mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	types and can have arbitrary 32- and 64-bit integer types indexing into sequential types. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12653 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			303 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			303 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This transformation implements the well known scalar replacement of
 | 
						|
// aggregates transformation.  This xform breaks up alloca instructions of
 | 
						|
// aggregate type (structure or array) into individual alloca instructions for
 | 
						|
// each member (if possible).  Then, if possible, it transforms the individual
 | 
						|
// alloca instructions into nice clean scalar SSA form.
 | 
						|
//
 | 
						|
// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
 | 
						|
// often interact, especially for C++ programs.  As such, iterating between
 | 
						|
// SRoA, then Mem2Reg until we run out of things to promote works well.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/iMemory.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | 
						|
#include "Support/Debug.h"
 | 
						|
#include "Support/Statistic.h"
 | 
						|
#include "Support/StringExtras.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> NumReplaced("scalarrepl", "Number of allocas broken up");
 | 
						|
  Statistic<> NumPromoted("scalarrepl", "Number of allocas promoted");
 | 
						|
 | 
						|
  struct SROA : public FunctionPass {
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
 | 
						|
    bool performScalarRepl(Function &F);
 | 
						|
    bool performPromotion(Function &F);
 | 
						|
 | 
						|
    // getAnalysisUsage - This pass does not require any passes, but we know it
 | 
						|
    // will not alter the CFG, so say so.
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<DominatorTree>();
 | 
						|
      AU.addRequired<DominanceFrontier>();
 | 
						|
      AU.addRequired<TargetData>();
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    bool isSafeElementUse(Value *Ptr);
 | 
						|
    bool isSafeUseOfAllocation(Instruction *User);
 | 
						|
    bool isSafeAllocaToPromote(AllocationInst *AI);
 | 
						|
    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterOpt<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
 | 
						|
}
 | 
						|
 | 
						|
// Public interface to the ScalarReplAggregates pass
 | 
						|
Pass *llvm::createScalarReplAggregatesPass() { return new SROA(); }
 | 
						|
 | 
						|
 | 
						|
bool SROA::runOnFunction(Function &F) {
 | 
						|
  bool Changed = performPromotion(F);
 | 
						|
  while (1) {
 | 
						|
    bool LocalChange = performScalarRepl(F);
 | 
						|
    if (!LocalChange) break;   // No need to repromote if no scalarrepl
 | 
						|
    Changed = true;
 | 
						|
    LocalChange = performPromotion(F);
 | 
						|
    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool SROA::performPromotion(Function &F) {
 | 
						|
  std::vector<AllocaInst*> Allocas;
 | 
						|
  const TargetData &TD = getAnalysis<TargetData>();
 | 
						|
  DominatorTree     &DT = getAnalysis<DominatorTree>();
 | 
						|
  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
 | 
						|
 | 
						|
  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  
 | 
						|
  while (1) {
 | 
						|
    Allocas.clear();
 | 
						|
 | 
						|
    // Find allocas that are safe to promote, by looking at all instructions in
 | 
						|
    // the entry node
 | 
						|
    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
 | 
						|
      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
 | 
						|
        if (isAllocaPromotable(AI, TD))
 | 
						|
          Allocas.push_back(AI);
 | 
						|
 | 
						|
    if (Allocas.empty()) break;
 | 
						|
 | 
						|
    PromoteMemToReg(Allocas, DT, DF, TD);
 | 
						|
    NumPromoted += Allocas.size();
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// performScalarRepl - This algorithm is a simple worklist driven algorithm,
 | 
						|
// which runs on all of the malloc/alloca instructions in the function, removing
 | 
						|
// them if they are only used by getelementptr instructions.
 | 
						|
//
 | 
						|
bool SROA::performScalarRepl(Function &F) {
 | 
						|
  std::vector<AllocationInst*> WorkList;
 | 
						|
 | 
						|
  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
 | 
						|
  BasicBlock &BB = F.getEntryBlock();
 | 
						|
  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
 | 
						|
    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
 | 
						|
      WorkList.push_back(A);
 | 
						|
 | 
						|
  // Process the worklist
 | 
						|
  bool Changed = false;
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    AllocationInst *AI = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
 | 
						|
    // We cannot transform the allocation instruction if it is an array
 | 
						|
    // allocation (allocations OF arrays are ok though), and an allocation of a
 | 
						|
    // scalar value cannot be decomposed at all.
 | 
						|
    //
 | 
						|
    if (AI->isArrayAllocation() ||
 | 
						|
        (!isa<StructType>(AI->getAllocatedType()) &&
 | 
						|
         !isa<ArrayType>(AI->getAllocatedType()))) continue;
 | 
						|
 | 
						|
    // Check that all of the users of the allocation are capable of being
 | 
						|
    // transformed.
 | 
						|
    if (!isSafeAllocaToPromote(AI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(std::cerr << "Found inst to xform: " << *AI);
 | 
						|
    Changed = true;
 | 
						|
    
 | 
						|
    std::vector<AllocaInst*> ElementAllocas;
 | 
						|
    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
 | 
						|
      ElementAllocas.reserve(ST->getNumContainedTypes());
 | 
						|
      for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
 | 
						|
        AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
 | 
						|
                                        AI->getName() + "." + utostr(i), AI);
 | 
						|
        ElementAllocas.push_back(NA);
 | 
						|
        WorkList.push_back(NA);  // Add to worklist for recursive processing
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
 | 
						|
      ElementAllocas.reserve(AT->getNumElements());
 | 
						|
      const Type *ElTy = AT->getElementType();
 | 
						|
      for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | 
						|
        AllocaInst *NA = new AllocaInst(ElTy, 0,
 | 
						|
                                        AI->getName() + "." + utostr(i), AI);
 | 
						|
        ElementAllocas.push_back(NA);
 | 
						|
        WorkList.push_back(NA);  // Add to worklist for recursive processing
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Now that we have created the alloca instructions that we want to use,
 | 
						|
    // expand the getelementptr instructions to use them.
 | 
						|
    //
 | 
						|
    for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      Instruction *User = cast<Instruction>(*I);
 | 
						|
      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
 | 
						|
        // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
 | 
						|
        uint64_t Idx = cast<ConstantInt>(GEPI->getOperand(2))->getRawValue();
 | 
						|
        
 | 
						|
        assert(Idx < ElementAllocas.size() && "Index out of range?");
 | 
						|
        AllocaInst *AllocaToUse = ElementAllocas[Idx];
 | 
						|
 | 
						|
        Value *RepValue;
 | 
						|
        if (GEPI->getNumOperands() == 3) {
 | 
						|
          // Do not insert a new getelementptr instruction with zero indices,
 | 
						|
          // only to have it optimized out later.
 | 
						|
          RepValue = AllocaToUse;
 | 
						|
        } else {
 | 
						|
          // We are indexing deeply into the structure, so we still need a
 | 
						|
          // getelement ptr instruction to finish the indexing.  This may be
 | 
						|
          // expanded itself once the worklist is rerun.
 | 
						|
          //
 | 
						|
          std::string OldName = GEPI->getName();  // Steal the old name...
 | 
						|
          std::vector<Value*> NewArgs;
 | 
						|
          NewArgs.push_back(Constant::getNullValue(Type::IntTy));
 | 
						|
          NewArgs.insert(NewArgs.end(), GEPI->op_begin()+3, GEPI->op_end());
 | 
						|
          GEPI->setName("");
 | 
						|
          RepValue =
 | 
						|
            new GetElementPtrInst(AllocaToUse, NewArgs, OldName, GEPI);
 | 
						|
        }
 | 
						|
 | 
						|
        // Move all of the users over to the new GEP.
 | 
						|
        GEPI->replaceAllUsesWith(RepValue);
 | 
						|
        // Delete the old GEP
 | 
						|
        GEPI->getParent()->getInstList().erase(GEPI);
 | 
						|
      } else {
 | 
						|
        assert(0 && "Unexpected instruction type!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, delete the Alloca instruction
 | 
						|
    AI->getParent()->getInstList().erase(AI);
 | 
						|
    NumReplaced++;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
 | 
						|
/// aggregate allocation.
 | 
						|
///
 | 
						|
bool SROA::isSafeUseOfAllocation(Instruction *User) {
 | 
						|
  if (!isa<GetElementPtrInst>(User)) return false;
 | 
						|
 | 
						|
  GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
 | 
						|
  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
 | 
						|
 | 
						|
  // The GEP is safe to transform if it is of the form GEP <ptr>, 0, <cst>
 | 
						|
  if (I == E ||
 | 
						|
      I.getOperand() != Constant::getNullValue(I.getOperand()->getType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  ++I;
 | 
						|
  if (I == E || !isa<ConstantInt>(I.getOperand()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this is a use of an array allocation, do a bit more checking for sanity.
 | 
						|
  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
 | 
						|
    uint64_t NumElements = AT->getNumElements();
 | 
						|
    
 | 
						|
    // Check to make sure that index falls within the array.  If not,
 | 
						|
    // something funny is going on, so we won't do the optimization.
 | 
						|
    //
 | 
						|
    if (cast<ConstantInt>(GEPI->getOperand(2))->getRawValue() >= NumElements)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are any non-simple uses of this getelementptr, make sure to reject
 | 
						|
  // them.
 | 
						|
  return isSafeElementUse(GEPI);
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeElementUse - Check to see if this use is an allowed use for a
 | 
						|
/// getelementptr instruction of an array aggregate allocation.
 | 
						|
///
 | 
						|
bool SROA::isSafeElementUse(Value *Ptr) {
 | 
						|
  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    Instruction *User = cast<Instruction>(*I);
 | 
						|
    switch (User->getOpcode()) {
 | 
						|
    case Instruction::Load:  break;
 | 
						|
    case Instruction::Store:
 | 
						|
      // Store is ok if storing INTO the pointer, not storing the pointer
 | 
						|
      if (User->getOperand(0) == Ptr) return false;
 | 
						|
      break;
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
 | 
						|
      if (GEP->getNumOperands() > 1) {
 | 
						|
        if (!isa<Constant>(GEP->getOperand(1)) ||
 | 
						|
            !cast<Constant>(GEP->getOperand(1))->isNullValue())
 | 
						|
          return false;  // Using pointer arithmetic to navigate the array...
 | 
						|
      }
 | 
						|
      if (!isSafeElementUse(GEP)) return false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      DEBUG(std::cerr << "  Transformation preventing inst: " << *User);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;  // All users look ok :)
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isSafeStructAllocaToPromote - Check to see if the specified allocation of a
 | 
						|
/// structure can be broken down into elements.
 | 
						|
///
 | 
						|
bool SROA::isSafeAllocaToPromote(AllocationInst *AI) {
 | 
						|
  // Loop over the use list of the alloca.  We can only transform it if all of
 | 
						|
  // the users are safe to transform.
 | 
						|
  //
 | 
						|
  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (!isSafeUseOfAllocation(cast<Instruction>(*I))) {
 | 
						|
      DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
 | 
						|
                      << *I);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  return true;
 | 
						|
}
 |