {
 | 
						|
  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
 | 
						|
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
    // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
 | 
						|
    // we can reassociate expressions for code motion!  Since we do not recurse
 | 
						|
    // for PHI nodes, we cannot have infinite recursion here, because there
 | 
						|
    // cannot be loops in the value graph that do not go through PHI nodes.
 | 
						|
    //
 | 
						|
    if (I->getOpcode() == Instruction::PHI ||
 | 
						|
        I->getOpcode() == Instruction::Alloca ||
 | 
						|
        I->getOpcode() == Instruction::Malloc || isa<TerminatorInst>(I) ||
 | 
						|
        I->mayWriteToMemory())  // Cannot move inst if it writes to memory!
 | 
						|
      return RankMap[I->getParent()];
 | 
						|
 | 
						|
    unsigned &CachedRank = ValueRankMap[I];
 | 
						|
    if (CachedRank) return CachedRank;    // Rank already known?
 | 
						|
 | 
						|
    // If not, compute it!
 | 
						|
    unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
 | 
						|
    for (unsigned i = 0, e = I->getNumOperands();
 | 
						|
         i != e && Rank != MaxRank; ++i)
 | 
						|
      Rank = std::max(Rank, getRank(I->getOperand(i)));
 | 
						|
 | 
						|
    DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
 | 
						|
                    << Rank+1 << "\n");
 | 
						|
 | 
						|
    return CachedRank = Rank+1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise it's a global or constant, rank 0.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool Reassociate::ReassociateExpr(BinaryOperator *I) {
 | 
						|
  Value *LHS = I->getOperand(0);
 | 
						|
  Value *RHS = I->getOperand(1);
 | 
						|
  unsigned LHSRank = getRank(LHS);
 | 
						|
  unsigned RHSRank = getRank(RHS);
 | 
						|
  
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Make sure the LHS of the operand always has the greater rank...
 | 
						|
  if (LHSRank < RHSRank) {
 | 
						|
    bool Success = !I->swapOperands();
 | 
						|
    assert(Success && "swapOperands failed");
 | 
						|
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    std::swap(LHSRank, RHSRank);
 | 
						|
    Changed = true;
 | 
						|
    ++NumSwapped;
 | 
						|
    DEBUG(std::cerr << "Transposed: " << I
 | 
						|
          /* << " Result BB: " << I->getParent()*/);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the LHS is the same operator as the current one is, and if we are the
 | 
						|
  // only expression using it...
 | 
						|
  //
 | 
						|
  if (BinaryOperator *LHSI = dyn_cast<BinaryOperator>(LHS))
 | 
						|
    if (LHSI->getOpcode() == I->getOpcode() && LHSI->hasOneUse()) {
 | 
						|
      // If the rank of our current RHS is less than the rank of the LHS's LHS,
 | 
						|
      // then we reassociate the two instructions...
 | 
						|
 | 
						|
      unsigned TakeOp = 0;
 | 
						|
      if (BinaryOperator *IOp = dyn_cast<BinaryOperator>(LHSI->getOperand(0)))
 | 
						|
        if (IOp->getOpcode() == LHSI->getOpcode())
 | 
						|
          TakeOp = 1;   // Hoist out non-tree portion
 | 
						|
 | 
						|
      if (RHSRank < getRank(LHSI->getOperand(TakeOp))) {
 | 
						|
        // Convert ((a + 12) + 10) into (a + (12 + 10))
 | 
						|
        I->setOperand(0, LHSI->getOperand(TakeOp));
 | 
						|
        LHSI->setOperand(TakeOp, RHS);
 | 
						|
        I->setOperand(1, LHSI);
 | 
						|
 | 
						|
        // Move the LHS expression forward, to ensure that it is dominated by
 | 
						|
        // its operands.
 | 
						|
        LHSI->getParent()->getInstList().remove(LHSI);
 | 
						|
        I->getParent()->getInstList().insert(I, LHSI);
 | 
						|
 | 
						|
        ++NumChanged;
 | 
						|
        DEBUG(std::cerr << "Reassociated: " << I/* << " Result BB: "
 | 
						|
                                                   << I->getParent()*/);
 | 
						|
 | 
						|
        // Since we modified the RHS instruction, make sure that we recheck it.
 | 
						|
        ReassociateExpr(LHSI);
 | 
						|
        ReassociateExpr(I);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// NegateValue - Insert instructions before the instruction pointed to by BI,
 | 
						|
// that computes the negative version of the value specified.  The negative
 | 
						|
// version of the value is returned, and BI is left pointing at the instruction
 | 
						|
// that should be processed next by the reassociation pass.
 | 
						|
//
 | 
						|
static Value *NegateValue(Value *V, BasicBlock::iterator &BI) {
 | 
						|
  // We are trying to expose opportunity for reassociation.  One of the things
 | 
						|
  // that we want to do to achieve this is to push a negation as deep into an
 | 
						|
  // expression chain as possible, to expose the add instructions.  In practice,
 | 
						|
  // this means that we turn this:
 | 
						|
  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
 | 
						|
  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
 | 
						|
  // the constants.  We assume that instcombine will clean up the mess later if
 | 
						|
  // we introduce tons of unnecessary negation instructions...
 | 
						|
  //
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
 | 
						|
      Value *RHS = NegateValue(I->getOperand(1), BI);
 | 
						|
      Value *LHS = NegateValue(I->getOperand(0), BI);
 | 
						|
 | 
						|
      // We must actually insert a new add instruction here, because the neg
 | 
						|
      // instructions do not dominate the old add instruction in general.  By
 | 
						|
      // adding it now, we are assured that the neg instructions we just
 | 
						|
      // inserted dominate the instruction we are about to insert after them.
 | 
						|
      //
 | 
						|
      return BinaryOperator::create(Instruction::Add, LHS, RHS,
 | 
						|
                                    I->getName()+".neg",
 | 
						|
                                    cast<Instruction>(RHS)->getNext());
 | 
						|
    }
 | 
						|
 | 
						|
  // Insert a 'neg' instruction that subtracts the value from zero to get the
 | 
						|
  // negation.
 | 
						|
  //
 | 
						|
  return BI = BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool Reassociate::ReassociateBB(BasicBlock *BB) {
 | 
						|
  bool Changed = false;
 | 
						|
  for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
 | 
						|
 | 
						|
    DEBUG(std::cerr << "Processing: " << *BI);
 | 
						|
    if (BI->getOpcode() == Instruction::Sub && !BinaryOperator::isNeg(BI)) {
 | 
						|
      // Convert a subtract into an add and a neg instruction... so that sub
 | 
						|
      // instructions can be commuted with other add instructions...
 | 
						|
      //
 | 
						|
      // Calculate the negative value of Operand 1 of the sub instruction...
 | 
						|
      // and set it as the RHS of the add instruction we just made...
 | 
						|
      //
 | 
						|
      std::string Name = BI->getName();
 | 
						|
      BI->setName("");
 | 
						|
      Instruction *New =
 | 
						|
        BinaryOperator::create(Instruction::Add, BI->getOperand(0),
 | 
						|
                               BI->getOperand(1), Name, BI);
 | 
						|
 | 
						|
      // Everyone now refers to the add instruction...
 | 
						|
      BI->replaceAllUsesWith(New);
 | 
						|
 | 
						|
      // Put the new add in the place of the subtract... deleting the subtract
 | 
						|
      BB->getInstList().erase(BI);
 | 
						|
 | 
						|
      BI = New;
 | 
						|
      New->setOperand(1, NegateValue(New->getOperand(1), BI));
 | 
						|
      
 | 
						|
      Changed = true;
 | 
						|
      DEBUG(std::cerr << "Negated: " << New /*<< " Result BB: " << BB*/);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this instruction is a commutative binary operator, and the ranks of
 | 
						|
    // the two operands are sorted incorrectly, fix it now.
 | 
						|
    //
 | 
						|
    if (BI->isAssociative()) {
 | 
						|
      BinaryOperator *I = cast<BinaryOperator>(BI);
 | 
						|
      if (!I->use_empty()) {
 | 
						|
        // Make sure that we don't have a tree-shaped computation.  If we do,
 | 
						|
        // linearize it.  Convert (A+B)+(C+D) into ((A+B)+C)+D
 | 
						|
        //
 | 
						|
        Instruction *LHSI = dyn_cast<Instruction>(I->getOperand(0));
 | 
						|
        Instruction *RHSI = dyn_cast<Instruction>(I->getOperand(1));
 | 
						|
        if (LHSI && (int)LHSI->getOpcode() == I->getOpcode() &&
 | 
						|
            RHSI && (int)RHSI->getOpcode() == I->getOpcode() &&
 | 
						|
            RHSI->hasOneUse()) {
 | 
						|
          // Insert a new temporary instruction... (A+B)+C
 | 
						|
          BinaryOperator *Tmp = BinaryOperator::create(I->getOpcode(), LHSI,
 | 
						|
                                                       RHSI->getOperand(0),
 | 
						|
                                                       RHSI->getName()+".ra",
 | 
						|
                                                       BI);
 | 
						|
          BI = Tmp;
 | 
						|
          I->setOperand(0, Tmp);
 | 
						|
          I->setOperand(1, RHSI->getOperand(1));
 | 
						|
 | 
						|
          // Process the temporary instruction for reassociation now.
 | 
						|
          I = Tmp;
 | 
						|
          ++NumLinear;
 | 
						|
          Changed = true;
 | 
						|
          DEBUG(std::cerr << "Linearized: " << I/* << " Result BB: " << BB*/);
 | 
						|
        }
 | 
						|
 | 
						|
        // Make sure that this expression is correctly reassociated with respect
 | 
						|
        // to it's used values...
 | 
						|
        //
 | 
						|
        Changed |= ReassociateExpr(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool Reassociate::runOnFunction(Function &F) {
 | 
						|
  // Recalculate the rank map for F
 | 
						|
  BuildRankMap(F);
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
 | 
						|
    Changed |= ReassociateBB(FI);
 | 
						|
 | 
						|
  // We are done with the rank map...
 | 
						|
  RankMap.clear();
 | 
						|
  ValueRankMap.clear();
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 |