llvm-6502/lib/Target/SparcV9/SparcV9TargetMachine.cpp
Chris Lattner cf4525bd20 * Swithc to new MachineCodeForInstruction model
* Implement memory freeing for instruction temporaries


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1653 91177308-0d34-0410-b5e6-96231b3b80d8
2002-02-03 07:49:15 +00:00

330 lines
10 KiB
C++

// $Id$
//***************************************************************************
// File:
// Sparc.cpp
//
// Purpose:
//
// History:
// 7/15/01 - Vikram Adve - Created
//**************************************************************************/
#include "SparcInternals.h"
#include "llvm/Target/Sparc.h"
#include "llvm/CodeGen/InstrScheduling.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineCodeForMethod.h"
#include "llvm/CodeGen/PhyRegAlloc.h"
#include "llvm/Method.h"
#include <iostream>
using std::cerr;
// Build the MachineInstruction Description Array...
const MachineInstrDescriptor SparcMachineInstrDesc[] = {
#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \
{ OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS },
#include "SparcInstr.def"
};
//----------------------------------------------------------------------------
// allocateSparcTargetMachine - Allocate and return a subclass of TargetMachine
// that implements the Sparc backend. (the llvm/CodeGen/Sparc.h interface)
//----------------------------------------------------------------------------
//
TargetMachine *allocateSparcTargetMachine() { return new UltraSparc(); }
//----------------------------------------------------------------------------
// Entry point for register allocation for a module
//----------------------------------------------------------------------------
void AllocateRegisters(Method *M, TargetMachine &target)
{
if ( (M)->isExternal() ) // don't process prototypes
return;
if( DEBUG_RA )
cerr << "\n******************** Method "<< M->getName()
<< " ********************\n";
MethodLiveVarInfo LVI(M ); // Analyze live varaibles
LVI.analyze();
PhyRegAlloc PRA(M, target, &LVI); // allocate registers
PRA.allocateRegisters();
if( DEBUG_RA ) cerr << "\nRegister allocation complete!\n";
}
//---------------------------------------------------------------------------
// Function InsertPrologCode
// Function InsertEpilogCode
// Function InsertPrologEpilog
//
// Insert prolog code at the unique method entry point.
// Insert epilog code at each method exit point.
// InsertPrologEpilog invokes these only if the method is not compiled
// with the leaf method optimization.
//---------------------------------------------------------------------------
static MachineInstr* minstrVec[MAX_INSTR_PER_VMINSTR];
static void
InsertPrologCode(Method* method, TargetMachine& target)
{
BasicBlock* entryBB = method->getEntryNode();
unsigned N = GetInstructionsForProlog(entryBB, target, minstrVec);
assert(N <= MAX_INSTR_PER_VMINSTR);
if (N > 0)
{
MachineCodeForBasicBlock& bbMvec = entryBB->getMachineInstrVec();
bbMvec.insert(bbMvec.begin(), minstrVec, minstrVec+N);
}
}
static void
InsertEpilogCode(Method* method, TargetMachine& target)
{
for (Method::iterator I=method->begin(), E=method->end(); I != E; ++I)
if ((*I)->getTerminator()->getOpcode() == Instruction::Ret)
{
BasicBlock* exitBB = *I;
unsigned N = GetInstructionsForEpilog(exitBB, target, minstrVec);
MachineCodeForBasicBlock& bbMvec = exitBB->getMachineInstrVec();
MachineCodeForInstruction &termMvec =
MachineCodeForInstruction::get(exitBB->getTerminator());
// Remove the NOPs in the delay slots of the return instruction
const MachineInstrInfo &mii = target.getInstrInfo();
unsigned numNOPs = 0;
while (termMvec.back()->getOpCode() == NOP)
{
assert( termMvec.back() == bbMvec.back());
termMvec.pop_back();
bbMvec.pop_back();
++numNOPs;
}
assert(termMvec.back() == bbMvec.back());
// Check that we found the right number of NOPs and have the right
// number of instructions to replace them.
unsigned ndelays = mii.getNumDelaySlots(termMvec.back()->getOpCode());
assert(numNOPs == ndelays && "Missing NOPs in delay slots?");
assert(N == ndelays && "Cannot use epilog code for delay slots?");
// Append the epilog code to the end of the basic block.
bbMvec.push_back(minstrVec[0]);
}
}
// Insert SAVE/RESTORE instructions for the method
static void
InsertPrologEpilog(Method *method, TargetMachine &target)
{
MachineCodeForMethod& mcodeInfo = MachineCodeForMethod::get(method);
if (mcodeInfo.isCompiledAsLeafMethod())
return; // nothing to do
InsertPrologCode(method, target);
InsertEpilogCode(method, target);
}
//---------------------------------------------------------------------------
// class UltraSparcSchedInfo
//
// Purpose:
// Scheduling information for the UltraSPARC.
// Primarily just initializes machine-dependent parameters in
// class MachineSchedInfo.
//---------------------------------------------------------------------------
/*ctor*/
UltraSparcSchedInfo::UltraSparcSchedInfo(const TargetMachine& tgt)
: MachineSchedInfo(tgt,
(unsigned int) SPARC_NUM_SCHED_CLASSES,
SparcRUsageDesc,
SparcInstrUsageDeltas,
SparcInstrIssueDeltas,
sizeof(SparcInstrUsageDeltas)/sizeof(InstrRUsageDelta),
sizeof(SparcInstrIssueDeltas)/sizeof(InstrIssueDelta))
{
maxNumIssueTotal = 4;
longestIssueConflict = 0; // computed from issuesGaps[]
branchMispredictPenalty = 4; // 4 for SPARC IIi
branchTargetUnknownPenalty = 2; // 2 for SPARC IIi
l1DCacheMissPenalty = 8; // 7 or 9 for SPARC IIi
l1ICacheMissPenalty = 8; // ? for SPARC IIi
inOrderLoads = true; // true for SPARC IIi
inOrderIssue = true; // true for SPARC IIi
inOrderExec = false; // false for most architectures
inOrderRetire= true; // true for most architectures
// must be called after above parameters are initialized.
this->initializeResources();
}
void
UltraSparcSchedInfo::initializeResources()
{
// Compute MachineSchedInfo::instrRUsages and MachineSchedInfo::issueGaps
MachineSchedInfo::initializeResources();
// Machine-dependent fixups go here. None for now.
}
//---------------------------------------------------------------------------
// class UltraSparcFrameInfo
//
// Purpose:
// Interface to stack frame layout info for the UltraSPARC.
// Starting offsets for each area of the stack frame are aligned at
// a multiple of getStackFrameSizeAlignment().
//---------------------------------------------------------------------------
int
UltraSparcFrameInfo::getFirstAutomaticVarOffset(MachineCodeForMethod& ,
bool& pos) const
{
pos = false; // static stack area grows downwards
return StaticAreaOffsetFromFP;
}
int
UltraSparcFrameInfo::getRegSpillAreaOffset(MachineCodeForMethod& mcInfo,
bool& pos) const
{
pos = false; // static stack area grows downwards
unsigned int autoVarsSize = mcInfo.getAutomaticVarsSize();
if (int mod = autoVarsSize % getStackFrameSizeAlignment())
autoVarsSize += (getStackFrameSizeAlignment() - mod);
return StaticAreaOffsetFromFP - autoVarsSize;
}
int
UltraSparcFrameInfo::getTmpAreaOffset(MachineCodeForMethod& mcInfo,
bool& pos) const
{
pos = false; // static stack area grows downwards
unsigned int autoVarsSize = mcInfo.getAutomaticVarsSize();
unsigned int spillAreaSize = mcInfo.getRegSpillsSize();
int offset = autoVarsSize + spillAreaSize;
if (int mod = offset % getStackFrameSizeAlignment())
offset += (getStackFrameSizeAlignment() - mod);
return StaticAreaOffsetFromFP - offset;
}
int
UltraSparcFrameInfo::getDynamicAreaOffset(MachineCodeForMethod& mcInfo,
bool& pos) const
{
// dynamic stack area grows downwards starting at top of opt-args area
unsigned int optArgsSize = mcInfo.getMaxOptionalArgsSize();
int offset = optArgsSize + FirstOptionalOutgoingArgOffsetFromSP;
assert(offset % getStackFrameSizeAlignment() == 0);
return offset;
}
//---------------------------------------------------------------------------
// class UltraSparcMachine
//
// Purpose:
// Primary interface to machine description for the UltraSPARC.
// Primarily just initializes machine-dependent parameters in
// class TargetMachine, and creates machine-dependent subclasses
// for classes such as MachineInstrInfo.
//
//---------------------------------------------------------------------------
UltraSparc::UltraSparc()
: TargetMachine("UltraSparc-Native"),
instrInfo(*this),
schedInfo(*this),
regInfo(*this),
frameInfo(*this),
cacheInfo(*this)
{
optSizeForSubWordData = 4;
minMemOpWordSize = 8;
maxAtomicMemOpWordSize = 8;
}
void
ApplyPeepholeOptimizations(Method *method, TargetMachine &target)
{
return;
// OptimizeLeafProcedures();
// DeleteFallThroughBranches();
// RemoveChainedBranches(); // should be folded with previous
// RemoveRedundantOps(); // operations with %g0, NOP, etc.
}
bool
UltraSparc::compileMethod(Method *method)
{
// Construct and initialize the MachineCodeForMethod object for this method.
MachineCodeForMethod::construct(method, *this);
if (SelectInstructionsForMethod(method, *this))
{
cerr << "Instruction selection failed for method " << method->getName()
<< "\n\n";
return true;
}
/*
if (ScheduleInstructionsWithSSA(method, *this))
{
cerr << "Instruction scheduling before allocation failed for method "
<< method->getName() << "\n\n";
return true;
}
*/
AllocateRegisters(method, *this); // allocate registers
ApplyPeepholeOptimizations(method, *this); // machine-dependent peephole opts
InsertPrologEpilog(method, *this);
return false;
}
static void freeMachineCode(Instruction *I) {
MachineCodeForInstruction::destroy(I);
}
//
// freeCompiledMethod - Release all memory associated with the compiled image
// for this method.
//
void
UltraSparc::freeCompiledMethod(Method *M)
{
for_each(M->inst_begin(), M->inst_end(), freeMachineCode);
// Don't destruct MachineCodeForMethod - The global printer needs it
//MachineCodeForMethod::destruct(M);
}