mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	On PPC32, [su]div,rem on i64 types are transformed into runtime library function calls. As a result, they are not allowed in counter-based loops (the counter-loops verification pass caught this error; this change fixes PR16169). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183581 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			628 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			628 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass identifies loops where we can generate the PPC branch instructions
 | 
						|
// that decrement and test the count register (CTR) (bdnz and friends).
 | 
						|
//
 | 
						|
// The pattern that defines the induction variable can changed depending on
 | 
						|
// prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
 | 
						|
// normalizes induction variables, and the Loop Strength Reduction pass
 | 
						|
// run by 'llc' may also make changes to the induction variable.
 | 
						|
//
 | 
						|
// Criteria for CTR loops:
 | 
						|
//  - Countable loops (w/ ind. var for a trip count)
 | 
						|
//  - Try inner-most loops first
 | 
						|
//  - No nested CTR loops.
 | 
						|
//  - No function calls in loops.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "ctrloops"
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/PassSupport.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ValueHandle.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Target/TargetLibraryInfo.h"
 | 
						|
#include "PPCTargetMachine.h"
 | 
						|
#include "PPC.h"
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static cl::opt<int> CTRLoopLimit("ppc-max-ctrloop", cl::Hidden, cl::init(-1));
 | 
						|
#endif
 | 
						|
 | 
						|
STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  void initializePPCCTRLoopsPass(PassRegistry&);
 | 
						|
#ifndef NDEBUG
 | 
						|
  void initializePPCCTRLoopsVerifyPass(PassRegistry&);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct PPCCTRLoops : public FunctionPass {
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    static int Counter;
 | 
						|
#endif
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
 | 
						|
    PPCCTRLoops() : FunctionPass(ID), TM(0) {
 | 
						|
      initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
    PPCCTRLoops(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) {
 | 
						|
      initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<LoopInfo>();
 | 
						|
      AU.addPreserved<LoopInfo>();
 | 
						|
      AU.addRequired<DominatorTree>();
 | 
						|
      AU.addPreserved<DominatorTree>();
 | 
						|
      AU.addRequired<ScalarEvolution>();
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    bool mightUseCTR(const Triple &TT, BasicBlock *BB);
 | 
						|
    bool convertToCTRLoop(Loop *L);
 | 
						|
 | 
						|
  private:
 | 
						|
    PPCTargetMachine *TM;
 | 
						|
    LoopInfo *LI;
 | 
						|
    ScalarEvolution *SE;
 | 
						|
    DataLayout *TD;
 | 
						|
    DominatorTree *DT;
 | 
						|
    const TargetLibraryInfo *LibInfo;
 | 
						|
  };
 | 
						|
 | 
						|
  char PPCCTRLoops::ID = 0;
 | 
						|
#ifndef NDEBUG
 | 
						|
  int PPCCTRLoops::Counter = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  struct PPCCTRLoopsVerify : public MachineFunctionPass {
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
 | 
						|
    PPCCTRLoopsVerify() : MachineFunctionPass(ID) {
 | 
						|
      initializePPCCTRLoopsVerifyPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<MachineDominatorTree>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool runOnMachineFunction(MachineFunction &MF);
 | 
						|
 | 
						|
  private:
 | 
						|
    MachineDominatorTree *MDT;
 | 
						|
  };
 | 
						|
 | 
						|
  char PPCCTRLoopsVerify::ID = 0;
 | 
						|
#endif // NDEBUG
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | 
						|
INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
 | 
						|
                    false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createPPCCTRLoops(PPCTargetMachine &TM) {
 | 
						|
  return new PPCCTRLoops(TM);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
INITIALIZE_PASS_BEGIN(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
 | 
						|
                      "PowerPC CTR Loops Verify", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | 
						|
INITIALIZE_PASS_END(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
 | 
						|
                    "PowerPC CTR Loops Verify", false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createPPCCTRLoopsVerify() {
 | 
						|
  return new PPCCTRLoopsVerify();
 | 
						|
}
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
bool PPCCTRLoops::runOnFunction(Function &F) {
 | 
						|
  LI = &getAnalysis<LoopInfo>();
 | 
						|
  SE = &getAnalysis<ScalarEvolution>();
 | 
						|
  DT = &getAnalysis<DominatorTree>();
 | 
						|
  TD = getAnalysisIfAvailable<DataLayout>();
 | 
						|
  LibInfo = getAnalysisIfAvailable<TargetLibraryInfo>();
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  for (LoopInfo::iterator I = LI->begin(), E = LI->end();
 | 
						|
       I != E; ++I) {
 | 
						|
    Loop *L = *I;
 | 
						|
    if (!L->getParentLoop())
 | 
						|
      MadeChange |= convertToCTRLoop(L);
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) {
 | 
						|
  for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
 | 
						|
       J != JE; ++J) {
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(J)) {
 | 
						|
      if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) {
 | 
						|
        // Inline ASM is okay, unless it clobbers the ctr register.
 | 
						|
        InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
 | 
						|
        for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
 | 
						|
          InlineAsm::ConstraintInfo &C = CIV[i];
 | 
						|
          if (C.Type != InlineAsm::isInput)
 | 
						|
            for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
 | 
						|
              if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
 | 
						|
                return true;
 | 
						|
        }
 | 
						|
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!TM)
 | 
						|
        return true;
 | 
						|
      const TargetLowering *TLI = TM->getTargetLowering();
 | 
						|
 | 
						|
      if (Function *F = CI->getCalledFunction()) {
 | 
						|
        // Most intrinsics don't become function calls, but some might.
 | 
						|
        // sin, cos, exp and log are always calls.
 | 
						|
        unsigned Opcode;
 | 
						|
        if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
 | 
						|
          switch (F->getIntrinsicID()) {
 | 
						|
          default: continue;
 | 
						|
 | 
						|
// VisualStudio defines setjmp as _setjmp
 | 
						|
#if defined(_MSC_VER) && defined(setjmp) && \
 | 
						|
                       !defined(setjmp_undefined_for_msvc)
 | 
						|
#  pragma push_macro("setjmp")
 | 
						|
#  undef setjmp
 | 
						|
#  define setjmp_undefined_for_msvc
 | 
						|
#endif
 | 
						|
 | 
						|
          case Intrinsic::setjmp:
 | 
						|
 | 
						|
#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
 | 
						|
 // let's return it to _setjmp state
 | 
						|
#  pragma pop_macro("setjmp")
 | 
						|
#  undef setjmp_undefined_for_msvc
 | 
						|
#endif
 | 
						|
 | 
						|
          case Intrinsic::longjmp:
 | 
						|
          case Intrinsic::memcpy:
 | 
						|
          case Intrinsic::memmove:
 | 
						|
          case Intrinsic::memset:
 | 
						|
          case Intrinsic::powi:
 | 
						|
          case Intrinsic::log:
 | 
						|
          case Intrinsic::log2:
 | 
						|
          case Intrinsic::log10:
 | 
						|
          case Intrinsic::exp:
 | 
						|
          case Intrinsic::exp2:
 | 
						|
          case Intrinsic::pow:
 | 
						|
          case Intrinsic::sin:
 | 
						|
          case Intrinsic::cos:
 | 
						|
            return true;
 | 
						|
          case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
 | 
						|
          case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
 | 
						|
          case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
 | 
						|
          case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
 | 
						|
          case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
 | 
						|
          case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // PowerPC does not use [US]DIVREM or other library calls for
 | 
						|
        // operations on regular types which are not otherwise library calls
 | 
						|
        // (i.e. soft float or atomics). If adapting for targets that do,
 | 
						|
        // additional care is required here.
 | 
						|
 | 
						|
        LibFunc::Func Func;
 | 
						|
        if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
 | 
						|
            LibInfo->getLibFunc(F->getName(), Func) &&
 | 
						|
            LibInfo->hasOptimizedCodeGen(Func)) {
 | 
						|
          // Non-read-only functions are never treated as intrinsics.
 | 
						|
          if (!CI->onlyReadsMemory())
 | 
						|
            return true;
 | 
						|
 | 
						|
          // Conversion happens only for FP calls.
 | 
						|
          if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
 | 
						|
            return true;
 | 
						|
 | 
						|
          switch (Func) {
 | 
						|
          default: return true;
 | 
						|
          case LibFunc::copysign:
 | 
						|
          case LibFunc::copysignf:
 | 
						|
          case LibFunc::copysignl:
 | 
						|
            continue; // ISD::FCOPYSIGN is never a library call.
 | 
						|
          case LibFunc::fabs:
 | 
						|
          case LibFunc::fabsf:
 | 
						|
          case LibFunc::fabsl:
 | 
						|
            continue; // ISD::FABS is never a library call.
 | 
						|
          case LibFunc::sqrt:
 | 
						|
          case LibFunc::sqrtf:
 | 
						|
          case LibFunc::sqrtl:
 | 
						|
            Opcode = ISD::FSQRT; break;
 | 
						|
          case LibFunc::floor:
 | 
						|
          case LibFunc::floorf:
 | 
						|
          case LibFunc::floorl:
 | 
						|
            Opcode = ISD::FFLOOR; break;
 | 
						|
          case LibFunc::nearbyint:
 | 
						|
          case LibFunc::nearbyintf:
 | 
						|
          case LibFunc::nearbyintl:
 | 
						|
            Opcode = ISD::FNEARBYINT; break;
 | 
						|
          case LibFunc::ceil:
 | 
						|
          case LibFunc::ceilf:
 | 
						|
          case LibFunc::ceill:
 | 
						|
            Opcode = ISD::FCEIL; break;
 | 
						|
          case LibFunc::rint:
 | 
						|
          case LibFunc::rintf:
 | 
						|
          case LibFunc::rintl:
 | 
						|
            Opcode = ISD::FRINT; break;
 | 
						|
          case LibFunc::trunc:
 | 
						|
          case LibFunc::truncf:
 | 
						|
          case LibFunc::truncl:
 | 
						|
            Opcode = ISD::FTRUNC; break;
 | 
						|
          }
 | 
						|
 | 
						|
          MVT VTy =
 | 
						|
            TLI->getSimpleValueType(CI->getArgOperand(0)->getType(), true);
 | 
						|
          if (VTy == MVT::Other)
 | 
						|
            return true;
 | 
						|
          
 | 
						|
          if (TLI->isOperationLegalOrCustom(Opcode, VTy))
 | 
						|
            continue;
 | 
						|
          else if (VTy.isVector() &&
 | 
						|
                   TLI->isOperationLegalOrCustom(Opcode, VTy.getScalarType()))
 | 
						|
            continue;
 | 
						|
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return true;
 | 
						|
    } else if (isa<BinaryOperator>(J) &&
 | 
						|
               J->getType()->getScalarType()->isPPC_FP128Ty()) {
 | 
						|
      // Most operations on ppc_f128 values become calls.
 | 
						|
      return true;
 | 
						|
    } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
 | 
						|
               isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
 | 
						|
      CastInst *CI = cast<CastInst>(J);
 | 
						|
      if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
 | 
						|
          CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
 | 
						|
          (TT.isArch32Bit() &&
 | 
						|
           (CI->getSrcTy()->getScalarType()->isIntegerTy(64) ||
 | 
						|
            CI->getDestTy()->getScalarType()->isIntegerTy(64))
 | 
						|
          ))
 | 
						|
        return true;
 | 
						|
    } else if (TT.isArch32Bit() &&
 | 
						|
               J->getType()->getScalarType()->isIntegerTy(64) &&
 | 
						|
               (J->getOpcode() == Instruction::UDiv ||
 | 
						|
                J->getOpcode() == Instruction::SDiv ||
 | 
						|
                J->getOpcode() == Instruction::URem ||
 | 
						|
                J->getOpcode() == Instruction::SRem)) {
 | 
						|
      return true;
 | 
						|
    } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
 | 
						|
      // On PowerPC, indirect jumps use the counter register.
 | 
						|
      return true;
 | 
						|
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
 | 
						|
      if (!TM)
 | 
						|
        return true;
 | 
						|
      const TargetLowering *TLI = TM->getTargetLowering();
 | 
						|
 | 
						|
      if (TLI->supportJumpTables() &&
 | 
						|
          SI->getNumCases()+1 >= (unsigned) TLI->getMinimumJumpTableEntries())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCCTRLoops::convertToCTRLoop(Loop *L) {
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  Triple TT = Triple(L->getHeader()->getParent()->getParent()->
 | 
						|
                     getTargetTriple());
 | 
						|
  if (!TT.isArch32Bit() && !TT.isArch64Bit())
 | 
						|
    return MadeChange; // Unknown arch. type.
 | 
						|
 | 
						|
  // Process nested loops first.
 | 
						|
  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
 | 
						|
    MadeChange |= convertToCTRLoop(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  // If a nested loop has been converted, then we can't convert this loop.
 | 
						|
  if (MadeChange)
 | 
						|
    return MadeChange;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Stop trying after reaching the limit (if any).
 | 
						|
  int Limit = CTRLoopLimit;
 | 
						|
  if (Limit >= 0) {
 | 
						|
    if (Counter >= CTRLoopLimit)
 | 
						|
      return false;
 | 
						|
    Counter++;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // We don't want to spill/restore the counter register, and so we don't
 | 
						|
  // want to use the counter register if the loop contains calls.
 | 
						|
  for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
 | 
						|
       I != IE; ++I)
 | 
						|
    if (mightUseCTR(TT, *I))
 | 
						|
      return MadeChange;
 | 
						|
 | 
						|
  SmallVector<BasicBlock*, 4> ExitingBlocks;
 | 
						|
  L->getExitingBlocks(ExitingBlocks);
 | 
						|
 | 
						|
  BasicBlock *CountedExitBlock = 0;
 | 
						|
  const SCEV *ExitCount = 0;
 | 
						|
  BranchInst *CountedExitBranch = 0;
 | 
						|
  for (SmallVector<BasicBlock*, 4>::iterator I = ExitingBlocks.begin(),
 | 
						|
       IE = ExitingBlocks.end(); I != IE; ++I) {
 | 
						|
    const SCEV *EC = SE->getExitCount(L, *I);
 | 
						|
    DEBUG(dbgs() << "Exit Count for " << *L << " from block " <<
 | 
						|
                    (*I)->getName() << ": " << *EC << "\n");
 | 
						|
    if (isa<SCEVCouldNotCompute>(EC))
 | 
						|
      continue;
 | 
						|
    if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
 | 
						|
      if (ConstEC->getValue()->isZero())
 | 
						|
        continue;
 | 
						|
    } else if (!SE->isLoopInvariant(EC, L))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We now have a loop-invariant count of loop iterations (which is not the
 | 
						|
    // constant zero) for which we know that this loop will not exit via this
 | 
						|
    // exisiting block.
 | 
						|
 | 
						|
    // We need to make sure that this block will run on every loop iteration.
 | 
						|
    // For this to be true, we must dominate all blocks with backedges. Such
 | 
						|
    // blocks are in-loop predecessors to the header block.
 | 
						|
    bool NotAlways = false;
 | 
						|
    for (pred_iterator PI = pred_begin(L->getHeader()),
 | 
						|
         PIE = pred_end(L->getHeader()); PI != PIE; ++PI) {
 | 
						|
      if (!L->contains(*PI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (!DT->dominates(*I, *PI)) {
 | 
						|
        NotAlways = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (NotAlways)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Make sure this blocks ends with a conditional branch.
 | 
						|
    Instruction *TI = (*I)->getTerminator();
 | 
						|
    if (!TI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | 
						|
      if (!BI->isConditional())
 | 
						|
        continue;
 | 
						|
 | 
						|
      CountedExitBranch = BI;
 | 
						|
    } else
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Note that this block may not be the loop latch block, even if the loop
 | 
						|
    // has a latch block.
 | 
						|
    CountedExitBlock = *I;
 | 
						|
    ExitCount = EC;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CountedExitBlock)
 | 
						|
    return MadeChange;
 | 
						|
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
 | 
						|
  // If we don't have a preheader, then insert one. If we already have a
 | 
						|
  // preheader, then we can use it (except if the preheader contains a use of
 | 
						|
  // the CTR register because some such uses might be reordered by the
 | 
						|
  // selection DAG after the mtctr instruction).
 | 
						|
  if (!Preheader || mightUseCTR(TT, Preheader))
 | 
						|
    Preheader = InsertPreheaderForLoop(L, this);
 | 
						|
  if (!Preheader)
 | 
						|
    return MadeChange;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Preheader for exit count: " << Preheader->getName() << "\n");
 | 
						|
 | 
						|
  // Insert the count into the preheader and replace the condition used by the
 | 
						|
  // selected branch.
 | 
						|
  MadeChange = true;
 | 
						|
 | 
						|
  SCEVExpander SCEVE(*SE, "loopcnt");
 | 
						|
  LLVMContext &C = SE->getContext();
 | 
						|
  Type *CountType = TT.isArch64Bit() ? Type::getInt64Ty(C) :
 | 
						|
                                       Type::getInt32Ty(C);
 | 
						|
  if (!ExitCount->getType()->isPointerTy() &&
 | 
						|
      ExitCount->getType() != CountType)
 | 
						|
    ExitCount = SE->getZeroExtendExpr(ExitCount, CountType);
 | 
						|
  ExitCount = SE->getAddExpr(ExitCount,
 | 
						|
                             SE->getConstant(CountType, 1)); 
 | 
						|
  Value *ECValue = SCEVE.expandCodeFor(ExitCount, CountType,
 | 
						|
                                       Preheader->getTerminator());
 | 
						|
 | 
						|
  IRBuilder<> CountBuilder(Preheader->getTerminator());
 | 
						|
  Module *M = Preheader->getParent()->getParent();
 | 
						|
  Value *MTCTRFunc = Intrinsic::getDeclaration(M, Intrinsic::ppc_mtctr,
 | 
						|
                                               CountType);
 | 
						|
  CountBuilder.CreateCall(MTCTRFunc, ECValue);
 | 
						|
 | 
						|
  IRBuilder<> CondBuilder(CountedExitBranch);
 | 
						|
  Value *DecFunc =
 | 
						|
    Intrinsic::getDeclaration(M, Intrinsic::ppc_is_decremented_ctr_nonzero);
 | 
						|
  Value *NewCond = CondBuilder.CreateCall(DecFunc);
 | 
						|
  Value *OldCond = CountedExitBranch->getCondition();
 | 
						|
  CountedExitBranch->setCondition(NewCond);
 | 
						|
 | 
						|
  // The false branch must exit the loop.
 | 
						|
  if (!L->contains(CountedExitBranch->getSuccessor(0)))
 | 
						|
    CountedExitBranch->swapSuccessors();
 | 
						|
 | 
						|
  // The old condition may be dead now, and may have even created a dead PHI
 | 
						|
  // (the original induction variable).
 | 
						|
  RecursivelyDeleteTriviallyDeadInstructions(OldCond);
 | 
						|
  DeleteDeadPHIs(CountedExitBlock);
 | 
						|
 | 
						|
  ++NumCTRLoops;
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static bool clobbersCTR(const MachineInstr *MI) {
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (MO.isReg()) {
 | 
						|
      if (MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8))
 | 
						|
        return true;
 | 
						|
    } else if (MO.isRegMask()) {
 | 
						|
      if (MO.clobbersPhysReg(PPC::CTR) || MO.clobbersPhysReg(PPC::CTR8))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool verifyCTRBranch(MachineBasicBlock *MBB,
 | 
						|
                            MachineBasicBlock::iterator I) {
 | 
						|
  MachineBasicBlock::iterator BI = I;
 | 
						|
  SmallSet<MachineBasicBlock *, 16>   Visited;
 | 
						|
  SmallVector<MachineBasicBlock *, 8> Preds;
 | 
						|
  bool CheckPreds;
 | 
						|
 | 
						|
  if (I == MBB->begin()) {
 | 
						|
    Visited.insert(MBB);
 | 
						|
    goto queue_preds;
 | 
						|
  } else
 | 
						|
    --I;
 | 
						|
 | 
						|
check_block:
 | 
						|
  Visited.insert(MBB);
 | 
						|
  if (I == MBB->end())
 | 
						|
    goto queue_preds;
 | 
						|
 | 
						|
  CheckPreds = true;
 | 
						|
  for (MachineBasicBlock::iterator IE = MBB->begin();; --I) {
 | 
						|
    unsigned Opc = I->getOpcode();
 | 
						|
    if (Opc == PPC::MTCTRloop || Opc == PPC::MTCTR8loop) {
 | 
						|
      CheckPreds = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (I != BI && clobbersCTR(I)) {
 | 
						|
      DEBUG(dbgs() << "BB#" << MBB->getNumber() << " (" <<
 | 
						|
                      MBB->getFullName() << ") instruction " << *I <<
 | 
						|
                      " clobbers CTR, invalidating " << "BB#" <<
 | 
						|
                      BI->getParent()->getNumber() << " (" <<
 | 
						|
                      BI->getParent()->getFullName() << ") instruction " <<
 | 
						|
                      *BI << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (I == IE)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CheckPreds && Preds.empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (CheckPreds) {
 | 
						|
queue_preds:
 | 
						|
    if (MachineFunction::iterator(MBB) == MBB->getParent()->begin()) {
 | 
						|
      DEBUG(dbgs() << "Unable to find a MTCTR instruction for BB#" <<
 | 
						|
                      BI->getParent()->getNumber() << " (" <<
 | 
						|
                      BI->getParent()->getFullName() << ") instruction " <<
 | 
						|
                      *BI << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | 
						|
         PIE = MBB->pred_end(); PI != PIE; ++PI)
 | 
						|
      Preds.push_back(*PI);
 | 
						|
  }
 | 
						|
 | 
						|
  do {
 | 
						|
    MBB = Preds.pop_back_val();
 | 
						|
    if (!Visited.count(MBB)) {
 | 
						|
      I = MBB->getLastNonDebugInstr();
 | 
						|
      goto check_block;
 | 
						|
    }
 | 
						|
  } while (!Preds.empty());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCCTRLoopsVerify::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  MDT = &getAnalysis<MachineDominatorTree>();
 | 
						|
 | 
						|
  // Verify that all bdnz/bdz instructions are dominated by a loop mtctr before
 | 
						|
  // any other instructions that might clobber the ctr register.
 | 
						|
  for (MachineFunction::iterator I = MF.begin(), IE = MF.end();
 | 
						|
       I != IE; ++I) {
 | 
						|
    MachineBasicBlock *MBB = I;
 | 
						|
    if (!MDT->isReachableFromEntry(MBB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (MachineBasicBlock::iterator MII = MBB->getFirstTerminator(),
 | 
						|
      MIIE = MBB->end(); MII != MIIE; ++MII) {
 | 
						|
      unsigned Opc = MII->getOpcode();
 | 
						|
      if (Opc == PPC::BDNZ8 || Opc == PPC::BDNZ ||
 | 
						|
          Opc == PPC::BDZ8  || Opc == PPC::BDZ)
 | 
						|
        if (!verifyCTRBranch(MBB, MII))
 | 
						|
          llvm_unreachable("Invalid PPC CTR loop!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
#endif // NDEBUG
 | 
						|
 |