mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@37207 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3958 lines
		
	
	
		
			137 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3958 lines
		
	
	
		
			137 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements the bison parser for LLVM assembly languages files.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| %{
 | |
| #include "UpgradeInternals.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/ParameterAttributes.h"
 | |
| #include "llvm/ValueSymbolTable.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include <algorithm>
 | |
| #include <iostream>
 | |
| #include <map>
 | |
| #include <list>
 | |
| #include <utility>
 | |
| 
 | |
| // DEBUG_UPREFS - Define this symbol if you want to enable debugging output
 | |
| // relating to upreferences in the input stream.
 | |
| //
 | |
| //#define DEBUG_UPREFS 1
 | |
| #ifdef DEBUG_UPREFS
 | |
| #define UR_OUT(X) std::cerr << X
 | |
| #else
 | |
| #define UR_OUT(X)
 | |
| #endif
 | |
| 
 | |
| #define YYERROR_VERBOSE 1
 | |
| #define YYINCLUDED_STDLIB_H
 | |
| #define YYDEBUG 1
 | |
| 
 | |
| int yylex();
 | |
| int yyparse();
 | |
| 
 | |
| int yyerror(const char*);
 | |
| static void warning(const std::string& WarningMsg);
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| std::istream* LexInput;
 | |
| static std::string CurFilename;
 | |
| 
 | |
| // This bool controls whether attributes are ever added to function declarations
 | |
| // definitions and calls.
 | |
| static bool AddAttributes = false;
 | |
| 
 | |
| static Module *ParserResult;
 | |
| static bool ObsoleteVarArgs;
 | |
| static bool NewVarArgs;
 | |
| static BasicBlock *CurBB;
 | |
| static GlobalVariable *CurGV;
 | |
| static unsigned lastCallingConv;
 | |
| 
 | |
| // This contains info used when building the body of a function.  It is
 | |
| // destroyed when the function is completed.
 | |
| //
 | |
| typedef std::vector<Value *> ValueList;           // Numbered defs
 | |
| 
 | |
| typedef std::pair<std::string,TypeInfo> RenameMapKey;
 | |
| typedef std::map<RenameMapKey,std::string> RenameMapType;
 | |
| 
 | |
| static void 
 | |
| ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers,
 | |
|                    std::map<const Type *,ValueList> *FutureLateResolvers = 0);
 | |
| 
 | |
| static struct PerModuleInfo {
 | |
|   Module *CurrentModule;
 | |
|   std::map<const Type *, ValueList> Values; // Module level numbered definitions
 | |
|   std::map<const Type *,ValueList> LateResolveValues;
 | |
|   std::vector<PATypeHolder> Types;
 | |
|   std::vector<Signedness> TypeSigns;
 | |
|   std::map<std::string,Signedness> NamedTypeSigns;
 | |
|   std::map<std::string,Signedness> NamedValueSigns;
 | |
|   std::map<ValID, PATypeHolder> LateResolveTypes;
 | |
|   static Module::Endianness Endian;
 | |
|   static Module::PointerSize PointerSize;
 | |
|   RenameMapType RenameMap;
 | |
| 
 | |
|   /// PlaceHolderInfo - When temporary placeholder objects are created, remember
 | |
|   /// how they were referenced and on which line of the input they came from so
 | |
|   /// that we can resolve them later and print error messages as appropriate.
 | |
|   std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
 | |
| 
 | |
|   // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
 | |
|   // references to global values.  Global values may be referenced before they
 | |
|   // are defined, and if so, the temporary object that they represent is held
 | |
|   // here.  This is used for forward references of GlobalValues.
 | |
|   //
 | |
|   typedef std::map<std::pair<const PointerType *, ValID>, GlobalValue*> 
 | |
|     GlobalRefsType;
 | |
|   GlobalRefsType GlobalRefs;
 | |
| 
 | |
|   void ModuleDone() {
 | |
|     // If we could not resolve some functions at function compilation time
 | |
|     // (calls to functions before they are defined), resolve them now...  Types
 | |
|     // are resolved when the constant pool has been completely parsed.
 | |
|     //
 | |
|     ResolveDefinitions(LateResolveValues);
 | |
| 
 | |
|     // Check to make sure that all global value forward references have been
 | |
|     // resolved!
 | |
|     //
 | |
|     if (!GlobalRefs.empty()) {
 | |
|       std::string UndefinedReferences = "Unresolved global references exist:\n";
 | |
| 
 | |
|       for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
 | |
|            I != E; ++I) {
 | |
|         UndefinedReferences += "  " + I->first.first->getDescription() + " " +
 | |
|                                I->first.second.getName() + "\n";
 | |
|       }
 | |
|       error(UndefinedReferences);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (CurrentModule->getDataLayout().empty()) {
 | |
|       std::string dataLayout;
 | |
|       if (Endian != Module::AnyEndianness)
 | |
|         dataLayout.append(Endian == Module::BigEndian ? "E" : "e");
 | |
|       if (PointerSize != Module::AnyPointerSize) {
 | |
|         if (!dataLayout.empty())
 | |
|           dataLayout += "-";
 | |
|         dataLayout.append(PointerSize == Module::Pointer64 ? 
 | |
|                           "p:64:64" : "p:32:32");
 | |
|       }
 | |
|       CurrentModule->setDataLayout(dataLayout);
 | |
|     }
 | |
| 
 | |
|     Values.clear();         // Clear out function local definitions
 | |
|     Types.clear();
 | |
|     TypeSigns.clear();
 | |
|     NamedTypeSigns.clear();
 | |
|     NamedValueSigns.clear();
 | |
|     CurrentModule = 0;
 | |
|   }
 | |
| 
 | |
|   // GetForwardRefForGlobal - Check to see if there is a forward reference
 | |
|   // for this global.  If so, remove it from the GlobalRefs map and return it.
 | |
|   // If not, just return null.
 | |
|   GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
 | |
|     // Check to see if there is a forward reference to this global variable...
 | |
|     // if there is, eliminate it and patch the reference to use the new def'n.
 | |
|     GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
 | |
|     GlobalValue *Ret = 0;
 | |
|     if (I != GlobalRefs.end()) {
 | |
|       Ret = I->second;
 | |
|       GlobalRefs.erase(I);
 | |
|     }
 | |
|     return Ret;
 | |
|   }
 | |
|   void setEndianness(Module::Endianness E) { Endian = E; }
 | |
|   void setPointerSize(Module::PointerSize sz) { PointerSize = sz; }
 | |
| } CurModule;
 | |
| 
 | |
| Module::Endianness  PerModuleInfo::Endian = Module::AnyEndianness;
 | |
| Module::PointerSize PerModuleInfo::PointerSize = Module::AnyPointerSize;
 | |
| 
 | |
| static struct PerFunctionInfo {
 | |
|   Function *CurrentFunction;     // Pointer to current function being created
 | |
| 
 | |
|   std::map<const Type*, ValueList> Values; // Keep track of #'d definitions
 | |
|   std::map<const Type*, ValueList> LateResolveValues;
 | |
|   bool isDeclare;                   // Is this function a forward declararation?
 | |
|   GlobalValue::LinkageTypes Linkage;// Linkage for forward declaration.
 | |
| 
 | |
|   /// BBForwardRefs - When we see forward references to basic blocks, keep
 | |
|   /// track of them here.
 | |
|   std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs;
 | |
|   std::vector<BasicBlock*> NumberedBlocks;
 | |
|   RenameMapType RenameMap;
 | |
|   unsigned NextBBNum;
 | |
| 
 | |
|   inline PerFunctionInfo() {
 | |
|     CurrentFunction = 0;
 | |
|     isDeclare = false;
 | |
|     Linkage = GlobalValue::ExternalLinkage;    
 | |
|   }
 | |
| 
 | |
|   inline void FunctionStart(Function *M) {
 | |
|     CurrentFunction = M;
 | |
|     NextBBNum = 0;
 | |
|   }
 | |
| 
 | |
|   void FunctionDone() {
 | |
|     NumberedBlocks.clear();
 | |
| 
 | |
|     // Any forward referenced blocks left?
 | |
|     if (!BBForwardRefs.empty()) {
 | |
|       error("Undefined reference to label " + 
 | |
|             BBForwardRefs.begin()->first->getName());
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Resolve all forward references now.
 | |
|     ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
 | |
| 
 | |
|     Values.clear();         // Clear out function local definitions
 | |
|     RenameMap.clear();
 | |
|     CurrentFunction = 0;
 | |
|     isDeclare = false;
 | |
|     Linkage = GlobalValue::ExternalLinkage;
 | |
|   }
 | |
| } CurFun;  // Info for the current function...
 | |
| 
 | |
| static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
 | |
| 
 | |
| /// This function is just a utility to make a Key value for the rename map.
 | |
| /// The Key is a combination of the name, type, Signedness of the original 
 | |
| /// value (global/function). This just constructs the key and ensures that
 | |
| /// named Signedness values are resolved to the actual Signedness.
 | |
| /// @brief Make a key for the RenameMaps
 | |
| static RenameMapKey makeRenameMapKey(const std::string &Name, const Type* Ty, 
 | |
|                                      const Signedness &Sign) {
 | |
|   TypeInfo TI; 
 | |
|   TI.T = Ty; 
 | |
|   if (Sign.isNamed())
 | |
|     // Don't allow Named Signedness nodes because they won't match. The actual
 | |
|     // Signedness must be looked up in the NamedTypeSigns map.
 | |
|     TI.S.copy(CurModule.NamedTypeSigns[Sign.getName()]);
 | |
|   else
 | |
|     TI.S.copy(Sign);
 | |
|   return std::make_pair(Name, TI);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //               Code to handle definitions of all the types
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static int InsertValue(Value *V,
 | |
|                   std::map<const Type*,ValueList> &ValueTab = CurFun.Values) {
 | |
|   if (V->hasName()) return -1;           // Is this a numbered definition?
 | |
| 
 | |
|   // Yes, insert the value into the value table...
 | |
|   ValueList &List = ValueTab[V->getType()];
 | |
|   List.push_back(V);
 | |
|   return List.size()-1;
 | |
| }
 | |
| 
 | |
| static const Type *getType(const ValID &D, bool DoNotImprovise = false) {
 | |
|   switch (D.Type) {
 | |
|   case ValID::NumberVal:               // Is it a numbered definition?
 | |
|     // Module constants occupy the lowest numbered slots...
 | |
|     if ((unsigned)D.Num < CurModule.Types.size()) {
 | |
|       return CurModule.Types[(unsigned)D.Num];
 | |
|     }
 | |
|     break;
 | |
|   case ValID::NameVal:                 // Is it a named definition?
 | |
|     if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) {
 | |
|       return N;
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     error("Internal parser error: Invalid symbol type reference");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // If we reached here, we referenced either a symbol that we don't know about
 | |
|   // or an id number that hasn't been read yet.  We may be referencing something
 | |
|   // forward, so just create an entry to be resolved later and get to it...
 | |
|   //
 | |
|   if (DoNotImprovise) return 0;  // Do we just want a null to be returned?
 | |
| 
 | |
|   if (inFunctionScope()) {
 | |
|     if (D.Type == ValID::NameVal) {
 | |
|       error("Reference to an undefined type: '" + D.getName() + "'");
 | |
|       return 0;
 | |
|     } else {
 | |
|       error("Reference to an undefined type: #" + itostr(D.Num));
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
 | |
|   if (I != CurModule.LateResolveTypes.end())
 | |
|     return I->second;
 | |
| 
 | |
|   Type *Typ = OpaqueType::get();
 | |
|   CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
 | |
|   return Typ;
 | |
| }
 | |
| 
 | |
| /// This is like the getType method except that instead of looking up the type
 | |
| /// for a given ID, it looks up that type's sign.
 | |
| /// @brief Get the signedness of a referenced type
 | |
| static Signedness getTypeSign(const ValID &D) {
 | |
|   switch (D.Type) {
 | |
|   case ValID::NumberVal:               // Is it a numbered definition?
 | |
|     // Module constants occupy the lowest numbered slots...
 | |
|     if ((unsigned)D.Num < CurModule.TypeSigns.size()) {
 | |
|       return CurModule.TypeSigns[(unsigned)D.Num];
 | |
|     }
 | |
|     break;
 | |
|   case ValID::NameVal: {               // Is it a named definition?
 | |
|     std::map<std::string,Signedness>::const_iterator I = 
 | |
|       CurModule.NamedTypeSigns.find(D.Name);
 | |
|     if (I != CurModule.NamedTypeSigns.end())
 | |
|       return I->second;
 | |
|     // Perhaps its a named forward .. just cache the name
 | |
|     Signedness S;
 | |
|     S.makeNamed(D.Name);
 | |
|     return S;
 | |
|   }
 | |
|   default: 
 | |
|     break;
 | |
|   }
 | |
|   // If we don't find it, its signless
 | |
|   Signedness S;
 | |
|   S.makeSignless();
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| /// This function is analagous to getElementType in LLVM. It provides the same
 | |
| /// function except that it looks up the Signedness instead of the type. This is
 | |
| /// used when processing GEP instructions that need to extract the type of an
 | |
| /// indexed struct/array/ptr member. 
 | |
| /// @brief Look up an element's sign.
 | |
| static Signedness getElementSign(const ValueInfo& VI, 
 | |
|                                  const std::vector<Value*> &Indices) {
 | |
|   const Type *Ptr = VI.V->getType();
 | |
|   assert(isa<PointerType>(Ptr) && "Need pointer type");
 | |
| 
 | |
|   unsigned CurIdx = 0;
 | |
|   Signedness S(VI.S);
 | |
|   while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
 | |
|     if (CurIdx == Indices.size())
 | |
|       break;
 | |
| 
 | |
|     Value *Index = Indices[CurIdx++];
 | |
|     assert(!isa<PointerType>(CT) || CurIdx == 1 && "Invalid type");
 | |
|     Ptr = CT->getTypeAtIndex(Index);
 | |
|     if (const Type* Ty = Ptr->getForwardedType())
 | |
|       Ptr = Ty;
 | |
|     assert(S.isComposite() && "Bad Signedness type");
 | |
|     if (isa<StructType>(CT)) {
 | |
|       S = S.get(cast<ConstantInt>(Index)->getZExtValue());
 | |
|     } else {
 | |
|       S = S.get(0UL);
 | |
|     }
 | |
|     if (S.isNamed())
 | |
|       S = CurModule.NamedTypeSigns[S.getName()];
 | |
|   }
 | |
|   Signedness Result;
 | |
|   Result.makeComposite(S);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// This function just translates a ConstantInfo into a ValueInfo and calls
 | |
| /// getElementSign(ValueInfo,...). Its just a convenience.
 | |
| /// @brief ConstantInfo version of getElementSign.
 | |
| static Signedness getElementSign(const ConstInfo& CI, 
 | |
|                                  const std::vector<Constant*> &Indices) {
 | |
|   ValueInfo VI;
 | |
|   VI.V = CI.C;
 | |
|   VI.S.copy(CI.S);
 | |
|   std::vector<Value*> Idx;
 | |
|   for (unsigned i = 0; i < Indices.size(); ++i)
 | |
|     Idx.push_back(Indices[i]);
 | |
|   Signedness result = getElementSign(VI, Idx);
 | |
|   VI.destroy();
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /// This function determines if two function types differ only in their use of
 | |
| /// the sret parameter attribute in the first argument. If they are identical 
 | |
| /// in all other respects, it returns true. Otherwise, it returns false.
 | |
| static bool FuncTysDifferOnlyBySRet(const FunctionType *F1, 
 | |
|                                     const FunctionType *F2) {
 | |
|   if (F1->getReturnType() != F2->getReturnType() ||
 | |
|       F1->getNumParams() != F2->getNumParams())
 | |
|     return false;
 | |
|   const ParamAttrsList *PAL1 = F1->getParamAttrs();
 | |
|   const ParamAttrsList *PAL2 = F2->getParamAttrs();
 | |
|   if (PAL1 && !PAL2 || PAL2 && !PAL1)
 | |
|     return false;
 | |
|   if (PAL1 && PAL2 && ((PAL1->size() != PAL2->size()) ||
 | |
|       (PAL1->getParamAttrs(0) != PAL2->getParamAttrs(0)))) 
 | |
|     return false;
 | |
|   unsigned SRetMask = ~unsigned(ParamAttr::StructRet);
 | |
|   for (unsigned i = 0; i < F1->getNumParams(); ++i) {
 | |
|     if (F1->getParamType(i) != F2->getParamType(i) || (PAL1 && PAL2 &&
 | |
|         (unsigned(PAL1->getParamAttrs(i+1)) & SRetMask !=
 | |
|          unsigned(PAL2->getParamAttrs(i+1)) & SRetMask)))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// This function determines if the type of V and Ty differ only by the SRet
 | |
| /// parameter attribute. This is a more generalized case of
 | |
| /// FuncTysDIfferOnlyBySRet since it doesn't require FunctionType arguments.
 | |
| static bool TypesDifferOnlyBySRet(Value *V, const Type* Ty) {
 | |
|   if (V->getType() == Ty)
 | |
|     return true;
 | |
|   const PointerType *PF1 = dyn_cast<PointerType>(Ty);
 | |
|   const PointerType *PF2 = dyn_cast<PointerType>(V->getType());
 | |
|   if (PF1 && PF2) {
 | |
|     const FunctionType* FT1 = dyn_cast<FunctionType>(PF1->getElementType());
 | |
|     const FunctionType* FT2 = dyn_cast<FunctionType>(PF2->getElementType());
 | |
|     if (FT1 && FT2)
 | |
|       return FuncTysDifferOnlyBySRet(FT1, FT2);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // The upgrade of csretcc to sret param attribute may have caused a function 
 | |
| // to not be found because the param attribute changed the type of the called 
 | |
| // function. This helper function, used in getExistingValue, detects that
 | |
| // situation and bitcasts the function to the correct type.
 | |
| static Value* handleSRetFuncTypeMerge(Value *V, const Type* Ty) {
 | |
|   // Handle degenerate cases
 | |
|   if (!V)
 | |
|     return 0;
 | |
|   if (V->getType() == Ty)
 | |
|     return V;
 | |
| 
 | |
|   const PointerType *PF1 = dyn_cast<PointerType>(Ty);
 | |
|   const PointerType *PF2 = dyn_cast<PointerType>(V->getType());
 | |
|   if (PF1 && PF2) {
 | |
|     const FunctionType *FT1 = dyn_cast<FunctionType>(PF1->getElementType());
 | |
|     const FunctionType *FT2 = dyn_cast<FunctionType>(PF2->getElementType());
 | |
|     if (FT1 && FT2 && FuncTysDifferOnlyBySRet(FT1, FT2)) {
 | |
|       const ParamAttrsList *PAL2 = FT2->getParamAttrs();
 | |
|       if (PAL2 && PAL2->paramHasAttr(1, ParamAttr::StructRet))
 | |
|         return V;
 | |
|       else if (Constant *C = dyn_cast<Constant>(V))
 | |
|         return ConstantExpr::getBitCast(C, PF1);
 | |
|       else
 | |
|         return new BitCastInst(V, PF1, "upgrd.cast", CurBB);
 | |
|     }
 | |
|       
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // getExistingValue - Look up the value specified by the provided type and
 | |
| // the provided ValID.  If the value exists and has already been defined, return
 | |
| // it.  Otherwise return null.
 | |
| //
 | |
| static Value *getExistingValue(const Type *Ty, const ValID &D) {
 | |
|   if (isa<FunctionType>(Ty)) {
 | |
|     error("Functions are not values and must be referenced as pointers");
 | |
|   }
 | |
| 
 | |
|   switch (D.Type) {
 | |
|   case ValID::NumberVal: {                 // Is it a numbered definition?
 | |
|     unsigned Num = (unsigned)D.Num;
 | |
| 
 | |
|     // Module constants occupy the lowest numbered slots...
 | |
|     std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty);
 | |
|     if (VI != CurModule.Values.end()) {
 | |
|       if (Num < VI->second.size())
 | |
|         return VI->second[Num];
 | |
|       Num -= VI->second.size();
 | |
|     }
 | |
| 
 | |
|     // Make sure that our type is within bounds
 | |
|     VI = CurFun.Values.find(Ty);
 | |
|     if (VI == CurFun.Values.end()) return 0;
 | |
| 
 | |
|     // Check that the number is within bounds...
 | |
|     if (VI->second.size() <= Num) return 0;
 | |
| 
 | |
|     return VI->second[Num];
 | |
|   }
 | |
| 
 | |
|   case ValID::NameVal: {                // Is it a named definition?
 | |
|     // Get the name out of the ID
 | |
|     RenameMapKey Key = makeRenameMapKey(D.Name, Ty, D.S);
 | |
|     Value *V = 0;
 | |
|     if (inFunctionScope()) {
 | |
|       // See if the name was renamed
 | |
|       RenameMapType::const_iterator I = CurFun.RenameMap.find(Key);
 | |
|       std::string LookupName;
 | |
|       if (I != CurFun.RenameMap.end())
 | |
|         LookupName = I->second;
 | |
|       else
 | |
|         LookupName = D.Name;
 | |
|       ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
 | |
|       V = SymTab.lookup(LookupName);
 | |
|       if (V && V->getType() != Ty)
 | |
|         V = handleSRetFuncTypeMerge(V, Ty);
 | |
|       assert((!V || TypesDifferOnlyBySRet(V, Ty)) && "Found wrong type");
 | |
|     }
 | |
|     if (!V) {
 | |
|       RenameMapType::const_iterator I = CurModule.RenameMap.find(Key);
 | |
|       std::string LookupName;
 | |
|       if (I != CurModule.RenameMap.end())
 | |
|         LookupName = I->second;
 | |
|       else
 | |
|         LookupName = D.Name;
 | |
|       V = CurModule.CurrentModule->getValueSymbolTable().lookup(LookupName);
 | |
|       if (V && V->getType() != Ty)
 | |
|         V = handleSRetFuncTypeMerge(V, Ty);
 | |
|       assert((!V || TypesDifferOnlyBySRet(V, Ty)) && "Found wrong type");
 | |
|     }
 | |
|     if (!V) 
 | |
|       return 0;
 | |
| 
 | |
|     D.destroy();  // Free old strdup'd memory...
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   // Check to make sure that "Ty" is an integral type, and that our
 | |
|   // value will fit into the specified type...
 | |
|   case ValID::ConstSIntVal:    // Is it a constant pool reference??
 | |
|     if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
 | |
|       error("Signed integral constant '" + itostr(D.ConstPool64) + 
 | |
|             "' is invalid for type '" + Ty->getDescription() + "'");
 | |
|     }
 | |
|     return ConstantInt::get(Ty, D.ConstPool64);
 | |
| 
 | |
|   case ValID::ConstUIntVal:     // Is it an unsigned const pool reference?
 | |
|     if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) {
 | |
|       if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64))
 | |
|         error("Integral constant '" + utostr(D.UConstPool64) + 
 | |
|               "' is invalid or out of range");
 | |
|       else     // This is really a signed reference.  Transmogrify.
 | |
|         return ConstantInt::get(Ty, D.ConstPool64);
 | |
|     } else
 | |
|       return ConstantInt::get(Ty, D.UConstPool64);
 | |
| 
 | |
|   case ValID::ConstFPVal:        // Is it a floating point const pool reference?
 | |
|     if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
 | |
|       error("FP constant invalid for type");
 | |
|     return ConstantFP::get(Ty, D.ConstPoolFP);
 | |
| 
 | |
|   case ValID::ConstNullVal:      // Is it a null value?
 | |
|     if (!isa<PointerType>(Ty))
 | |
|       error("Cannot create a a non pointer null");
 | |
|     return ConstantPointerNull::get(cast<PointerType>(Ty));
 | |
| 
 | |
|   case ValID::ConstUndefVal:      // Is it an undef value?
 | |
|     return UndefValue::get(Ty);
 | |
| 
 | |
|   case ValID::ConstZeroVal:      // Is it a zero value?
 | |
|     return Constant::getNullValue(Ty);
 | |
|     
 | |
|   case ValID::ConstantVal:       // Fully resolved constant?
 | |
|     if (D.ConstantValue->getType() != Ty) 
 | |
|       error("Constant expression type different from required type");
 | |
|     return D.ConstantValue;
 | |
| 
 | |
|   case ValID::InlineAsmVal: {    // Inline asm expression
 | |
|     const PointerType *PTy = dyn_cast<PointerType>(Ty);
 | |
|     const FunctionType *FTy =
 | |
|       PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
 | |
|     if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints))
 | |
|       error("Invalid type for asm constraint string");
 | |
|     InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
 | |
|                                    D.IAD->HasSideEffects);
 | |
|     D.destroy();   // Free InlineAsmDescriptor.
 | |
|     return IA;
 | |
|   }
 | |
|   default:
 | |
|     assert(0 && "Unhandled case");
 | |
|     return 0;
 | |
|   }   // End of switch
 | |
| 
 | |
|   assert(0 && "Unhandled case");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // getVal - This function is identical to getExistingValue, except that if a
 | |
| // value is not already defined, it "improvises" by creating a placeholder var
 | |
| // that looks and acts just like the requested variable.  When the value is
 | |
| // defined later, all uses of the placeholder variable are replaced with the
 | |
| // real thing.
 | |
| //
 | |
| static Value *getVal(const Type *Ty, const ValID &ID) {
 | |
|   if (Ty == Type::LabelTy)
 | |
|     error("Cannot use a basic block here");
 | |
| 
 | |
|   // See if the value has already been defined.
 | |
|   Value *V = getExistingValue(Ty, ID);
 | |
|   if (V) return V;
 | |
| 
 | |
|   if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty))
 | |
|     error("Invalid use of a composite type");
 | |
| 
 | |
|   // If we reached here, we referenced either a symbol that we don't know about
 | |
|   // or an id number that hasn't been read yet.  We may be referencing something
 | |
|   // forward, so just create an entry to be resolved later and get to it...
 | |
|   V = new Argument(Ty);
 | |
| 
 | |
|   // Remember where this forward reference came from.  FIXME, shouldn't we try
 | |
|   // to recycle these things??
 | |
|   CurModule.PlaceHolderInfo.insert(
 | |
|     std::make_pair(V, std::make_pair(ID, Upgradelineno)));
 | |
| 
 | |
|   if (inFunctionScope())
 | |
|     InsertValue(V, CurFun.LateResolveValues);
 | |
|   else
 | |
|     InsertValue(V, CurModule.LateResolveValues);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// @brief This just makes any name given to it unique, up to MAX_UINT times.
 | |
| static std::string makeNameUnique(const std::string& Name) {
 | |
|   static unsigned UniqueNameCounter = 1;
 | |
|   std::string Result(Name);
 | |
|   Result += ".upgrd." + llvm::utostr(UniqueNameCounter++);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// getBBVal - This is used for two purposes:
 | |
| ///  * If isDefinition is true, a new basic block with the specified ID is being
 | |
| ///    defined.
 | |
| ///  * If isDefinition is true, this is a reference to a basic block, which may
 | |
| ///    or may not be a forward reference.
 | |
| ///
 | |
| static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) {
 | |
|   assert(inFunctionScope() && "Can't get basic block at global scope");
 | |
| 
 | |
|   std::string Name;
 | |
|   BasicBlock *BB = 0;
 | |
|   switch (ID.Type) {
 | |
|   default: 
 | |
|     error("Illegal label reference " + ID.getName());
 | |
|     break;
 | |
|   case ValID::NumberVal:                // Is it a numbered definition?
 | |
|     if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size())
 | |
|       CurFun.NumberedBlocks.resize(ID.Num+1);
 | |
|     BB = CurFun.NumberedBlocks[ID.Num];
 | |
|     break;
 | |
|   case ValID::NameVal:                  // Is it a named definition?
 | |
|     Name = ID.Name;
 | |
|     if (Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name)) {
 | |
|       if (N->getType() != Type::LabelTy) {
 | |
|         // Register names didn't use to conflict with basic block names
 | |
|         // because of type planes. Now they all have to be unique. So, we just
 | |
|         // rename the register and treat this name as if no basic block
 | |
|         // had been found.
 | |
|         RenameMapKey Key = makeRenameMapKey(ID.Name, N->getType(), ID.S);
 | |
|         N->setName(makeNameUnique(N->getName()));
 | |
|         CurModule.RenameMap[Key] = N->getName();
 | |
|         BB = 0;
 | |
|       } else {
 | |
|         BB = cast<BasicBlock>(N);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // See if the block has already been defined.
 | |
|   if (BB) {
 | |
|     // If this is the definition of the block, make sure the existing value was
 | |
|     // just a forward reference.  If it was a forward reference, there will be
 | |
|     // an entry for it in the PlaceHolderInfo map.
 | |
|     if (isDefinition && !CurFun.BBForwardRefs.erase(BB))
 | |
|       // The existing value was a definition, not a forward reference.
 | |
|       error("Redefinition of label " + ID.getName());
 | |
| 
 | |
|     ID.destroy();                       // Free strdup'd memory.
 | |
|     return BB;
 | |
|   }
 | |
| 
 | |
|   // Otherwise this block has not been seen before.
 | |
|   BB = new BasicBlock("", CurFun.CurrentFunction);
 | |
|   if (ID.Type == ValID::NameVal) {
 | |
|     BB->setName(ID.Name);
 | |
|   } else {
 | |
|     CurFun.NumberedBlocks[ID.Num] = BB;
 | |
|   }
 | |
| 
 | |
|   // If this is not a definition, keep track of it so we can use it as a forward
 | |
|   // reference.
 | |
|   if (!isDefinition) {
 | |
|     // Remember where this forward reference came from.
 | |
|     CurFun.BBForwardRefs[BB] = std::make_pair(ID, Upgradelineno);
 | |
|   } else {
 | |
|     // The forward declaration could have been inserted anywhere in the
 | |
|     // function: insert it into the correct place now.
 | |
|     CurFun.CurrentFunction->getBasicBlockList().remove(BB);
 | |
|     CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
 | |
|   }
 | |
|   ID.destroy();
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //              Code to handle forward references in instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This code handles the late binding needed with statements that reference
 | |
| // values not defined yet... for example, a forward branch, or the PHI node for
 | |
| // a loop body.
 | |
| //
 | |
| // This keeps a table (CurFun.LateResolveValues) of all such forward references
 | |
| // and back patchs after we are done.
 | |
| //
 | |
| 
 | |
| // ResolveDefinitions - If we could not resolve some defs at parsing
 | |
| // time (forward branches, phi functions for loops, etc...) resolve the
 | |
| // defs now...
 | |
| //
 | |
| static void 
 | |
| ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers,
 | |
|                    std::map<const Type*,ValueList> *FutureLateResolvers) {
 | |
| 
 | |
|   // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
 | |
|   for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(),
 | |
|          E = LateResolvers.end(); LRI != E; ++LRI) {
 | |
|     const Type* Ty = LRI->first;
 | |
|     ValueList &List = LRI->second;
 | |
|     while (!List.empty()) {
 | |
|       Value *V = List.back();
 | |
|       List.pop_back();
 | |
| 
 | |
|       std::map<Value*, std::pair<ValID, int> >::iterator PHI =
 | |
|         CurModule.PlaceHolderInfo.find(V);
 | |
|       assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error");
 | |
| 
 | |
|       ValID &DID = PHI->second.first;
 | |
| 
 | |
|       Value *TheRealValue = getExistingValue(Ty, DID);
 | |
|       if (TheRealValue) {
 | |
|         V->replaceAllUsesWith(TheRealValue);
 | |
|         delete V;
 | |
|         CurModule.PlaceHolderInfo.erase(PHI);
 | |
|       } else if (FutureLateResolvers) {
 | |
|         // Functions have their unresolved items forwarded to the module late
 | |
|         // resolver table
 | |
|         InsertValue(V, *FutureLateResolvers);
 | |
|       } else {
 | |
|         if (DID.Type == ValID::NameVal) {
 | |
|           error("Reference to an invalid definition: '" + DID.getName() +
 | |
|                 "' of type '" + V->getType()->getDescription() + "'",
 | |
|                 PHI->second.second);
 | |
|             return;
 | |
|         } else {
 | |
|           error("Reference to an invalid definition: #" +
 | |
|                 itostr(DID.Num) + " of type '" + 
 | |
|                 V->getType()->getDescription() + "'", PHI->second.second);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LateResolvers.clear();
 | |
| }
 | |
| 
 | |
| /// This function is used for type resolution and upref handling. When a type
 | |
| /// becomes concrete, this function is called to adjust the signedness for the
 | |
| /// concrete type.
 | |
| static void ResolveTypeSign(const Type* oldTy, const Signedness &Sign) {
 | |
|   std::string TyName = CurModule.CurrentModule->getTypeName(oldTy);
 | |
|   if (!TyName.empty())
 | |
|     CurModule.NamedTypeSigns[TyName] = Sign;
 | |
| }
 | |
| 
 | |
| /// ResolveTypeTo - A brand new type was just declared.  This means that (if
 | |
| /// name is not null) things referencing Name can be resolved.  Otherwise, 
 | |
| /// things refering to the number can be resolved.  Do this now.
 | |
| static void ResolveTypeTo(char *Name, const Type *ToTy, const Signedness& Sign){
 | |
|   ValID D;
 | |
|   if (Name)
 | |
|     D = ValID::create(Name);
 | |
|   else      
 | |
|     D = ValID::create((int)CurModule.Types.size());
 | |
|   D.S.copy(Sign);
 | |
| 
 | |
|   if (Name)
 | |
|     CurModule.NamedTypeSigns[Name] = Sign;
 | |
| 
 | |
|   std::map<ValID, PATypeHolder>::iterator I =
 | |
|     CurModule.LateResolveTypes.find(D);
 | |
|   if (I != CurModule.LateResolveTypes.end()) {
 | |
|     const Type *OldTy = I->second.get();
 | |
|     ((DerivedType*)OldTy)->refineAbstractTypeTo(ToTy);
 | |
|     CurModule.LateResolveTypes.erase(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// This is the implementation portion of TypeHasInteger. It traverses the
 | |
| /// type given, avoiding recursive types, and returns true as soon as it finds
 | |
| /// an integer type. If no integer type is found, it returns false.
 | |
| static bool TypeHasIntegerI(const Type *Ty, std::vector<const Type*> Stack) {
 | |
|   // Handle some easy cases
 | |
|   if (Ty->isPrimitiveType() || (Ty->getTypeID() == Type::OpaqueTyID))
 | |
|     return false;
 | |
|   if (Ty->isInteger())
 | |
|     return true;
 | |
|   if (const SequentialType *STy = dyn_cast<SequentialType>(Ty))
 | |
|     return STy->getElementType()->isInteger();
 | |
| 
 | |
|   // Avoid type structure recursion
 | |
|   for (std::vector<const Type*>::iterator I = Stack.begin(), E = Stack.end();
 | |
|        I != E; ++I)
 | |
|     if (Ty == *I)
 | |
|       return false;
 | |
| 
 | |
|   // Push us on the type stack
 | |
|   Stack.push_back(Ty);
 | |
| 
 | |
|   if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
 | |
|     if (TypeHasIntegerI(FTy->getReturnType(), Stack)) 
 | |
|       return true;
 | |
|     FunctionType::param_iterator I = FTy->param_begin();
 | |
|     FunctionType::param_iterator E = FTy->param_end();
 | |
|     for (; I != E; ++I)
 | |
|       if (TypeHasIntegerI(*I, Stack))
 | |
|         return true;
 | |
|     return false;
 | |
|   } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     StructType::element_iterator I = STy->element_begin();
 | |
|     StructType::element_iterator E = STy->element_end();
 | |
|     for (; I != E; ++I) {
 | |
|       if (TypeHasIntegerI(*I, Stack))
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   // There shouldn't be anything else, but its definitely not integer
 | |
|   assert(0 && "What type is this?");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// This is the interface to TypeHasIntegerI. It just provides the type stack,
 | |
| /// to avoid recursion, and then calls TypeHasIntegerI.
 | |
| static inline bool TypeHasInteger(const Type *Ty) {
 | |
|   std::vector<const Type*> TyStack;
 | |
|   return TypeHasIntegerI(Ty, TyStack);
 | |
| }
 | |
| 
 | |
| // setValueName - Set the specified value to the name given.  The name may be
 | |
| // null potentially, in which case this is a noop.  The string passed in is
 | |
| // assumed to be a malloc'd string buffer, and is free'd by this function.
 | |
| //
 | |
| static void setValueName(const ValueInfo &V, char *NameStr) {
 | |
|   if (NameStr) {
 | |
|     std::string Name(NameStr);      // Copy string
 | |
|     free(NameStr);                  // Free old string
 | |
| 
 | |
|     if (V.V->getType() == Type::VoidTy) {
 | |
|       error("Can't assign name '" + Name + "' to value with void type");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     assert(inFunctionScope() && "Must be in function scope");
 | |
| 
 | |
|     // Search the function's symbol table for an existing value of this name
 | |
|     ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
 | |
|     Value* Existing = ST.lookup(Name);
 | |
|     if (Existing) {
 | |
|       // An existing value of the same name was found. This might have happened
 | |
|       // because of the integer type planes collapsing in LLVM 2.0. 
 | |
|       if (Existing->getType() == V.V->getType() &&
 | |
|           !TypeHasInteger(Existing->getType())) {
 | |
|         // If the type does not contain any integers in them then this can't be
 | |
|         // a type plane collapsing issue. It truly is a redefinition and we 
 | |
|         // should error out as the assembly is invalid.
 | |
|         error("Redefinition of value named '" + Name + "' of type '" +
 | |
|               V.V->getType()->getDescription() + "'");
 | |
|         return;
 | |
|       } 
 | |
|       // In LLVM 2.0 we don't allow names to be re-used for any values in a 
 | |
|       // function, regardless of Type. Previously re-use of names was okay as 
 | |
|       // long as they were distinct types. With type planes collapsing because
 | |
|       // of the signedness change and because of PR411, this can no longer be
 | |
|       // supported. We must search the entire symbol table for a conflicting
 | |
|       // name and make the name unique. No warning is needed as this can't 
 | |
|       // cause a problem.
 | |
|       std::string NewName = makeNameUnique(Name);
 | |
|       // We're changing the name but it will probably be used by other 
 | |
|       // instructions as operands later on. Consequently we have to retain
 | |
|       // a mapping of the renaming that we're doing.
 | |
|       RenameMapKey Key = makeRenameMapKey(Name, V.V->getType(), V.S);
 | |
|       CurFun.RenameMap[Key] = NewName;
 | |
|       Name = NewName;
 | |
|     }
 | |
| 
 | |
|     // Set the name.
 | |
|     V.V->setName(Name);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ParseGlobalVariable - Handle parsing of a global.  If Initializer is null,
 | |
| /// this is a declaration, otherwise it is a definition.
 | |
| static GlobalVariable *
 | |
| ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
 | |
|                     bool isConstantGlobal, const Type *Ty,
 | |
|                     Constant *Initializer,
 | |
|                     const Signedness &Sign) {
 | |
|   if (isa<FunctionType>(Ty))
 | |
|     error("Cannot declare global vars of function type");
 | |
| 
 | |
|   const PointerType *PTy = PointerType::get(Ty);
 | |
| 
 | |
|   std::string Name;
 | |
|   if (NameStr) {
 | |
|     Name = NameStr;      // Copy string
 | |
|     free(NameStr);       // Free old string
 | |
|   }
 | |
| 
 | |
|   // See if this global value was forward referenced.  If so, recycle the
 | |
|   // object.
 | |
|   ValID ID;
 | |
|   if (!Name.empty()) {
 | |
|     ID = ValID::create((char*)Name.c_str());
 | |
|   } else {
 | |
|     ID = ValID::create((int)CurModule.Values[PTy].size());
 | |
|   }
 | |
|   ID.S.makeComposite(Sign);
 | |
| 
 | |
|   if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
 | |
|     // Move the global to the end of the list, from whereever it was
 | |
|     // previously inserted.
 | |
|     GlobalVariable *GV = cast<GlobalVariable>(FWGV);
 | |
|     CurModule.CurrentModule->getGlobalList().remove(GV);
 | |
|     CurModule.CurrentModule->getGlobalList().push_back(GV);
 | |
|     GV->setInitializer(Initializer);
 | |
|     GV->setLinkage(Linkage);
 | |
|     GV->setConstant(isConstantGlobal);
 | |
|     InsertValue(GV, CurModule.Values);
 | |
|     return GV;
 | |
|   }
 | |
| 
 | |
|   // If this global has a name, check to see if there is already a definition
 | |
|   // of this global in the module and emit warnings if there are conflicts.
 | |
|   if (!Name.empty()) {
 | |
|     // The global has a name. See if there's an existing one of the same name.
 | |
|     if (CurModule.CurrentModule->getNamedGlobal(Name) ||
 | |
|         CurModule.CurrentModule->getFunction(Name)) {
 | |
|       // We found an existing global of the same name. This isn't allowed 
 | |
|       // in LLVM 2.0. Consequently, we must alter the name of the global so it
 | |
|       // can at least compile. This can happen because of type planes 
 | |
|       // There is alread a global of the same name which means there is a
 | |
|       // conflict. Let's see what we can do about it.
 | |
|       std::string NewName(makeNameUnique(Name));
 | |
|       if (Linkage != GlobalValue::InternalLinkage) {
 | |
|         // The linkage of this gval is external so we can't reliably rename 
 | |
|         // it because it could potentially create a linking problem.  
 | |
|         // However, we can't leave the name conflict in the output either or 
 | |
|         // it won't assemble with LLVM 2.0.  So, all we can do is rename 
 | |
|         // this one to something unique and emit a warning about the problem.
 | |
|         warning("Renaming global variable '" + Name + "' to '" + NewName + 
 | |
|                   "' may cause linkage errors");
 | |
|       }
 | |
| 
 | |
|       // Put the renaming in the global rename map
 | |
|       RenameMapKey Key = makeRenameMapKey(Name, PointerType::get(Ty), ID.S);
 | |
|       CurModule.RenameMap[Key] = NewName;
 | |
| 
 | |
|       // Rename it
 | |
|       Name = NewName;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise there is no existing GV to use, create one now.
 | |
|   GlobalVariable *GV =
 | |
|     new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
 | |
|                        CurModule.CurrentModule);
 | |
|   InsertValue(GV, CurModule.Values);
 | |
|   // Remember the sign of this global.
 | |
|   CurModule.NamedValueSigns[Name] = ID.S;
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // setTypeName - Set the specified type to the name given.  The name may be
 | |
| // null potentially, in which case this is a noop.  The string passed in is
 | |
| // assumed to be a malloc'd string buffer, and is freed by this function.
 | |
| //
 | |
| // This function returns true if the type has already been defined, but is
 | |
| // allowed to be redefined in the specified context.  If the name is a new name
 | |
| // for the type plane, it is inserted and false is returned.
 | |
| static bool setTypeName(const PATypeInfo& TI, char *NameStr) {
 | |
|   assert(!inFunctionScope() && "Can't give types function-local names");
 | |
|   if (NameStr == 0) return false;
 | |
|  
 | |
|   std::string Name(NameStr);      // Copy string
 | |
|   free(NameStr);                  // Free old string
 | |
| 
 | |
|   const Type* Ty = TI.PAT->get();
 | |
| 
 | |
|   // We don't allow assigning names to void type
 | |
|   if (Ty == Type::VoidTy) {
 | |
|     error("Can't assign name '" + Name + "' to the void type");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Set the type name, checking for conflicts as we do so.
 | |
|   bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, Ty);
 | |
| 
 | |
|   // Save the sign information for later use 
 | |
|   CurModule.NamedTypeSigns[Name] = TI.S;
 | |
| 
 | |
|   if (AlreadyExists) {   // Inserting a name that is already defined???
 | |
|     const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
 | |
|     assert(Existing && "Conflict but no matching type?");
 | |
| 
 | |
|     // There is only one case where this is allowed: when we are refining an
 | |
|     // opaque type.  In this case, Existing will be an opaque type.
 | |
|     if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
 | |
|       // We ARE replacing an opaque type!
 | |
|       const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(Ty);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, this is an attempt to redefine a type. That's okay if
 | |
|     // the redefinition is identical to the original. This will be so if
 | |
|     // Existing and T point to the same Type object. In this one case we
 | |
|     // allow the equivalent redefinition.
 | |
|     if (Existing == Ty) return true;  // Yes, it's equal.
 | |
| 
 | |
|     // Any other kind of (non-equivalent) redefinition is an error.
 | |
|     error("Redefinition of type named '" + Name + "' in the '" +
 | |
|           Ty->getDescription() + "' type plane");
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Code for handling upreferences in type names...
 | |
| //
 | |
| 
 | |
| // TypeContains - Returns true if Ty directly contains E in it.
 | |
| //
 | |
| static bool TypeContains(const Type *Ty, const Type *E) {
 | |
|   return std::find(Ty->subtype_begin(), Ty->subtype_end(),
 | |
|                    E) != Ty->subtype_end();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct UpRefRecord {
 | |
|     // NestingLevel - The number of nesting levels that need to be popped before
 | |
|     // this type is resolved.
 | |
|     unsigned NestingLevel;
 | |
| 
 | |
|     // LastContainedTy - This is the type at the current binding level for the
 | |
|     // type.  Every time we reduce the nesting level, this gets updated.
 | |
|     const Type *LastContainedTy;
 | |
| 
 | |
|     // UpRefTy - This is the actual opaque type that the upreference is
 | |
|     // represented with.
 | |
|     OpaqueType *UpRefTy;
 | |
| 
 | |
|     UpRefRecord(unsigned NL, OpaqueType *URTy)
 | |
|       : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) { }
 | |
|   };
 | |
| }
 | |
| 
 | |
| // UpRefs - A list of the outstanding upreferences that need to be resolved.
 | |
| static std::vector<UpRefRecord> UpRefs;
 | |
| 
 | |
| /// HandleUpRefs - Every time we finish a new layer of types, this function is
 | |
| /// called.  It loops through the UpRefs vector, which is a list of the
 | |
| /// currently active types.  For each type, if the up reference is contained in
 | |
| /// the newly completed type, we decrement the level count.  When the level
 | |
| /// count reaches zero, the upreferenced type is the type that is passed in:
 | |
| /// thus we can complete the cycle.
 | |
| ///
 | |
| static PATypeHolder HandleUpRefs(const Type *ty, const Signedness& Sign) {
 | |
|   // If Ty isn't abstract, or if there are no up-references in it, then there is
 | |
|   // nothing to resolve here.
 | |
|   if (!ty->isAbstract() || UpRefs.empty()) return ty;
 | |
|   
 | |
|   PATypeHolder Ty(ty);
 | |
|   UR_OUT("Type '" << Ty->getDescription() <<
 | |
|          "' newly formed.  Resolving upreferences.\n" <<
 | |
|          UpRefs.size() << " upreferences active!\n");
 | |
| 
 | |
|   // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
 | |
|   // to zero), we resolve them all together before we resolve them to Ty.  At
 | |
|   // the end of the loop, if there is anything to resolve to Ty, it will be in
 | |
|   // this variable.
 | |
|   OpaqueType *TypeToResolve = 0;
 | |
| 
 | |
|   unsigned i = 0;
 | |
|   for (; i != UpRefs.size(); ++i) {
 | |
|     UR_OUT("  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
 | |
|            << UpRefs[i].UpRefTy->getDescription() << ") = "
 | |
|            << (TypeContains(Ty, UpRefs[i].UpRefTy) ? "true" : "false") << "\n");
 | |
|     if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
 | |
|       // Decrement level of upreference
 | |
|       unsigned Level = --UpRefs[i].NestingLevel;
 | |
|       UpRefs[i].LastContainedTy = Ty;
 | |
|       UR_OUT("  Uplevel Ref Level = " << Level << "\n");
 | |
|       if (Level == 0) {                     // Upreference should be resolved!
 | |
|         if (!TypeToResolve) {
 | |
|           TypeToResolve = UpRefs[i].UpRefTy;
 | |
|         } else {
 | |
|           UR_OUT("  * Resolving upreference for "
 | |
|                  << UpRefs[i].UpRefTy->getDescription() << "\n";
 | |
|           std::string OldName = UpRefs[i].UpRefTy->getDescription());
 | |
|           ResolveTypeSign(UpRefs[i].UpRefTy, Sign);
 | |
|           UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
 | |
|           UR_OUT("  * Type '" << OldName << "' refined upreference to: "
 | |
|                  << (const void*)Ty << ", " << Ty->getDescription() << "\n");
 | |
|         }
 | |
|         UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list...
 | |
|         --i;                                // Do not skip the next element...
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TypeToResolve) {
 | |
|     UR_OUT("  * Resolving upreference for "
 | |
|            << UpRefs[i].UpRefTy->getDescription() << "\n";
 | |
|            std::string OldName = TypeToResolve->getDescription());
 | |
|     ResolveTypeSign(TypeToResolve, Sign);
 | |
|     TypeToResolve->refineAbstractTypeTo(Ty);
 | |
|   }
 | |
| 
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| bool Signedness::operator<(const Signedness &that) const {
 | |
|   if (isNamed()) {
 | |
|     if (that.isNamed()) 
 | |
|       return *(this->name) < *(that.name);
 | |
|     else
 | |
|       return CurModule.NamedTypeSigns[*name] < that;
 | |
|   } else if (that.isNamed()) {
 | |
|     return *this < CurModule.NamedTypeSigns[*that.name];
 | |
|   }
 | |
| 
 | |
|   if (isComposite() && that.isComposite()) {
 | |
|     if (sv->size() == that.sv->size()) {
 | |
|       SignVector::const_iterator thisI = sv->begin(), thisE = sv->end();
 | |
|       SignVector::const_iterator thatI = that.sv->begin(), 
 | |
|                                  thatE = that.sv->end();
 | |
|       for (; thisI != thisE; ++thisI, ++thatI) {
 | |
|         if (*thisI < *thatI)
 | |
|           return true;
 | |
|         else if (!(*thisI == *thatI))
 | |
|           return false;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|     return sv->size() < that.sv->size();
 | |
|   }  
 | |
|   return kind < that.kind;
 | |
| }
 | |
| 
 | |
| bool Signedness::operator==(const Signedness &that) const {
 | |
|   if (isNamed())
 | |
|     if (that.isNamed())
 | |
|       return *(this->name) == *(that.name);
 | |
|     else 
 | |
|       return CurModule.NamedTypeSigns[*(this->name)] == that;
 | |
|   else if (that.isNamed())
 | |
|     return *this == CurModule.NamedTypeSigns[*(that.name)];
 | |
|   if (isComposite() && that.isComposite()) {
 | |
|     if (sv->size() == that.sv->size()) {
 | |
|       SignVector::const_iterator thisI = sv->begin(), thisE = sv->end();
 | |
|       SignVector::const_iterator thatI = that.sv->begin(), 
 | |
|                                  thatE = that.sv->end();
 | |
|       for (; thisI != thisE; ++thisI, ++thatI) {
 | |
|         if (!(*thisI == *thatI))
 | |
|           return false;
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   return kind == that.kind;
 | |
| }
 | |
| 
 | |
| void Signedness::copy(const Signedness &that) {
 | |
|   if (that.isNamed()) {
 | |
|     kind = Named;
 | |
|     name = new std::string(*that.name);
 | |
|   } else if (that.isComposite()) {
 | |
|     kind = Composite;
 | |
|     sv = new SignVector();
 | |
|     *sv = *that.sv;
 | |
|   } else {
 | |
|     kind = that.kind;
 | |
|     sv = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Signedness::destroy() {
 | |
|   if (isNamed()) {
 | |
|     delete name;
 | |
|   } else if (isComposite()) {
 | |
|     delete sv;
 | |
|   } 
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| void Signedness::dump() const {
 | |
|   if (isComposite()) {
 | |
|     if (sv->size() == 1) {
 | |
|       (*sv)[0].dump();
 | |
|       std::cerr << "*";
 | |
|     } else {
 | |
|       std::cerr << "{ " ;
 | |
|       for (unsigned i = 0; i < sv->size(); ++i) {
 | |
|         if (i != 0)
 | |
|           std::cerr << ", ";
 | |
|         (*sv)[i].dump();
 | |
|       }
 | |
|       std::cerr << "} " ;
 | |
|     }
 | |
|   } else if (isNamed()) {
 | |
|     std::cerr << *name;
 | |
|   } else if (isSigned()) {
 | |
|     std::cerr << "S";
 | |
|   } else if (isUnsigned()) {
 | |
|     std::cerr << "U";
 | |
|   } else
 | |
|     std::cerr << ".";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline Instruction::TermOps 
 | |
| getTermOp(TermOps op) {
 | |
|   switch (op) {
 | |
|     default           : assert(0 && "Invalid OldTermOp");
 | |
|     case RetOp        : return Instruction::Ret;
 | |
|     case BrOp         : return Instruction::Br;
 | |
|     case SwitchOp     : return Instruction::Switch;
 | |
|     case InvokeOp     : return Instruction::Invoke;
 | |
|     case UnwindOp     : return Instruction::Unwind;
 | |
|     case UnreachableOp: return Instruction::Unreachable;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static inline Instruction::BinaryOps 
 | |
| getBinaryOp(BinaryOps op, const Type *Ty, const Signedness& Sign) {
 | |
|   switch (op) {
 | |
|     default     : assert(0 && "Invalid OldBinaryOps");
 | |
|     case SetEQ  : 
 | |
|     case SetNE  : 
 | |
|     case SetLE  :
 | |
|     case SetGE  :
 | |
|     case SetLT  :
 | |
|     case SetGT  : assert(0 && "Should use getCompareOp");
 | |
|     case AddOp  : return Instruction::Add;
 | |
|     case SubOp  : return Instruction::Sub;
 | |
|     case MulOp  : return Instruction::Mul;
 | |
|     case DivOp  : {
 | |
|       // This is an obsolete instruction so we must upgrade it based on the
 | |
|       // types of its operands.
 | |
|       bool isFP = Ty->isFloatingPoint();
 | |
|       if (const VectorType* PTy = dyn_cast<VectorType>(Ty))
 | |
|         // If its a vector type we want to use the element type
 | |
|         isFP = PTy->getElementType()->isFloatingPoint();
 | |
|       if (isFP)
 | |
|         return Instruction::FDiv;
 | |
|       else if (Sign.isSigned())
 | |
|         return Instruction::SDiv;
 | |
|       return Instruction::UDiv;
 | |
|     }
 | |
|     case UDivOp : return Instruction::UDiv;
 | |
|     case SDivOp : return Instruction::SDiv;
 | |
|     case FDivOp : return Instruction::FDiv;
 | |
|     case RemOp  : {
 | |
|       // This is an obsolete instruction so we must upgrade it based on the
 | |
|       // types of its operands.
 | |
|       bool isFP = Ty->isFloatingPoint();
 | |
|       if (const VectorType* PTy = dyn_cast<VectorType>(Ty))
 | |
|         // If its a vector type we want to use the element type
 | |
|         isFP = PTy->getElementType()->isFloatingPoint();
 | |
|       // Select correct opcode
 | |
|       if (isFP)
 | |
|         return Instruction::FRem;
 | |
|       else if (Sign.isSigned())
 | |
|         return Instruction::SRem;
 | |
|       return Instruction::URem;
 | |
|     }
 | |
|     case URemOp : return Instruction::URem;
 | |
|     case SRemOp : return Instruction::SRem;
 | |
|     case FRemOp : return Instruction::FRem;
 | |
|     case LShrOp : return Instruction::LShr;
 | |
|     case AShrOp : return Instruction::AShr;
 | |
|     case ShlOp  : return Instruction::Shl;
 | |
|     case ShrOp  : 
 | |
|       if (Sign.isSigned())
 | |
|         return Instruction::AShr;
 | |
|       return Instruction::LShr;
 | |
|     case AndOp  : return Instruction::And;
 | |
|     case OrOp   : return Instruction::Or;
 | |
|     case XorOp  : return Instruction::Xor;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static inline Instruction::OtherOps 
 | |
| getCompareOp(BinaryOps op, unsigned short &predicate, const Type* &Ty,
 | |
|              const Signedness &Sign) {
 | |
|   bool isSigned = Sign.isSigned();
 | |
|   bool isFP = Ty->isFloatingPoint();
 | |
|   switch (op) {
 | |
|     default     : assert(0 && "Invalid OldSetCC");
 | |
|     case SetEQ  : 
 | |
|       if (isFP) {
 | |
|         predicate = FCmpInst::FCMP_OEQ;
 | |
|         return Instruction::FCmp;
 | |
|       } else {
 | |
|         predicate = ICmpInst::ICMP_EQ;
 | |
|         return Instruction::ICmp;
 | |
|       }
 | |
|     case SetNE  : 
 | |
|       if (isFP) {
 | |
|         predicate = FCmpInst::FCMP_UNE;
 | |
|         return Instruction::FCmp;
 | |
|       } else {
 | |
|         predicate = ICmpInst::ICMP_NE;
 | |
|         return Instruction::ICmp;
 | |
|       }
 | |
|     case SetLE  : 
 | |
|       if (isFP) {
 | |
|         predicate = FCmpInst::FCMP_OLE;
 | |
|         return Instruction::FCmp;
 | |
|       } else {
 | |
|         if (isSigned)
 | |
|           predicate = ICmpInst::ICMP_SLE;
 | |
|         else
 | |
|           predicate = ICmpInst::ICMP_ULE;
 | |
|         return Instruction::ICmp;
 | |
|       }
 | |
|     case SetGE  : 
 | |
|       if (isFP) {
 | |
|         predicate = FCmpInst::FCMP_OGE;
 | |
|         return Instruction::FCmp;
 | |
|       } else {
 | |
|         if (isSigned)
 | |
|           predicate = ICmpInst::ICMP_SGE;
 | |
|         else
 | |
|           predicate = ICmpInst::ICMP_UGE;
 | |
|         return Instruction::ICmp;
 | |
|       }
 | |
|     case SetLT  : 
 | |
|       if (isFP) {
 | |
|         predicate = FCmpInst::FCMP_OLT;
 | |
|         return Instruction::FCmp;
 | |
|       } else {
 | |
|         if (isSigned)
 | |
|           predicate = ICmpInst::ICMP_SLT;
 | |
|         else
 | |
|           predicate = ICmpInst::ICMP_ULT;
 | |
|         return Instruction::ICmp;
 | |
|       }
 | |
|     case SetGT  : 
 | |
|       if (isFP) {
 | |
|         predicate = FCmpInst::FCMP_OGT;
 | |
|         return Instruction::FCmp;
 | |
|       } else {
 | |
|         if (isSigned)
 | |
|           predicate = ICmpInst::ICMP_SGT;
 | |
|         else
 | |
|           predicate = ICmpInst::ICMP_UGT;
 | |
|         return Instruction::ICmp;
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static inline Instruction::MemoryOps getMemoryOp(MemoryOps op) {
 | |
|   switch (op) {
 | |
|     default              : assert(0 && "Invalid OldMemoryOps");
 | |
|     case MallocOp        : return Instruction::Malloc;
 | |
|     case FreeOp          : return Instruction::Free;
 | |
|     case AllocaOp        : return Instruction::Alloca;
 | |
|     case LoadOp          : return Instruction::Load;
 | |
|     case StoreOp         : return Instruction::Store;
 | |
|     case GetElementPtrOp : return Instruction::GetElementPtr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static inline Instruction::OtherOps 
 | |
| getOtherOp(OtherOps op, const Signedness &Sign) {
 | |
|   switch (op) {
 | |
|     default               : assert(0 && "Invalid OldOtherOps");
 | |
|     case PHIOp            : return Instruction::PHI;
 | |
|     case CallOp           : return Instruction::Call;
 | |
|     case SelectOp         : return Instruction::Select;
 | |
|     case UserOp1          : return Instruction::UserOp1;
 | |
|     case UserOp2          : return Instruction::UserOp2;
 | |
|     case VAArg            : return Instruction::VAArg;
 | |
|     case ExtractElementOp : return Instruction::ExtractElement;
 | |
|     case InsertElementOp  : return Instruction::InsertElement;
 | |
|     case ShuffleVectorOp  : return Instruction::ShuffleVector;
 | |
|     case ICmpOp           : return Instruction::ICmp;
 | |
|     case FCmpOp           : return Instruction::FCmp;
 | |
|   };
 | |
| }
 | |
| 
 | |
| static inline Value*
 | |
| getCast(CastOps op, Value *Src, const Signedness &SrcSign, const Type *DstTy, 
 | |
|         const Signedness &DstSign, bool ForceInstruction = false) {
 | |
|   Instruction::CastOps Opcode;
 | |
|   const Type* SrcTy = Src->getType();
 | |
|   if (op == CastOp) {
 | |
|     if (SrcTy->isFloatingPoint() && isa<PointerType>(DstTy)) {
 | |
|       // fp -> ptr cast is no longer supported but we must upgrade this
 | |
|       // by doing a double cast: fp -> int -> ptr
 | |
|       SrcTy = Type::Int64Ty;
 | |
|       Opcode = Instruction::IntToPtr;
 | |
|       if (isa<Constant>(Src)) {
 | |
|         Src = ConstantExpr::getCast(Instruction::FPToUI, 
 | |
|                                      cast<Constant>(Src), SrcTy);
 | |
|       } else {
 | |
|         std::string NewName(makeNameUnique(Src->getName()));
 | |
|         Src = new FPToUIInst(Src, SrcTy, NewName, CurBB);
 | |
|       }
 | |
|     } else if (isa<IntegerType>(DstTy) &&
 | |
|                cast<IntegerType>(DstTy)->getBitWidth() == 1) {
 | |
|       // cast type %x to bool was previously defined as setne type %x, null
 | |
|       // The cast semantic is now to truncate, not compare so we must retain
 | |
|       // the original intent by replacing the cast with a setne
 | |
|       Constant* Null = Constant::getNullValue(SrcTy);
 | |
|       Instruction::OtherOps Opcode = Instruction::ICmp;
 | |
|       unsigned short predicate = ICmpInst::ICMP_NE;
 | |
|       if (SrcTy->isFloatingPoint()) {
 | |
|         Opcode = Instruction::FCmp;
 | |
|         predicate = FCmpInst::FCMP_ONE;
 | |
|       } else if (!SrcTy->isInteger() && !isa<PointerType>(SrcTy)) {
 | |
|         error("Invalid cast to bool");
 | |
|       }
 | |
|       if (isa<Constant>(Src) && !ForceInstruction)
 | |
|         return ConstantExpr::getCompare(predicate, cast<Constant>(Src), Null);
 | |
|       else
 | |
|         return CmpInst::create(Opcode, predicate, Src, Null);
 | |
|     }
 | |
|     // Determine the opcode to use by calling CastInst::getCastOpcode
 | |
|     Opcode = 
 | |
|       CastInst::getCastOpcode(Src, SrcSign.isSigned(), DstTy, 
 | |
|                               DstSign.isSigned());
 | |
| 
 | |
|   } else switch (op) {
 | |
|     default: assert(0 && "Invalid cast token");
 | |
|     case TruncOp:    Opcode = Instruction::Trunc; break;
 | |
|     case ZExtOp:     Opcode = Instruction::ZExt; break;
 | |
|     case SExtOp:     Opcode = Instruction::SExt; break;
 | |
|     case FPTruncOp:  Opcode = Instruction::FPTrunc; break;
 | |
|     case FPExtOp:    Opcode = Instruction::FPExt; break;
 | |
|     case FPToUIOp:   Opcode = Instruction::FPToUI; break;
 | |
|     case FPToSIOp:   Opcode = Instruction::FPToSI; break;
 | |
|     case UIToFPOp:   Opcode = Instruction::UIToFP; break;
 | |
|     case SIToFPOp:   Opcode = Instruction::SIToFP; break;
 | |
|     case PtrToIntOp: Opcode = Instruction::PtrToInt; break;
 | |
|     case IntToPtrOp: Opcode = Instruction::IntToPtr; break;
 | |
|     case BitCastOp:  Opcode = Instruction::BitCast; break;
 | |
|   }
 | |
| 
 | |
|   if (isa<Constant>(Src) && !ForceInstruction)
 | |
|     return ConstantExpr::getCast(Opcode, cast<Constant>(Src), DstTy);
 | |
|   return CastInst::create(Opcode, Src, DstTy);
 | |
| }
 | |
| 
 | |
| static Instruction *
 | |
| upgradeIntrinsicCall(const Type* RetTy, const ValID &ID, 
 | |
|                      std::vector<Value*>& Args) {
 | |
| 
 | |
|   std::string Name = ID.Type == ValID::NameVal ? ID.Name : "";
 | |
|   if (Name.length() <= 5 || Name[0] != 'l' || Name[1] != 'l' || 
 | |
|       Name[2] != 'v' || Name[3] != 'm' || Name[4] != '.')
 | |
|     return 0;
 | |
| 
 | |
|   switch (Name[5]) {
 | |
|     case 'i':
 | |
|       if (Name == "llvm.isunordered.f32" || Name == "llvm.isunordered.f64") {
 | |
|         if (Args.size() != 2)
 | |
|           error("Invalid prototype for " + Name);
 | |
|         return new FCmpInst(FCmpInst::FCMP_UNO, Args[0], Args[1]);
 | |
|       }
 | |
|       break;
 | |
|     case 'b':
 | |
|       if (Name.length() == 14 && !memcmp(&Name[5], "bswap.i", 7)) {
 | |
|         const Type* ArgTy = Args[0]->getType();
 | |
|         Name += ".i" + utostr(cast<IntegerType>(ArgTy)->getBitWidth());
 | |
|         Function *F = cast<Function>(
 | |
|           CurModule.CurrentModule->getOrInsertFunction(Name, RetTy, ArgTy, 
 | |
|                                                        (void*)0));
 | |
|         return new CallInst(F, Args[0]);
 | |
|       }
 | |
|       break;
 | |
|     case 'c':
 | |
|       if ((Name.length() <= 14 && !memcmp(&Name[5], "ctpop.i", 7)) ||
 | |
|           (Name.length() <= 13 && !memcmp(&Name[5], "ctlz.i", 6)) ||
 | |
|           (Name.length() <= 13 && !memcmp(&Name[5], "cttz.i", 6))) {
 | |
|         // These intrinsics changed their result type.
 | |
|         const Type* ArgTy = Args[0]->getType();
 | |
|         Function *OldF = CurModule.CurrentModule->getFunction(Name);
 | |
|         if (OldF)
 | |
|           OldF->setName("upgrd.rm." + Name);
 | |
| 
 | |
|         Function *NewF = cast<Function>(
 | |
|           CurModule.CurrentModule->getOrInsertFunction(Name, Type::Int32Ty, 
 | |
|                                                        ArgTy, (void*)0));
 | |
| 
 | |
|         Instruction *Call = new CallInst(NewF, Args[0], "", CurBB);
 | |
|         return CastInst::createIntegerCast(Call, RetTy, false);
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case 'v' : {
 | |
|       const Type* PtrTy = PointerType::get(Type::Int8Ty);
 | |
|       std::vector<const Type*> Params;
 | |
|       if (Name == "llvm.va_start" || Name == "llvm.va_end") {
 | |
|         if (Args.size() != 1)
 | |
|           error("Invalid prototype for " + Name + " prototype");
 | |
|         Params.push_back(PtrTy);
 | |
|         const FunctionType *FTy = 
 | |
|           FunctionType::get(Type::VoidTy, Params, false);
 | |
|         const PointerType *PFTy = PointerType::get(FTy);
 | |
|         Value* Func = getVal(PFTy, ID);
 | |
|         Args[0] = new BitCastInst(Args[0], PtrTy, makeNameUnique("va"), CurBB);
 | |
|         return new CallInst(Func, &Args[0], Args.size());
 | |
|       } else if (Name == "llvm.va_copy") {
 | |
|         if (Args.size() != 2)
 | |
|           error("Invalid prototype for " + Name + " prototype");
 | |
|         Params.push_back(PtrTy);
 | |
|         Params.push_back(PtrTy);
 | |
|         const FunctionType *FTy = 
 | |
|           FunctionType::get(Type::VoidTy, Params, false);
 | |
|         const PointerType *PFTy = PointerType::get(FTy);
 | |
|         Value* Func = getVal(PFTy, ID);
 | |
|         std::string InstName0(makeNameUnique("va0"));
 | |
|         std::string InstName1(makeNameUnique("va1"));
 | |
|         Args[0] = new BitCastInst(Args[0], PtrTy, InstName0, CurBB);
 | |
|         Args[1] = new BitCastInst(Args[1], PtrTy, InstName1, CurBB);
 | |
|         return new CallInst(Func, &Args[0], Args.size());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| const Type* upgradeGEPCEIndices(const Type* PTy, 
 | |
|                                 std::vector<ValueInfo> *Indices, 
 | |
|                                 std::vector<Constant*> &Result) {
 | |
|   const Type *Ty = PTy;
 | |
|   Result.clear();
 | |
|   for (unsigned i = 0, e = Indices->size(); i != e ; ++i) {
 | |
|     Constant *Index = cast<Constant>((*Indices)[i].V);
 | |
| 
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Index)) {
 | |
|       // LLVM 1.2 and earlier used ubyte struct indices.  Convert any ubyte 
 | |
|       // struct indices to i32 struct indices with ZExt for compatibility.
 | |
|       if (CI->getBitWidth() < 32)
 | |
|         Index = ConstantExpr::getCast(Instruction::ZExt, CI, Type::Int32Ty);
 | |
|     }
 | |
|     
 | |
|     if (isa<SequentialType>(Ty)) {
 | |
|       // Make sure that unsigned SequentialType indices are zext'd to 
 | |
|       // 64-bits if they were smaller than that because LLVM 2.0 will sext 
 | |
|       // all indices for SequentialType elements. We must retain the same 
 | |
|       // semantic (zext) for unsigned types.
 | |
|       if (const IntegerType *Ity = dyn_cast<IntegerType>(Index->getType())) {
 | |
|         if (Ity->getBitWidth() < 64 && (*Indices)[i].S.isUnsigned()) {
 | |
|           Index = ConstantExpr::getCast(Instruction::ZExt, Index,Type::Int64Ty);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     Result.push_back(Index);
 | |
|     Ty = GetElementPtrInst::getIndexedType(PTy, (Value**)&Result[0], 
 | |
|                                            Result.size(),true);
 | |
|     if (!Ty)
 | |
|       error("Index list invalid for constant getelementptr");
 | |
|   }
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| const Type* upgradeGEPInstIndices(const Type* PTy, 
 | |
|                                   std::vector<ValueInfo> *Indices, 
 | |
|                                   std::vector<Value*>    &Result) {
 | |
|   const Type *Ty = PTy;
 | |
|   Result.clear();
 | |
|   for (unsigned i = 0, e = Indices->size(); i != e ; ++i) {
 | |
|     Value *Index = (*Indices)[i].V;
 | |
| 
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Index)) {
 | |
|       // LLVM 1.2 and earlier used ubyte struct indices.  Convert any ubyte 
 | |
|       // struct indices to i32 struct indices with ZExt for compatibility.
 | |
|       if (CI->getBitWidth() < 32)
 | |
|         Index = ConstantExpr::getCast(Instruction::ZExt, CI, Type::Int32Ty);
 | |
|     }
 | |
|     
 | |
| 
 | |
|     if (isa<StructType>(Ty)) {        // Only change struct indices
 | |
|       if (!isa<Constant>(Index)) {
 | |
|         error("Invalid non-constant structure index");
 | |
|         return 0;
 | |
|       }
 | |
|     } else {
 | |
|       // Make sure that unsigned SequentialType indices are zext'd to 
 | |
|       // 64-bits if they were smaller than that because LLVM 2.0 will sext 
 | |
|       // all indices for SequentialType elements. We must retain the same 
 | |
|       // semantic (zext) for unsigned types.
 | |
|       if (const IntegerType *Ity = dyn_cast<IntegerType>(Index->getType())) {
 | |
|         if (Ity->getBitWidth() < 64 && (*Indices)[i].S.isUnsigned()) {
 | |
|           if (isa<Constant>(Index))
 | |
|             Index = ConstantExpr::getCast(Instruction::ZExt, 
 | |
|               cast<Constant>(Index), Type::Int64Ty);
 | |
|           else
 | |
|             Index = CastInst::create(Instruction::ZExt, Index, Type::Int64Ty,
 | |
|               makeNameUnique("gep"), CurBB);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     Result.push_back(Index);
 | |
|     Ty = GetElementPtrInst::getIndexedType(PTy, &Result[0], Result.size(),true);
 | |
|     if (!Ty)
 | |
|       error("Index list invalid for constant getelementptr");
 | |
|   }
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| unsigned upgradeCallingConv(unsigned CC) {
 | |
|   switch (CC) {
 | |
|     case OldCallingConv::C           : return CallingConv::C;
 | |
|     case OldCallingConv::CSRet       : return CallingConv::C;
 | |
|     case OldCallingConv::Fast        : return CallingConv::Fast;
 | |
|     case OldCallingConv::Cold        : return CallingConv::Cold;
 | |
|     case OldCallingConv::X86_StdCall : return CallingConv::X86_StdCall;
 | |
|     case OldCallingConv::X86_FastCall: return CallingConv::X86_FastCall;
 | |
|     default:
 | |
|       return CC;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Module* UpgradeAssembly(const std::string &infile, std::istream& in, 
 | |
|                               bool debug, bool addAttrs)
 | |
| {
 | |
|   Upgradelineno = 1; 
 | |
|   CurFilename = infile;
 | |
|   LexInput = ∈
 | |
|   yydebug = debug;
 | |
|   AddAttributes = addAttrs;
 | |
|   ObsoleteVarArgs = false;
 | |
|   NewVarArgs = false;
 | |
| 
 | |
|   CurModule.CurrentModule = new Module(CurFilename);
 | |
| 
 | |
|   // Check to make sure the parser succeeded
 | |
|   if (yyparse()) {
 | |
|     if (ParserResult)
 | |
|       delete ParserResult;
 | |
|     std::cerr << "llvm-upgrade: parse failed.\n";
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Check to make sure that parsing produced a result
 | |
|   if (!ParserResult) {
 | |
|     std::cerr << "llvm-upgrade: no parse result.\n";
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Reset ParserResult variable while saving its value for the result.
 | |
|   Module *Result = ParserResult;
 | |
|   ParserResult = 0;
 | |
| 
 | |
|   //Not all functions use vaarg, so make a second check for ObsoleteVarArgs
 | |
|   {
 | |
|     Function* F;
 | |
|     if ((F = Result->getFunction("llvm.va_start"))
 | |
|         && F->getFunctionType()->getNumParams() == 0)
 | |
|       ObsoleteVarArgs = true;
 | |
|     if((F = Result->getFunction("llvm.va_copy"))
 | |
|        && F->getFunctionType()->getNumParams() == 1)
 | |
|       ObsoleteVarArgs = true;
 | |
|   }
 | |
| 
 | |
|   if (ObsoleteVarArgs && NewVarArgs) {
 | |
|     error("This file is corrupt: it uses both new and old style varargs");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if(ObsoleteVarArgs) {
 | |
|     if(Function* F = Result->getFunction("llvm.va_start")) {
 | |
|       if (F->arg_size() != 0) {
 | |
|         error("Obsolete va_start takes 0 argument");
 | |
|         return 0;
 | |
|       }
 | |
|       
 | |
|       //foo = va_start()
 | |
|       // ->
 | |
|       //bar = alloca typeof(foo)
 | |
|       //va_start(bar)
 | |
|       //foo = load bar
 | |
| 
 | |
|       const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
 | |
|       const Type* ArgTy = F->getFunctionType()->getReturnType();
 | |
|       const Type* ArgTyPtr = PointerType::get(ArgTy);
 | |
|       Function* NF = cast<Function>(Result->getOrInsertFunction(
 | |
|         "llvm.va_start", RetTy, ArgTyPtr, (Type *)0));
 | |
| 
 | |
|       while (!F->use_empty()) {
 | |
|         CallInst* CI = cast<CallInst>(F->use_back());
 | |
|         AllocaInst* bar = new AllocaInst(ArgTy, 0, "vastart.fix.1", CI);
 | |
|         new CallInst(NF, bar, "", CI);
 | |
|         Value* foo = new LoadInst(bar, "vastart.fix.2", CI);
 | |
|         CI->replaceAllUsesWith(foo);
 | |
|         CI->getParent()->getInstList().erase(CI);
 | |
|       }
 | |
|       Result->getFunctionList().erase(F);
 | |
|     }
 | |
|     
 | |
|     if(Function* F = Result->getFunction("llvm.va_end")) {
 | |
|       if(F->arg_size() != 1) {
 | |
|         error("Obsolete va_end takes 1 argument");
 | |
|         return 0;
 | |
|       }
 | |
| 
 | |
|       //vaend foo
 | |
|       // ->
 | |
|       //bar = alloca 1 of typeof(foo)
 | |
|       //vaend bar
 | |
|       const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
 | |
|       const Type* ArgTy = F->getFunctionType()->getParamType(0);
 | |
|       const Type* ArgTyPtr = PointerType::get(ArgTy);
 | |
|       Function* NF = cast<Function>(Result->getOrInsertFunction(
 | |
|         "llvm.va_end", RetTy, ArgTyPtr, (Type *)0));
 | |
| 
 | |
|       while (!F->use_empty()) {
 | |
|         CallInst* CI = cast<CallInst>(F->use_back());
 | |
|         AllocaInst* bar = new AllocaInst(ArgTy, 0, "vaend.fix.1", CI);
 | |
|         new StoreInst(CI->getOperand(1), bar, CI);
 | |
|         new CallInst(NF, bar, "", CI);
 | |
|         CI->getParent()->getInstList().erase(CI);
 | |
|       }
 | |
|       Result->getFunctionList().erase(F);
 | |
|     }
 | |
| 
 | |
|     if(Function* F = Result->getFunction("llvm.va_copy")) {
 | |
|       if(F->arg_size() != 1) {
 | |
|         error("Obsolete va_copy takes 1 argument");
 | |
|         return 0;
 | |
|       }
 | |
|       //foo = vacopy(bar)
 | |
|       // ->
 | |
|       //a = alloca 1 of typeof(foo)
 | |
|       //b = alloca 1 of typeof(foo)
 | |
|       //store bar -> b
 | |
|       //vacopy(a, b)
 | |
|       //foo = load a
 | |
|       
 | |
|       const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
 | |
|       const Type* ArgTy = F->getFunctionType()->getReturnType();
 | |
|       const Type* ArgTyPtr = PointerType::get(ArgTy);
 | |
|       Function* NF = cast<Function>(Result->getOrInsertFunction(
 | |
|         "llvm.va_copy", RetTy, ArgTyPtr, ArgTyPtr, (Type *)0));
 | |
| 
 | |
|       while (!F->use_empty()) {
 | |
|         CallInst* CI = cast<CallInst>(F->use_back());
 | |
|         AllocaInst* a = new AllocaInst(ArgTy, 0, "vacopy.fix.1", CI);
 | |
|         AllocaInst* b = new AllocaInst(ArgTy, 0, "vacopy.fix.2", CI);
 | |
|         new StoreInst(CI->getOperand(1), b, CI);
 | |
|         new CallInst(NF, a, b, "", CI);
 | |
|         Value* foo = new LoadInst(a, "vacopy.fix.3", CI);
 | |
|         CI->replaceAllUsesWith(foo);
 | |
|         CI->getParent()->getInstList().erase(CI);
 | |
|       }
 | |
|       Result->getFunctionList().erase(F);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| } // end llvm namespace
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| %}
 | |
| 
 | |
| %union {
 | |
|   llvm::Module                           *ModuleVal;
 | |
|   llvm::Function                         *FunctionVal;
 | |
|   std::pair<llvm::PATypeInfo, char*>     *ArgVal;
 | |
|   llvm::BasicBlock                       *BasicBlockVal;
 | |
|   llvm::TermInstInfo                     TermInstVal;
 | |
|   llvm::InstrInfo                        InstVal;
 | |
|   llvm::ConstInfo                        ConstVal;
 | |
|   llvm::ValueInfo                        ValueVal;
 | |
|   llvm::PATypeInfo                       TypeVal;
 | |
|   llvm::TypeInfo                         PrimType;
 | |
|   llvm::PHIListInfo                      PHIList;
 | |
|   std::list<llvm::PATypeInfo>            *TypeList;
 | |
|   std::vector<llvm::ValueInfo>           *ValueList;
 | |
|   std::vector<llvm::ConstInfo>           *ConstVector;
 | |
| 
 | |
| 
 | |
|   std::vector<std::pair<llvm::PATypeInfo,char*> > *ArgList;
 | |
|   // Represent the RHS of PHI node
 | |
|   std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
 | |
| 
 | |
|   llvm::GlobalValue::LinkageTypes         Linkage;
 | |
|   int64_t                           SInt64Val;
 | |
|   uint64_t                          UInt64Val;
 | |
|   int                               SIntVal;
 | |
|   unsigned                          UIntVal;
 | |
|   double                            FPVal;
 | |
|   bool                              BoolVal;
 | |
| 
 | |
|   char                             *StrVal;   // This memory is strdup'd!
 | |
|   llvm::ValID                       ValIDVal; // strdup'd memory maybe!
 | |
| 
 | |
|   llvm::BinaryOps                   BinaryOpVal;
 | |
|   llvm::TermOps                     TermOpVal;
 | |
|   llvm::MemoryOps                   MemOpVal;
 | |
|   llvm::OtherOps                    OtherOpVal;
 | |
|   llvm::CastOps                     CastOpVal;
 | |
|   llvm::ICmpInst::Predicate         IPred;
 | |
|   llvm::FCmpInst::Predicate         FPred;
 | |
|   llvm::Module::Endianness          Endianness;
 | |
| }
 | |
| 
 | |
| %type <ModuleVal>     Module FunctionList
 | |
| %type <FunctionVal>   Function FunctionProto FunctionHeader BasicBlockList
 | |
| %type <BasicBlockVal> BasicBlock InstructionList
 | |
| %type <TermInstVal>   BBTerminatorInst
 | |
| %type <InstVal>       Inst InstVal MemoryInst
 | |
| %type <ConstVal>      ConstVal ConstExpr
 | |
| %type <ConstVector>   ConstVector
 | |
| %type <ArgList>       ArgList ArgListH
 | |
| %type <ArgVal>        ArgVal
 | |
| %type <PHIList>       PHIList
 | |
| %type <ValueList>     ValueRefList ValueRefListE  // For call param lists
 | |
| %type <ValueList>     IndexList                   // For GEP derived indices
 | |
| %type <TypeList>      TypeListI ArgTypeListI
 | |
| %type <JumpTable>     JumpTable
 | |
| %type <BoolVal>       GlobalType                  // GLOBAL or CONSTANT?
 | |
| %type <BoolVal>       OptVolatile                 // 'volatile' or not
 | |
| %type <BoolVal>       OptTailCall                 // TAIL CALL or plain CALL.
 | |
| %type <BoolVal>       OptSideEffect               // 'sideeffect' or not.
 | |
| %type <Linkage>       OptLinkage FnDeclareLinkage
 | |
| %type <Endianness>    BigOrLittle
 | |
| 
 | |
| // ValueRef - Unresolved reference to a definition or BB
 | |
| %type <ValIDVal>      ValueRef ConstValueRef SymbolicValueRef
 | |
| %type <ValueVal>      ResolvedVal            // <type> <valref> pair
 | |
| 
 | |
| // Tokens and types for handling constant integer values
 | |
| //
 | |
| // ESINT64VAL - A negative number within long long range
 | |
| %token <SInt64Val> ESINT64VAL
 | |
| 
 | |
| // EUINT64VAL - A positive number within uns. long long range
 | |
| %token <UInt64Val> EUINT64VAL
 | |
| %type  <SInt64Val> EINT64VAL
 | |
| 
 | |
| %token  <SIntVal>   SINTVAL   // Signed 32 bit ints...
 | |
| %token  <UIntVal>   UINTVAL   // Unsigned 32 bit ints...
 | |
| %type   <SIntVal>   INTVAL
 | |
| %token  <FPVal>     FPVAL     // Float or Double constant
 | |
| 
 | |
| // Built in types...
 | |
| %type  <TypeVal> Types TypesV UpRTypes UpRTypesV
 | |
| %type  <PrimType> SIntType UIntType IntType FPType PrimType // Classifications
 | |
| %token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
 | |
| %token <PrimType> FLOAT DOUBLE TYPE LABEL
 | |
| 
 | |
| %token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
 | |
| %type  <StrVal> Name OptName OptAssign
 | |
| %type  <UIntVal> OptAlign OptCAlign
 | |
| %type <StrVal> OptSection SectionString
 | |
| 
 | |
| %token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
 | |
| %token DECLARE GLOBAL CONSTANT SECTION VOLATILE
 | |
| %token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING
 | |
| %token DLLIMPORT DLLEXPORT EXTERN_WEAK
 | |
| %token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG ALIGN
 | |
| %token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
 | |
| %token CC_TOK CCC_TOK CSRETCC_TOK FASTCC_TOK COLDCC_TOK
 | |
| %token X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
 | |
| %token DATALAYOUT
 | |
| %type <UIntVal> OptCallingConv
 | |
| 
 | |
| // Basic Block Terminating Operators
 | |
| %token <TermOpVal> RET BR SWITCH INVOKE UNREACHABLE
 | |
| %token UNWIND EXCEPT
 | |
| 
 | |
| // Binary Operators
 | |
| %type  <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
 | |
| %type  <BinaryOpVal> ShiftOps
 | |
| %token <BinaryOpVal> ADD SUB MUL DIV UDIV SDIV FDIV REM UREM SREM FREM 
 | |
| %token <BinaryOpVal> AND OR XOR SHL SHR ASHR LSHR 
 | |
| %token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE  // Binary Comparators
 | |
| %token <OtherOpVal> ICMP FCMP
 | |
| 
 | |
| // Memory Instructions
 | |
| %token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
 | |
| 
 | |
| // Other Operators
 | |
| %token <OtherOpVal> PHI_TOK SELECT VAARG
 | |
| %token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
 | |
| %token VAARG_old VANEXT_old //OBSOLETE
 | |
| 
 | |
| // Support for ICmp/FCmp Predicates, which is 1.9++ but not 2.0
 | |
| %type  <IPred> IPredicates
 | |
| %type  <FPred> FPredicates
 | |
| %token  EQ NE SLT SGT SLE SGE ULT UGT ULE UGE 
 | |
| %token  OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
 | |
| 
 | |
| %token <CastOpVal> CAST TRUNC ZEXT SEXT FPTRUNC FPEXT FPTOUI FPTOSI 
 | |
| %token <CastOpVal> UITOFP SITOFP PTRTOINT INTTOPTR BITCAST 
 | |
| %type  <CastOpVal> CastOps
 | |
| 
 | |
| %start Module
 | |
| 
 | |
| %%
 | |
| 
 | |
| // Handle constant integer size restriction and conversion...
 | |
| //
 | |
| INTVAL 
 | |
|   : SINTVAL
 | |
|   | UINTVAL {
 | |
|     if ($1 > (uint32_t)INT32_MAX)     // Outside of my range!
 | |
|       error("Value too large for type");
 | |
|     $$ = (int32_t)$1;
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| EINT64VAL 
 | |
|   : ESINT64VAL       // These have same type and can't cause problems...
 | |
|   | EUINT64VAL {
 | |
|     if ($1 > (uint64_t)INT64_MAX)     // Outside of my range!
 | |
|       error("Value too large for type");
 | |
|     $$ = (int64_t)$1;
 | |
|   };
 | |
| 
 | |
| // Operations that are notably excluded from this list include:
 | |
| // RET, BR, & SWITCH because they end basic blocks and are treated specially.
 | |
| //
 | |
| ArithmeticOps
 | |
|   : ADD | SUB | MUL | DIV | UDIV | SDIV | FDIV | REM | UREM | SREM | FREM
 | |
|   ;
 | |
| 
 | |
| LogicalOps   
 | |
|   : AND | OR | XOR
 | |
|   ;
 | |
| 
 | |
| SetCondOps   
 | |
|   : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE
 | |
|   ;
 | |
| 
 | |
| IPredicates  
 | |
|   : EQ   { $$ = ICmpInst::ICMP_EQ; }  | NE   { $$ = ICmpInst::ICMP_NE; }
 | |
|   | SLT  { $$ = ICmpInst::ICMP_SLT; } | SGT  { $$ = ICmpInst::ICMP_SGT; }
 | |
|   | SLE  { $$ = ICmpInst::ICMP_SLE; } | SGE  { $$ = ICmpInst::ICMP_SGE; }
 | |
|   | ULT  { $$ = ICmpInst::ICMP_ULT; } | UGT  { $$ = ICmpInst::ICMP_UGT; }
 | |
|   | ULE  { $$ = ICmpInst::ICMP_ULE; } | UGE  { $$ = ICmpInst::ICMP_UGE; } 
 | |
|   ;
 | |
| 
 | |
| FPredicates  
 | |
|   : OEQ  { $$ = FCmpInst::FCMP_OEQ; } | ONE  { $$ = FCmpInst::FCMP_ONE; }
 | |
|   | OLT  { $$ = FCmpInst::FCMP_OLT; } | OGT  { $$ = FCmpInst::FCMP_OGT; }
 | |
|   | OLE  { $$ = FCmpInst::FCMP_OLE; } | OGE  { $$ = FCmpInst::FCMP_OGE; }
 | |
|   | ORD  { $$ = FCmpInst::FCMP_ORD; } | UNO  { $$ = FCmpInst::FCMP_UNO; }
 | |
|   | UEQ  { $$ = FCmpInst::FCMP_UEQ; } | UNE  { $$ = FCmpInst::FCMP_UNE; }
 | |
|   | ULT  { $$ = FCmpInst::FCMP_ULT; } | UGT  { $$ = FCmpInst::FCMP_UGT; }
 | |
|   | ULE  { $$ = FCmpInst::FCMP_ULE; } | UGE  { $$ = FCmpInst::FCMP_UGE; }
 | |
|   | TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
 | |
|   | FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
 | |
|   ;
 | |
| ShiftOps  
 | |
|   : SHL | SHR | ASHR | LSHR
 | |
|   ;
 | |
| 
 | |
| CastOps      
 | |
|   : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | FPTOUI | FPTOSI 
 | |
|   | UITOFP | SITOFP | PTRTOINT | INTTOPTR | BITCAST | CAST
 | |
|   ;
 | |
| 
 | |
| // These are some types that allow classification if we only want a particular 
 | |
| // thing... for example, only a signed, unsigned, or integral type.
 | |
| SIntType 
 | |
|   :  LONG |  INT |  SHORT | SBYTE
 | |
|   ;
 | |
| 
 | |
| UIntType 
 | |
|   : ULONG | UINT | USHORT | UBYTE
 | |
|   ;
 | |
| 
 | |
| IntType  
 | |
|   : SIntType | UIntType
 | |
|   ;
 | |
| 
 | |
| FPType   
 | |
|   : FLOAT | DOUBLE
 | |
|   ;
 | |
| 
 | |
| // OptAssign - Value producing statements have an optional assignment component
 | |
| OptAssign 
 | |
|   : Name '=' {
 | |
|     $$ = $1;
 | |
|   }
 | |
|   | /*empty*/ {
 | |
|     $$ = 0;
 | |
|   };
 | |
| 
 | |
| OptLinkage 
 | |
|   : INTERNAL    { $$ = GlobalValue::InternalLinkage; }
 | |
|   | LINKONCE    { $$ = GlobalValue::LinkOnceLinkage; } 
 | |
|   | WEAK        { $$ = GlobalValue::WeakLinkage; } 
 | |
|   | APPENDING   { $$ = GlobalValue::AppendingLinkage; } 
 | |
|   | DLLIMPORT   { $$ = GlobalValue::DLLImportLinkage; } 
 | |
|   | DLLEXPORT   { $$ = GlobalValue::DLLExportLinkage; } 
 | |
|   | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
 | |
|   | /*empty*/   { $$ = GlobalValue::ExternalLinkage; }
 | |
|   ;
 | |
| 
 | |
| OptCallingConv 
 | |
|   : /*empty*/          { $$ = lastCallingConv = OldCallingConv::C; } 
 | |
|   | CCC_TOK            { $$ = lastCallingConv = OldCallingConv::C; } 
 | |
|   | CSRETCC_TOK        { $$ = lastCallingConv = OldCallingConv::CSRet; } 
 | |
|   | FASTCC_TOK         { $$ = lastCallingConv = OldCallingConv::Fast; } 
 | |
|   | COLDCC_TOK         { $$ = lastCallingConv = OldCallingConv::Cold; } 
 | |
|   | X86_STDCALLCC_TOK  { $$ = lastCallingConv = OldCallingConv::X86_StdCall; } 
 | |
|   | X86_FASTCALLCC_TOK { $$ = lastCallingConv = OldCallingConv::X86_FastCall; } 
 | |
|   | CC_TOK EUINT64VAL  {
 | |
|     if ((unsigned)$2 != $2)
 | |
|       error("Calling conv too large");
 | |
|     $$ = lastCallingConv = $2;
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| // OptAlign/OptCAlign - An optional alignment, and an optional alignment with
 | |
| // a comma before it.
 | |
| OptAlign 
 | |
|   : /*empty*/        { $$ = 0; } 
 | |
|   | ALIGN EUINT64VAL {
 | |
|     $$ = $2;
 | |
|     if ($$ != 0 && !isPowerOf2_32($$))
 | |
|       error("Alignment must be a power of two");
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| OptCAlign 
 | |
|   : /*empty*/ { $$ = 0; } 
 | |
|   | ',' ALIGN EUINT64VAL {
 | |
|     $$ = $3;
 | |
|     if ($$ != 0 && !isPowerOf2_32($$))
 | |
|       error("Alignment must be a power of two");
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| SectionString 
 | |
|   : SECTION STRINGCONSTANT {
 | |
|     for (unsigned i = 0, e = strlen($2); i != e; ++i)
 | |
|       if ($2[i] == '"' || $2[i] == '\\')
 | |
|         error("Invalid character in section name");
 | |
|     $$ = $2;
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| OptSection 
 | |
|   : /*empty*/ { $$ = 0; } 
 | |
|   | SectionString { $$ = $1; }
 | |
|   ;
 | |
| 
 | |
| // GlobalVarAttributes - Used to pass the attributes string on a global.  CurGV
 | |
| // is set to be the global we are processing.
 | |
| //
 | |
| GlobalVarAttributes 
 | |
|   : /* empty */ {} 
 | |
|   | ',' GlobalVarAttribute GlobalVarAttributes {}
 | |
|   ;
 | |
| 
 | |
| GlobalVarAttribute
 | |
|   : SectionString {
 | |
|     CurGV->setSection($1);
 | |
|     free($1);
 | |
|   } 
 | |
|   | ALIGN EUINT64VAL {
 | |
|     if ($2 != 0 && !isPowerOf2_32($2))
 | |
|       error("Alignment must be a power of two");
 | |
|     CurGV->setAlignment($2);
 | |
|     
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Types includes all predefined types... except void, because it can only be
 | |
| // used in specific contexts (function returning void for example).  To have
 | |
| // access to it, a user must explicitly use TypesV.
 | |
| //
 | |
| 
 | |
| // TypesV includes all of 'Types', but it also includes the void type.
 | |
| TypesV    
 | |
|   : Types
 | |
|   | VOID { 
 | |
|     $$.PAT = new PATypeHolder($1.T); 
 | |
|     $$.S.makeSignless();
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| UpRTypesV 
 | |
|   : UpRTypes 
 | |
|   | VOID { 
 | |
|     $$.PAT = new PATypeHolder($1.T); 
 | |
|     $$.S.makeSignless();
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| Types
 | |
|   : UpRTypes {
 | |
|     if (!UpRefs.empty())
 | |
|       error("Invalid upreference in type: " + (*$1.PAT)->getDescription());
 | |
|     $$ = $1;
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| PrimType
 | |
|   : BOOL | SBYTE | UBYTE | SHORT  | USHORT | INT   | UINT 
 | |
|   | LONG | ULONG | FLOAT | DOUBLE | LABEL
 | |
|   ;
 | |
| 
 | |
| // Derived types are added later...
 | |
| UpRTypes 
 | |
|   : PrimType { 
 | |
|     $$.PAT = new PATypeHolder($1.T);
 | |
|     $$.S.copy($1.S);
 | |
|   }
 | |
|   | OPAQUE {
 | |
|     $$.PAT = new PATypeHolder(OpaqueType::get());
 | |
|     $$.S.makeSignless();
 | |
|   }
 | |
|   | SymbolicValueRef {            // Named types are also simple types...
 | |
|     $$.S.copy(getTypeSign($1));
 | |
|     const Type* tmp = getType($1);
 | |
|     $$.PAT = new PATypeHolder(tmp);
 | |
|   }
 | |
|   | '\\' EUINT64VAL {                   // Type UpReference
 | |
|     if ($2 > (uint64_t)~0U) 
 | |
|       error("Value out of range");
 | |
|     OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder
 | |
|     UpRefs.push_back(UpRefRecord((unsigned)$2, OT));  // Add to vector...
 | |
|     $$.PAT = new PATypeHolder(OT);
 | |
|     $$.S.makeSignless();
 | |
|     UR_OUT("New Upreference!\n");
 | |
|   }
 | |
|   | UpRTypesV '(' ArgTypeListI ')' {           // Function derived type?
 | |
|     $$.S.makeComposite($1.S);
 | |
|     std::vector<const Type*> Params;
 | |
|     for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(),
 | |
|            E = $3->end(); I != E; ++I) {
 | |
|       Params.push_back(I->PAT->get());
 | |
|       $$.S.add(I->S);
 | |
|     }
 | |
|     bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
 | |
|     if (isVarArg) Params.pop_back();
 | |
| 
 | |
|     ParamAttrsList *PAL = 0;
 | |
|     if (lastCallingConv == OldCallingConv::CSRet) {
 | |
|       ParamAttrsVector Attrs;
 | |
|       ParamAttrsWithIndex PAWI;
 | |
|       PAWI.index = 1;  PAWI.attrs = ParamAttr::StructRet; // first arg
 | |
|       Attrs.push_back(PAWI);
 | |
|       PAL = ParamAttrsList::get(Attrs);
 | |
|     }
 | |
| 
 | |
|     const FunctionType *FTy =
 | |
|       FunctionType::get($1.PAT->get(), Params, isVarArg, PAL);
 | |
| 
 | |
|     $$.PAT = new PATypeHolder( HandleUpRefs(FTy, $$.S) );
 | |
|     delete $1.PAT;  // Delete the return type handle
 | |
|     delete $3;      // Delete the argument list
 | |
|   }
 | |
|   | '[' EUINT64VAL 'x' UpRTypes ']' {          // Sized array type?
 | |
|     $$.S.makeComposite($4.S);
 | |
|     $$.PAT = new PATypeHolder(HandleUpRefs(ArrayType::get($4.PAT->get(), 
 | |
|                                            (unsigned)$2), $$.S));
 | |
|     delete $4.PAT;
 | |
|   }
 | |
|   | '<' EUINT64VAL 'x' UpRTypes '>' {          // Vector type?
 | |
|     const llvm::Type* ElemTy = $4.PAT->get();
 | |
|     if ((unsigned)$2 != $2)
 | |
|        error("Unsigned result not equal to signed result");
 | |
|     if (!(ElemTy->isInteger() || ElemTy->isFloatingPoint()))
 | |
|        error("Elements of a VectorType must be integer or floating point");
 | |
|     if (!isPowerOf2_32($2))
 | |
|       error("VectorType length should be a power of 2");
 | |
|     $$.S.makeComposite($4.S);
 | |
|     $$.PAT = new PATypeHolder(HandleUpRefs(VectorType::get(ElemTy, 
 | |
|                                          (unsigned)$2), $$.S));
 | |
|     delete $4.PAT;
 | |
|   }
 | |
|   | '{' TypeListI '}' {                        // Structure type?
 | |
|     std::vector<const Type*> Elements;
 | |
|     $$.S.makeComposite();
 | |
|     for (std::list<llvm::PATypeInfo>::iterator I = $2->begin(),
 | |
|            E = $2->end(); I != E; ++I) {
 | |
|       Elements.push_back(I->PAT->get());
 | |
|       $$.S.add(I->S);
 | |
|     }
 | |
|     $$.PAT = new PATypeHolder(HandleUpRefs(StructType::get(Elements), $$.S));
 | |
|     delete $2;
 | |
|   }
 | |
|   | '{' '}' {                                  // Empty structure type?
 | |
|     $$.PAT = new PATypeHolder(StructType::get(std::vector<const Type*>()));
 | |
|     $$.S.makeComposite();
 | |
|   }
 | |
|   | '<' '{' TypeListI '}' '>' {                // Packed Structure type?
 | |
|     $$.S.makeComposite();
 | |
|     std::vector<const Type*> Elements;
 | |
|     for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(),
 | |
|            E = $3->end(); I != E; ++I) {
 | |
|       Elements.push_back(I->PAT->get());
 | |
|       $$.S.add(I->S);
 | |
|       delete I->PAT;
 | |
|     }
 | |
|     $$.PAT = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true), 
 | |
|                                            $$.S));
 | |
|     delete $3;
 | |
|   }
 | |
|   | '<' '{' '}' '>' {                          // Empty packed structure type?
 | |
|     $$.PAT = new PATypeHolder(StructType::get(std::vector<const Type*>(),true));
 | |
|     $$.S.makeComposite();
 | |
|   }
 | |
|   | UpRTypes '*' {                             // Pointer type?
 | |
|     if ($1.PAT->get() == Type::LabelTy)
 | |
|       error("Cannot form a pointer to a basic block");
 | |
|     $$.S.makeComposite($1.S);
 | |
|     $$.PAT = new PATypeHolder(HandleUpRefs(PointerType::get($1.PAT->get()),
 | |
|                                            $$.S));
 | |
|     delete $1.PAT;
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| // TypeList - Used for struct declarations and as a basis for function type 
 | |
| // declaration type lists
 | |
| //
 | |
| TypeListI 
 | |
|   : UpRTypes {
 | |
|     $$ = new std::list<PATypeInfo>();
 | |
|     $$->push_back($1); 
 | |
|   }
 | |
|   | TypeListI ',' UpRTypes {
 | |
|     ($$=$1)->push_back($3);
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| // ArgTypeList - List of types for a function type declaration...
 | |
| ArgTypeListI 
 | |
|   : TypeListI
 | |
|   | TypeListI ',' DOTDOTDOT {
 | |
|     PATypeInfo VoidTI;
 | |
|     VoidTI.PAT = new PATypeHolder(Type::VoidTy);
 | |
|     VoidTI.S.makeSignless();
 | |
|     ($$=$1)->push_back(VoidTI);
 | |
|   }
 | |
|   | DOTDOTDOT {
 | |
|     $$ = new std::list<PATypeInfo>();
 | |
|     PATypeInfo VoidTI;
 | |
|     VoidTI.PAT = new PATypeHolder(Type::VoidTy);
 | |
|     VoidTI.S.makeSignless();
 | |
|     $$->push_back(VoidTI);
 | |
|   }
 | |
|   | /*empty*/ {
 | |
|     $$ = new std::list<PATypeInfo>();
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| // ConstVal - The various declarations that go into the constant pool.  This
 | |
| // production is used ONLY to represent constants that show up AFTER a 'const',
 | |
| // 'constant' or 'global' token at global scope.  Constants that can be inlined
 | |
| // into other expressions (such as integers and constexprs) are handled by the
 | |
| // ResolvedVal, ValueRef and ConstValueRef productions.
 | |
| //
 | |
| ConstVal
 | |
|   : Types '[' ConstVector ']' { // Nonempty unsized arr
 | |
|     const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get());
 | |
|     if (ATy == 0)
 | |
|       error("Cannot make array constant with type: '" + 
 | |
|             $1.PAT->get()->getDescription() + "'");
 | |
|     const Type *ETy = ATy->getElementType();
 | |
|     int NumElements = ATy->getNumElements();
 | |
| 
 | |
|     // Verify that we have the correct size...
 | |
|     if (NumElements != -1 && NumElements != (int)$3->size())
 | |
|       error("Type mismatch: constant sized array initialized with " +
 | |
|             utostr($3->size()) +  " arguments, but has size of " + 
 | |
|             itostr(NumElements) + "");
 | |
| 
 | |
|     // Verify all elements are correct type!
 | |
|     std::vector<Constant*> Elems;
 | |
|     for (unsigned i = 0; i < $3->size(); i++) {
 | |
|       Constant *C = (*$3)[i].C;
 | |
|       const Type* ValTy = C->getType();
 | |
|       if (ETy != ValTy)
 | |
|         error("Element #" + utostr(i) + " is not of type '" + 
 | |
|               ETy->getDescription() +"' as required!\nIt is of type '"+
 | |
|               ValTy->getDescription() + "'");
 | |
|       Elems.push_back(C);
 | |
|     }
 | |
|     $$.C = ConstantArray::get(ATy, Elems);
 | |
|     $$.S.copy($1.S);
 | |
|     delete $1.PAT; 
 | |
|     delete $3;
 | |
|   }
 | |
|   | Types '[' ']' {
 | |
|     const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get());
 | |
|     if (ATy == 0)
 | |
|       error("Cannot make array constant with type: '" + 
 | |
|             $1.PAT->get()->getDescription() + "'");
 | |
|     int NumElements = ATy->getNumElements();
 | |
|     if (NumElements != -1 && NumElements != 0) 
 | |
|       error("Type mismatch: constant sized array initialized with 0"
 | |
|             " arguments, but has size of " + itostr(NumElements) +"");
 | |
|     $$.C = ConstantArray::get(ATy, std::vector<Constant*>());
 | |
|     $$.S.copy($1.S);
 | |
|     delete $1.PAT;
 | |
|   }
 | |
|   | Types 'c' STRINGCONSTANT {
 | |
|     const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get());
 | |
|     if (ATy == 0)
 | |
|       error("Cannot make array constant with type: '" + 
 | |
|             $1.PAT->get()->getDescription() + "'");
 | |
|     int NumElements = ATy->getNumElements();
 | |
|     const Type *ETy = dyn_cast<IntegerType>(ATy->getElementType());
 | |
|     if (!ETy || cast<IntegerType>(ETy)->getBitWidth() != 8)
 | |
|       error("String arrays require type i8, not '" + ETy->getDescription() + 
 | |
|             "'");
 | |
|     char *EndStr = UnEscapeLexed($3, true);
 | |
|     if (NumElements != -1 && NumElements != (EndStr-$3))
 | |
|       error("Can't build string constant of size " + 
 | |
|             itostr((int)(EndStr-$3)) + " when array has size " + 
 | |
|             itostr(NumElements) + "");
 | |
|     std::vector<Constant*> Vals;
 | |
|     for (char *C = (char *)$3; C != (char *)EndStr; ++C)
 | |
|       Vals.push_back(ConstantInt::get(ETy, *C));
 | |
|     free($3);
 | |
|     $$.C = ConstantArray::get(ATy, Vals);
 | |
|     $$.S.copy($1.S);
 | |
|     delete $1.PAT;
 | |
|   }
 | |
|   | Types '<' ConstVector '>' { // Nonempty unsized arr
 | |
|     const VectorType *PTy = dyn_cast<VectorType>($1.PAT->get());
 | |
|     if (PTy == 0)
 | |
|       error("Cannot make packed constant with type: '" + 
 | |
|             $1.PAT->get()->getDescription() + "'");
 | |
|     const Type *ETy = PTy->getElementType();
 | |
|     int NumElements = PTy->getNumElements();
 | |
|     // Verify that we have the correct size...
 | |
|     if (NumElements != -1 && NumElements != (int)$3->size())
 | |
|       error("Type mismatch: constant sized packed initialized with " +
 | |
|             utostr($3->size()) +  " arguments, but has size of " + 
 | |
|             itostr(NumElements) + "");
 | |
|     // Verify all elements are correct type!
 | |
|     std::vector<Constant*> Elems;
 | |
|     for (unsigned i = 0; i < $3->size(); i++) {
 | |
|       Constant *C = (*$3)[i].C;
 | |
|       const Type* ValTy = C->getType();
 | |
|       if (ETy != ValTy)
 | |
|         error("Element #" + utostr(i) + " is not of type '" + 
 | |
|               ETy->getDescription() +"' as required!\nIt is of type '"+
 | |
|               ValTy->getDescription() + "'");
 | |
|       Elems.push_back(C);
 | |
|     }
 | |
|     $$.C = ConstantVector::get(PTy, Elems);
 | |
|     $$.S.copy($1.S);
 | |
|     delete $1.PAT;
 | |
|     delete $3;
 | |
|   }
 | |
|   | Types '{' ConstVector '}' {
 | |
|     const StructType *STy = dyn_cast<StructType>($1.PAT->get());
 | |
|     if (STy == 0)
 | |
|       error("Cannot make struct constant with type: '" + 
 | |
|             $1.PAT->get()->getDescription() + "'");
 | |
|     if ($3->size() != STy->getNumContainedTypes())
 | |
|       error("Illegal number of initializers for structure type");
 | |
| 
 | |
|     // Check to ensure that constants are compatible with the type initializer!
 | |
|     std::vector<Constant*> Fields;
 | |
|     for (unsigned i = 0, e = $3->size(); i != e; ++i) {
 | |
|       Constant *C = (*$3)[i].C;
 | |
|       if (C->getType() != STy->getElementType(i))
 | |
|         error("Expected type '" + STy->getElementType(i)->getDescription() +
 | |
|               "' for element #" + utostr(i) + " of structure initializer");
 | |
|       Fields.push_back(C);
 | |
|     }
 | |
|     $$.C = ConstantStruct::get(STy, Fields);
 | |
|     $$.S.copy($1.S);
 | |
|     delete $1.PAT;
 | |
|     delete $3;
 | |
|   }
 | |
|   | Types '{' '}' {
 | |
|     const StructType *STy = dyn_cast<StructType>($1.PAT->get());
 | |
|     if (STy == 0)
 | |
|       error("Cannot make struct constant with type: '" + 
 | |
|               $1.PAT->get()->getDescription() + "'");
 | |
|     if (STy->getNumContainedTypes() != 0)
 | |
|       error("Illegal number of initializers for structure type");
 | |
|     $$.C = ConstantStruct::get(STy, std::vector<Constant*>());
 | |
|     $$.S.copy($1.S);
 | |
|     delete $1.PAT;
 | |
|   }
 | |
|   | Types '<' '{' ConstVector '}' '>' {
 | |
|     const StructType *STy = dyn_cast<StructType>($1.PAT->get());
 | |
|     if (STy == 0)
 | |
|       error("Cannot make packed struct constant with type: '" + 
 | |
|             $1.PAT->get()->getDescription() + "'");
 | |
|     if ($4->size() != STy->getNumContainedTypes())
 | |
|       error("Illegal number of initializers for packed structure type");
 | |
| 
 | |
|     // Check to ensure that constants are compatible with the type initializer!
 | |
|     std::vector<Constant*> Fields;
 | |
|     for (unsigned i = 0, e = $4->size(); i != e; ++i) {
 | |
|       Constant *C = (*$4)[i].C;
 | |
|       if (C->getType() != STy->getElementType(i))
 | |
|         error("Expected type '" + STy->getElementType(i)->getDescription() +
 | |
|               "' for element #" + utostr(i) + " of packed struct initializer");
 | |
|       Fields.push_back(C);
 | |
|     }
 | |
|     $$.C = ConstantStruct::get(STy, Fields);
 | |
|     $$.S.copy($1.S);
 | |
|     delete $1.PAT; 
 | |
|     delete $4;
 | |
|   }
 | |
|   | Types '<' '{' '}' '>' {
 | |
|     const StructType *STy = dyn_cast<StructType>($1.PAT->get());
 | |
|     if (STy == 0)
 | |
|       error("Cannot make packed struct constant with type: '" + 
 | |
|               $1.PAT->get()->getDescription() + "'");
 | |
|     if (STy->getNumContainedTypes() != 0)
 | |
|       error("Illegal number of initializers for packed structure type");
 | |
|     $$.C = ConstantStruct::get(STy, std::vector<Constant*>());
 | |
|     $$.S.copy($1.S);
 | |
|     delete $1.PAT;
 | |
|   }
 | |
|   | Types NULL_TOK {
 | |
|     const PointerType *PTy = dyn_cast<PointerType>($1.PAT->get());
 | |
|     if (PTy == 0)
 | |
|       error("Cannot make null pointer constant with type: '" + 
 | |
|             $1.PAT->get()->getDescription() + "'");
 | |
|     $$.C = ConstantPointerNull::get(PTy);
 | |
|     $$.S.copy($1.S);
 | |
|     delete $1.PAT;
 | |
|   }
 | |
|   | Types UNDEF {
 | |
|     $$.C = UndefValue::get($1.PAT->get());
 | |
|     $$.S.copy($1.S);
 | |
|     delete $1.PAT;
 | |
|   }
 | |
|   | Types SymbolicValueRef {
 | |
|     const PointerType *Ty = dyn_cast<PointerType>($1.PAT->get());
 | |
|     if (Ty == 0)
 | |
|       error("Global const reference must be a pointer type, not" +
 | |
|             $1.PAT->get()->getDescription());
 | |
| 
 | |
|     // ConstExprs can exist in the body of a function, thus creating
 | |
|     // GlobalValues whenever they refer to a variable.  Because we are in
 | |
|     // the context of a function, getExistingValue will search the functions
 | |
|     // symbol table instead of the module symbol table for the global symbol,
 | |
|     // which throws things all off.  To get around this, we just tell
 | |
|     // getExistingValue that we are at global scope here.
 | |
|     //
 | |
|     Function *SavedCurFn = CurFun.CurrentFunction;
 | |
|     CurFun.CurrentFunction = 0;
 | |
|     $2.S.copy($1.S);
 | |
|     Value *V = getExistingValue(Ty, $2);
 | |
|     CurFun.CurrentFunction = SavedCurFn;
 | |
| 
 | |
|     // If this is an initializer for a constant pointer, which is referencing a
 | |
|     // (currently) undefined variable, create a stub now that shall be replaced
 | |
|     // in the future with the right type of variable.
 | |
|     //
 | |
|     if (V == 0) {
 | |
|       assert(isa<PointerType>(Ty) && "Globals may only be used as pointers");
 | |
|       const PointerType *PT = cast<PointerType>(Ty);
 | |
| 
 | |
|       // First check to see if the forward references value is already created!
 | |
|       PerModuleInfo::GlobalRefsType::iterator I =
 | |
|         CurModule.GlobalRefs.find(std::make_pair(PT, $2));
 | |
|     
 | |
|       if (I != CurModule.GlobalRefs.end()) {
 | |
|         V = I->second;             // Placeholder already exists, use it...
 | |
|         $2.destroy();
 | |
|       } else {
 | |
|         std::string Name;
 | |
|         if ($2.Type == ValID::NameVal) Name = $2.Name;
 | |
| 
 | |
|         // Create the forward referenced global.
 | |
|         GlobalValue *GV;
 | |
|         if (const FunctionType *FTy = 
 | |
|                  dyn_cast<FunctionType>(PT->getElementType())) {
 | |
|           GV = new Function(FTy, GlobalValue::ExternalLinkage, Name,
 | |
|                             CurModule.CurrentModule);
 | |
|         } else {
 | |
|           GV = new GlobalVariable(PT->getElementType(), false,
 | |
|                                   GlobalValue::ExternalLinkage, 0,
 | |
|                                   Name, CurModule.CurrentModule);
 | |
|         }
 | |
| 
 | |
|         // Keep track of the fact that we have a forward ref to recycle it
 | |
|         CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
 | |
|         V = GV;
 | |
|       }
 | |
|     }
 | |
|     $$.C = cast<GlobalValue>(V);
 | |
|     $$.S.copy($1.S);
 | |
|     delete $1.PAT;            // Free the type handle
 | |
|   }
 | |
|   | Types ConstExpr {
 | |
|     if ($1.PAT->get() != $2.C->getType())
 | |
|       error("Mismatched types for constant expression");
 | |
|     $$ = $2;
 | |
|     $$.S.copy($1.S);
 | |
|     delete $1.PAT;
 | |
|   }
 | |
|   | Types ZEROINITIALIZER {
 | |
|     const Type *Ty = $1.PAT->get();
 | |
|     if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
 | |
|       error("Cannot create a null initialized value of this type");
 | |
|     $$.C = Constant::getNullValue(Ty);
 | |
|     $$.S.copy($1.S);
 | |
|     delete $1.PAT;
 | |
|   }
 | |
|   | SIntType EINT64VAL {      // integral constants
 | |
|     const Type *Ty = $1.T;
 | |
|     if (!ConstantInt::isValueValidForType(Ty, $2))
 | |
|       error("Constant value doesn't fit in type");
 | |
|     $$.C = ConstantInt::get(Ty, $2);
 | |
|     $$.S.makeSigned();
 | |
|   }
 | |
|   | UIntType EUINT64VAL {            // integral constants
 | |
|     const Type *Ty = $1.T;
 | |
|     if (!ConstantInt::isValueValidForType(Ty, $2))
 | |
|       error("Constant value doesn't fit in type");
 | |
|     $$.C = ConstantInt::get(Ty, $2);
 | |
|     $$.S.makeUnsigned();
 | |
|   }
 | |
|   | BOOL TRUETOK {                      // Boolean constants
 | |
|     $$.C = ConstantInt::get(Type::Int1Ty, true);
 | |
|     $$.S.makeUnsigned();
 | |
|   }
 | |
|   | BOOL FALSETOK {                     // Boolean constants
 | |
|     $$.C = ConstantInt::get(Type::Int1Ty, false);
 | |
|     $$.S.makeUnsigned();
 | |
|   }
 | |
|   | FPType FPVAL {                   // Float & Double constants
 | |
|     if (!ConstantFP::isValueValidForType($1.T, $2))
 | |
|       error("Floating point constant invalid for type");
 | |
|     $$.C = ConstantFP::get($1.T, $2);
 | |
|     $$.S.makeSignless();
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| ConstExpr
 | |
|   : CastOps '(' ConstVal TO Types ')' {
 | |
|     const Type* SrcTy = $3.C->getType();
 | |
|     const Type* DstTy = $5.PAT->get();
 | |
|     Signedness SrcSign($3.S);
 | |
|     Signedness DstSign($5.S);
 | |
|     if (!SrcTy->isFirstClassType())
 | |
|       error("cast constant expression from a non-primitive type: '" +
 | |
|             SrcTy->getDescription() + "'");
 | |
|     if (!DstTy->isFirstClassType())
 | |
|       error("cast constant expression to a non-primitive type: '" +
 | |
|             DstTy->getDescription() + "'");
 | |
|     $$.C = cast<Constant>(getCast($1, $3.C, SrcSign, DstTy, DstSign));
 | |
|     $$.S.copy(DstSign);
 | |
|     delete $5.PAT;
 | |
|   }
 | |
|   | GETELEMENTPTR '(' ConstVal IndexList ')' {
 | |
|     const Type *Ty = $3.C->getType();
 | |
|     if (!isa<PointerType>(Ty))
 | |
|       error("GetElementPtr requires a pointer operand");
 | |
| 
 | |
|     std::vector<Constant*> CIndices;
 | |
|     upgradeGEPCEIndices($3.C->getType(), $4, CIndices);
 | |
| 
 | |
|     delete $4;
 | |
|     $$.C = ConstantExpr::getGetElementPtr($3.C, &CIndices[0], CIndices.size());
 | |
|     $$.S.copy(getElementSign($3, CIndices));
 | |
|   }
 | |
|   | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
 | |
|     if (!$3.C->getType()->isInteger() ||
 | |
|         cast<IntegerType>($3.C->getType())->getBitWidth() != 1)
 | |
|       error("Select condition must be bool type");
 | |
|     if ($5.C->getType() != $7.C->getType())
 | |
|       error("Select operand types must match");
 | |
|     $$.C = ConstantExpr::getSelect($3.C, $5.C, $7.C);
 | |
|     $$.S.copy($5.S);
 | |
|   }
 | |
|   | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
 | |
|     const Type *Ty = $3.C->getType();
 | |
|     if (Ty != $5.C->getType())
 | |
|       error("Binary operator types must match");
 | |
|     // First, make sure we're dealing with the right opcode by upgrading from
 | |
|     // obsolete versions.
 | |
|     Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S);
 | |
| 
 | |
|     // HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs.
 | |
|     // To retain backward compatibility with these early compilers, we emit a
 | |
|     // cast to the appropriate integer type automatically if we are in the
 | |
|     // broken case.  See PR424 for more information.
 | |
|     if (!isa<PointerType>(Ty)) {
 | |
|       $$.C = ConstantExpr::get(Opcode, $3.C, $5.C);
 | |
|     } else {
 | |
|       const Type *IntPtrTy = 0;
 | |
|       switch (CurModule.CurrentModule->getPointerSize()) {
 | |
|       case Module::Pointer32: IntPtrTy = Type::Int32Ty; break;
 | |
|       case Module::Pointer64: IntPtrTy = Type::Int64Ty; break;
 | |
|       default: error("invalid pointer binary constant expr");
 | |
|       }
 | |
|       $$.C = ConstantExpr::get(Opcode, 
 | |
|              ConstantExpr::getCast(Instruction::PtrToInt, $3.C, IntPtrTy),
 | |
|              ConstantExpr::getCast(Instruction::PtrToInt, $5.C, IntPtrTy));
 | |
|       $$.C = ConstantExpr::getCast(Instruction::IntToPtr, $$.C, Ty);
 | |
|     }
 | |
|     $$.S.copy($3.S); 
 | |
|   }
 | |
|   | LogicalOps '(' ConstVal ',' ConstVal ')' {
 | |
|     const Type* Ty = $3.C->getType();
 | |
|     if (Ty != $5.C->getType())
 | |
|       error("Logical operator types must match");
 | |
|     if (!Ty->isInteger()) {
 | |
|       if (!isa<VectorType>(Ty) || 
 | |
|           !cast<VectorType>(Ty)->getElementType()->isInteger())
 | |
|         error("Logical operator requires integer operands");
 | |
|     }
 | |
|     Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S);
 | |
|     $$.C = ConstantExpr::get(Opcode, $3.C, $5.C);
 | |
|     $$.S.copy($3.S);
 | |
|   }
 | |
|   | SetCondOps '(' ConstVal ',' ConstVal ')' {
 | |
|     const Type* Ty = $3.C->getType();
 | |
|     if (Ty != $5.C->getType())
 | |
|       error("setcc operand types must match");
 | |
|     unsigned short pred;
 | |
|     Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $3.S);
 | |
|     $$.C = ConstantExpr::getCompare(Opcode, $3.C, $5.C);
 | |
|     $$.S.makeUnsigned();
 | |
|   }
 | |
|   | ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
 | |
|     if ($4.C->getType() != $6.C->getType()) 
 | |
|       error("icmp operand types must match");
 | |
|     $$.C = ConstantExpr::getCompare($2, $4.C, $6.C);
 | |
|     $$.S.makeUnsigned();
 | |
|   }
 | |
|   | FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
 | |
|     if ($4.C->getType() != $6.C->getType()) 
 | |
|       error("fcmp operand types must match");
 | |
|     $$.C = ConstantExpr::getCompare($2, $4.C, $6.C);
 | |
|     $$.S.makeUnsigned();
 | |
|   }
 | |
|   | ShiftOps '(' ConstVal ',' ConstVal ')' {
 | |
|     if (!$5.C->getType()->isInteger() ||
 | |
|         cast<IntegerType>($5.C->getType())->getBitWidth() != 8)
 | |
|       error("Shift count for shift constant must be unsigned byte");
 | |
|     const Type* Ty = $3.C->getType();
 | |
|     if (!$3.C->getType()->isInteger())
 | |
|       error("Shift constant expression requires integer operand");
 | |
|     Constant *ShiftAmt = ConstantExpr::getZExt($5.C, Ty);
 | |
|     $$.C = ConstantExpr::get(getBinaryOp($1, Ty, $3.S), $3.C, ShiftAmt);
 | |
|     $$.S.copy($3.S);
 | |
|   }
 | |
|   | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
 | |
|     if (!ExtractElementInst::isValidOperands($3.C, $5.C))
 | |
|       error("Invalid extractelement operands");
 | |
|     $$.C = ConstantExpr::getExtractElement($3.C, $5.C);
 | |
|     $$.S.copy($3.S.get(0));
 | |
|   }
 | |
|   | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
 | |
|     if (!InsertElementInst::isValidOperands($3.C, $5.C, $7.C))
 | |
|       error("Invalid insertelement operands");
 | |
|     $$.C = ConstantExpr::getInsertElement($3.C, $5.C, $7.C);
 | |
|     $$.S.copy($3.S);
 | |
|   }
 | |
|   | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
 | |
|     if (!ShuffleVectorInst::isValidOperands($3.C, $5.C, $7.C))
 | |
|       error("Invalid shufflevector operands");
 | |
|     $$.C = ConstantExpr::getShuffleVector($3.C, $5.C, $7.C);
 | |
|     $$.S.copy($3.S);
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| 
 | |
| // ConstVector - A list of comma separated constants.
 | |
| ConstVector 
 | |
|   : ConstVector ',' ConstVal { ($$ = $1)->push_back($3); }
 | |
|   | ConstVal {
 | |
|     $$ = new std::vector<ConstInfo>();
 | |
|     $$->push_back($1);
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| 
 | |
| // GlobalType - Match either GLOBAL or CONSTANT for global declarations...
 | |
| GlobalType 
 | |
|   : GLOBAL { $$ = false; } 
 | |
|   | CONSTANT { $$ = true; }
 | |
|   ;
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             Rules to match Modules
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Module rule: Capture the result of parsing the whole file into a result
 | |
| // variable...
 | |
| //
 | |
| Module 
 | |
|   : FunctionList {
 | |
|     $$ = ParserResult = $1;
 | |
|     CurModule.ModuleDone();
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| // FunctionList - A list of functions, preceeded by a constant pool.
 | |
| //
 | |
| FunctionList 
 | |
|   : FunctionList Function { $$ = $1; CurFun.FunctionDone(); } 
 | |
|   | FunctionList FunctionProto { $$ = $1; }
 | |
|   | FunctionList MODULE ASM_TOK AsmBlock { $$ = $1; }  
 | |
|   | FunctionList IMPLEMENTATION { $$ = $1; }
 | |
|   | ConstPool {
 | |
|     $$ = CurModule.CurrentModule;
 | |
|     // Emit an error if there are any unresolved types left.
 | |
|     if (!CurModule.LateResolveTypes.empty()) {
 | |
|       const ValID &DID = CurModule.LateResolveTypes.begin()->first;
 | |
|       if (DID.Type == ValID::NameVal) {
 | |
|         error("Reference to an undefined type: '"+DID.getName() + "'");
 | |
|       } else {
 | |
|         error("Reference to an undefined type: #" + itostr(DID.Num));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| // ConstPool - Constants with optional names assigned to them.
 | |
| ConstPool 
 | |
|   : ConstPool OptAssign TYPE TypesV {
 | |
|     // Eagerly resolve types.  This is not an optimization, this is a
 | |
|     // requirement that is due to the fact that we could have this:
 | |
|     //
 | |
|     // %list = type { %list * }
 | |
|     // %list = type { %list * }    ; repeated type decl
 | |
|     //
 | |
|     // If types are not resolved eagerly, then the two types will not be
 | |
|     // determined to be the same type!
 | |
|     //
 | |
|     ResolveTypeTo($2, $4.PAT->get(), $4.S);
 | |
| 
 | |
|     if (!setTypeName($4, $2) && !$2) {
 | |
|       // If this is a numbered type that is not a redefinition, add it to the 
 | |
|       // slot table.
 | |
|       CurModule.Types.push_back($4.PAT->get());
 | |
|       CurModule.TypeSigns.push_back($4.S);
 | |
|     }
 | |
|     delete $4.PAT;
 | |
|   }
 | |
|   | ConstPool FunctionProto {       // Function prototypes can be in const pool
 | |
|   }
 | |
|   | ConstPool MODULE ASM_TOK AsmBlock {  // Asm blocks can be in the const pool
 | |
|   }
 | |
|   | ConstPool OptAssign OptLinkage GlobalType ConstVal {
 | |
|     if ($5.C == 0) 
 | |
|       error("Global value initializer is not a constant");
 | |
|     CurGV = ParseGlobalVariable($2, $3, $4, $5.C->getType(), $5.C, $5.S);
 | |
|   } GlobalVarAttributes {
 | |
|     CurGV = 0;
 | |
|   }
 | |
|   | ConstPool OptAssign EXTERNAL GlobalType Types {
 | |
|     const Type *Ty = $5.PAT->get();
 | |
|     CurGV = ParseGlobalVariable($2, GlobalValue::ExternalLinkage, $4, Ty, 0,
 | |
|                                 $5.S);
 | |
|     delete $5.PAT;
 | |
|   } GlobalVarAttributes {
 | |
|     CurGV = 0;
 | |
|   }
 | |
|   | ConstPool OptAssign DLLIMPORT GlobalType Types {
 | |
|     const Type *Ty = $5.PAT->get();
 | |
|     CurGV = ParseGlobalVariable($2, GlobalValue::DLLImportLinkage, $4, Ty, 0,
 | |
|                                 $5.S);
 | |
|     delete $5.PAT;
 | |
|   } GlobalVarAttributes {
 | |
|     CurGV = 0;
 | |
|   }
 | |
|   | ConstPool OptAssign EXTERN_WEAK GlobalType Types {
 | |
|     const Type *Ty = $5.PAT->get();
 | |
|     CurGV = 
 | |
|       ParseGlobalVariable($2, GlobalValue::ExternalWeakLinkage, $4, Ty, 0, 
 | |
|                           $5.S);
 | |
|     delete $5.PAT;
 | |
|   } GlobalVarAttributes {
 | |
|     CurGV = 0;
 | |
|   }
 | |
|   | ConstPool TARGET TargetDefinition { 
 | |
|   }
 | |
|   | ConstPool DEPLIBS '=' LibrariesDefinition {
 | |
|   }
 | |
|   | /* empty: end of list */ { 
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| AsmBlock 
 | |
|   : STRINGCONSTANT {
 | |
|     const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
 | |
|     char *EndStr = UnEscapeLexed($1, true);
 | |
|     std::string NewAsm($1, EndStr);
 | |
|     free($1);
 | |
| 
 | |
|     if (AsmSoFar.empty())
 | |
|       CurModule.CurrentModule->setModuleInlineAsm(NewAsm);
 | |
|     else
 | |
|       CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+NewAsm);
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| BigOrLittle 
 | |
|   : BIG    { $$ = Module::BigEndian; }
 | |
|   | LITTLE { $$ = Module::LittleEndian; }
 | |
|   ;
 | |
| 
 | |
| TargetDefinition 
 | |
|   : ENDIAN '=' BigOrLittle {
 | |
|     CurModule.setEndianness($3);
 | |
|   }
 | |
|   | POINTERSIZE '=' EUINT64VAL {
 | |
|     if ($3 == 32)
 | |
|       CurModule.setPointerSize(Module::Pointer32);
 | |
|     else if ($3 == 64)
 | |
|       CurModule.setPointerSize(Module::Pointer64);
 | |
|     else
 | |
|       error("Invalid pointer size: '" + utostr($3) + "'");
 | |
|   }
 | |
|   | TRIPLE '=' STRINGCONSTANT {
 | |
|     CurModule.CurrentModule->setTargetTriple($3);
 | |
|     free($3);
 | |
|   }
 | |
|   | DATALAYOUT '=' STRINGCONSTANT {
 | |
|     CurModule.CurrentModule->setDataLayout($3);
 | |
|     free($3);
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| LibrariesDefinition 
 | |
|   : '[' LibList ']'
 | |
|   ;
 | |
| 
 | |
| LibList 
 | |
|   : LibList ',' STRINGCONSTANT {
 | |
|       CurModule.CurrentModule->addLibrary($3);
 | |
|       free($3);
 | |
|   }
 | |
|   | STRINGCONSTANT {
 | |
|     CurModule.CurrentModule->addLibrary($1);
 | |
|     free($1);
 | |
|   }
 | |
|   | /* empty: end of list */ { }
 | |
|   ;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       Rules to match Function Headers
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Name 
 | |
|   : VAR_ID | STRINGCONSTANT
 | |
|   ;
 | |
| 
 | |
| OptName 
 | |
|   : Name 
 | |
|   | /*empty*/ { $$ = 0; }
 | |
|   ;
 | |
| 
 | |
| ArgVal 
 | |
|   : Types OptName {
 | |
|     if ($1.PAT->get() == Type::VoidTy)
 | |
|       error("void typed arguments are invalid");
 | |
|     $$ = new std::pair<PATypeInfo, char*>($1, $2);
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| ArgListH 
 | |
|   : ArgListH ',' ArgVal {
 | |
|     $$ = $1;
 | |
|     $$->push_back(*$3);
 | |
|     delete $3;
 | |
|   }
 | |
|   | ArgVal {
 | |
|     $$ = new std::vector<std::pair<PATypeInfo,char*> >();
 | |
|     $$->push_back(*$1);
 | |
|     delete $1;
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| ArgList 
 | |
|   : ArgListH { $$ = $1; }
 | |
|   | ArgListH ',' DOTDOTDOT {
 | |
|     $$ = $1;
 | |
|     PATypeInfo VoidTI;
 | |
|     VoidTI.PAT = new PATypeHolder(Type::VoidTy);
 | |
|     VoidTI.S.makeSignless();
 | |
|     $$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0));
 | |
|   }
 | |
|   | DOTDOTDOT {
 | |
|     $$ = new std::vector<std::pair<PATypeInfo,char*> >();
 | |
|     PATypeInfo VoidTI;
 | |
|     VoidTI.PAT = new PATypeHolder(Type::VoidTy);
 | |
|     VoidTI.S.makeSignless();
 | |
|     $$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0));
 | |
|   }
 | |
|   | /* empty */ { $$ = 0; }
 | |
|   ;
 | |
| 
 | |
| FunctionHeaderH 
 | |
|   : OptCallingConv TypesV Name '(' ArgList ')' OptSection OptAlign {
 | |
|     UnEscapeLexed($3);
 | |
|     std::string FunctionName($3);
 | |
|     free($3);  // Free strdup'd memory!
 | |
| 
 | |
|     const Type* RetTy = $2.PAT->get();
 | |
|     
 | |
|     if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy)
 | |
|       error("LLVM functions cannot return aggregate types");
 | |
| 
 | |
|     Signedness FTySign;
 | |
|     FTySign.makeComposite($2.S);
 | |
|     std::vector<const Type*> ParamTyList;
 | |
| 
 | |
|     // In LLVM 2.0 the signatures of three varargs intrinsics changed to take
 | |
|     // i8*. We check here for those names and override the parameter list
 | |
|     // types to ensure the prototype is correct.
 | |
|     if (FunctionName == "llvm.va_start" || FunctionName == "llvm.va_end") {
 | |
|       ParamTyList.push_back(PointerType::get(Type::Int8Ty));
 | |
|     } else if (FunctionName == "llvm.va_copy") {
 | |
|       ParamTyList.push_back(PointerType::get(Type::Int8Ty));
 | |
|       ParamTyList.push_back(PointerType::get(Type::Int8Ty));
 | |
|     } else if ($5) {   // If there are arguments...
 | |
|       for (std::vector<std::pair<PATypeInfo,char*> >::iterator 
 | |
|            I = $5->begin(), E = $5->end(); I != E; ++I) {
 | |
|         const Type *Ty = I->first.PAT->get();
 | |
|         ParamTyList.push_back(Ty);
 | |
|         FTySign.add(I->first.S);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     bool isVarArg = ParamTyList.size() && ParamTyList.back() == Type::VoidTy;
 | |
|     if (isVarArg) 
 | |
|       ParamTyList.pop_back();
 | |
| 
 | |
|     // Convert the CSRet calling convention into the corresponding parameter
 | |
|     // attribute.
 | |
|     ParamAttrsList *PAL = 0;
 | |
|     if ($1 == OldCallingConv::CSRet) {
 | |
|       ParamAttrsVector Attrs;
 | |
|       ParamAttrsWithIndex PAWI;
 | |
|       PAWI.index = 1;  PAWI.attrs = ParamAttr::StructRet; // first arg
 | |
|       Attrs.push_back(PAWI);
 | |
|       PAL = ParamAttrsList::get(Attrs);
 | |
|     }
 | |
| 
 | |
|     const FunctionType *FT = 
 | |
|       FunctionType::get(RetTy, ParamTyList, isVarArg, PAL);
 | |
|     const PointerType *PFT = PointerType::get(FT);
 | |
|     delete $2.PAT;
 | |
| 
 | |
|     ValID ID;
 | |
|     if (!FunctionName.empty()) {
 | |
|       ID = ValID::create((char*)FunctionName.c_str());
 | |
|     } else {
 | |
|       ID = ValID::create((int)CurModule.Values[PFT].size());
 | |
|     }
 | |
|     ID.S.makeComposite(FTySign);
 | |
| 
 | |
|     Function *Fn = 0;
 | |
|     Module* M = CurModule.CurrentModule;
 | |
| 
 | |
|     // See if this function was forward referenced.  If so, recycle the object.
 | |
|     if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
 | |
|       // Move the function to the end of the list, from whereever it was 
 | |
|       // previously inserted.
 | |
|       Fn = cast<Function>(FWRef);
 | |
|       M->getFunctionList().remove(Fn);
 | |
|       M->getFunctionList().push_back(Fn);
 | |
|     } else if (!FunctionName.empty()) {
 | |
|       GlobalValue *Conflict = M->getFunction(FunctionName);
 | |
|       if (!Conflict)
 | |
|         Conflict = M->getNamedGlobal(FunctionName);
 | |
|       if (Conflict && PFT == Conflict->getType()) {
 | |
|         if (!CurFun.isDeclare && !Conflict->isDeclaration()) {
 | |
|           // We have two function definitions that conflict, same type, same
 | |
|           // name. We should really check to make sure that this is the result
 | |
|           // of integer type planes collapsing and generate an error if it is
 | |
|           // not, but we'll just rename on the assumption that it is. However,
 | |
|           // let's do it intelligently and rename the internal linkage one
 | |
|           // if there is one.
 | |
|           std::string NewName(makeNameUnique(FunctionName));
 | |
|           if (Conflict->hasInternalLinkage()) {
 | |
|             Conflict->setName(NewName);
 | |
|             RenameMapKey Key = 
 | |
|               makeRenameMapKey(FunctionName, Conflict->getType(), ID.S);
 | |
|             CurModule.RenameMap[Key] = NewName;
 | |
|             Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
 | |
|             InsertValue(Fn, CurModule.Values);
 | |
|           } else {
 | |
|             Fn = new Function(FT, CurFun.Linkage, NewName, M);
 | |
|             InsertValue(Fn, CurModule.Values);
 | |
|             RenameMapKey Key = 
 | |
|               makeRenameMapKey(FunctionName, PFT, ID.S);
 | |
|             CurModule.RenameMap[Key] = NewName;
 | |
|           }
 | |
|         } else {
 | |
|           // If they are not both definitions, then just use the function we
 | |
|           // found since the types are the same.
 | |
|           Fn = cast<Function>(Conflict);
 | |
| 
 | |
|           // Make sure to strip off any argument names so we can't get 
 | |
|           // conflicts.
 | |
|           if (Fn->isDeclaration())
 | |
|             for (Function::arg_iterator AI = Fn->arg_begin(), 
 | |
|                  AE = Fn->arg_end(); AI != AE; ++AI)
 | |
|               AI->setName("");
 | |
|         }
 | |
|       } else if (Conflict) {
 | |
|         // We have two globals with the same name and different types. 
 | |
|         // Previously, this was permitted because the symbol table had 
 | |
|         // "type planes" and names only needed to be distinct within a 
 | |
|         // type plane. After PR411 was fixed, this is no loner the case. 
 | |
|         // To resolve this we must rename one of the two. 
 | |
|         if (Conflict->hasInternalLinkage()) {
 | |
|           // We can safely rename the Conflict.
 | |
|           RenameMapKey Key = 
 | |
|             makeRenameMapKey(Conflict->getName(), Conflict->getType(), 
 | |
|               CurModule.NamedValueSigns[Conflict->getName()]);
 | |
|           Conflict->setName(makeNameUnique(Conflict->getName()));
 | |
|           CurModule.RenameMap[Key] = Conflict->getName();
 | |
|           Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
 | |
|           InsertValue(Fn, CurModule.Values);
 | |
|         } else { 
 | |
|           // We can't quietly rename either of these things, but we must
 | |
|           // rename one of them. Only if the function's linkage is internal can
 | |
|           // we forgo a warning message about the renamed function. 
 | |
|           std::string NewName = makeNameUnique(FunctionName);
 | |
|           if (CurFun.Linkage != GlobalValue::InternalLinkage) {
 | |
|             warning("Renaming function '" + FunctionName + "' as '" + NewName +
 | |
|                     "' may cause linkage errors");
 | |
|           }
 | |
|           // Elect to rename the thing we're now defining.
 | |
|           Fn = new Function(FT, CurFun.Linkage, NewName, M);
 | |
|           InsertValue(Fn, CurModule.Values);
 | |
|           RenameMapKey Key = makeRenameMapKey(FunctionName, PFT, ID.S);
 | |
|           CurModule.RenameMap[Key] = NewName;
 | |
|         } 
 | |
|       } else {
 | |
|         // There's no conflict, just define the function
 | |
|         Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
 | |
|         InsertValue(Fn, CurModule.Values);
 | |
|       }
 | |
|     } else {
 | |
|       // There's no conflict, just define the function
 | |
|       Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
 | |
|       InsertValue(Fn, CurModule.Values);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     CurFun.FunctionStart(Fn);
 | |
| 
 | |
|     if (CurFun.isDeclare) {
 | |
|       // If we have declaration, always overwrite linkage.  This will allow us 
 | |
|       // to correctly handle cases, when pointer to function is passed as 
 | |
|       // argument to another function.
 | |
|       Fn->setLinkage(CurFun.Linkage);
 | |
|     }
 | |
|     Fn->setCallingConv(upgradeCallingConv($1));
 | |
|     Fn->setAlignment($8);
 | |
|     if ($7) {
 | |
|       Fn->setSection($7);
 | |
|       free($7);
 | |
|     }
 | |
| 
 | |
|     // Add all of the arguments we parsed to the function...
 | |
|     if ($5) {                     // Is null if empty...
 | |
|       if (isVarArg) {  // Nuke the last entry
 | |
|         assert($5->back().first.PAT->get() == Type::VoidTy && 
 | |
|                $5->back().second == 0 && "Not a varargs marker");
 | |
|         delete $5->back().first.PAT;
 | |
|         $5->pop_back();  // Delete the last entry
 | |
|       }
 | |
|       Function::arg_iterator ArgIt = Fn->arg_begin();
 | |
|       Function::arg_iterator ArgEnd = Fn->arg_end();
 | |
|       std::vector<std::pair<PATypeInfo,char*> >::iterator I = $5->begin();
 | |
|       std::vector<std::pair<PATypeInfo,char*> >::iterator E = $5->end();
 | |
|       for ( ; I != E && ArgIt != ArgEnd; ++I, ++ArgIt) {
 | |
|         delete I->first.PAT;                      // Delete the typeholder...
 | |
|         ValueInfo VI; VI.V = ArgIt; VI.S.copy(I->first.S); 
 | |
|         setValueName(VI, I->second);           // Insert arg into symtab...
 | |
|         InsertValue(ArgIt);
 | |
|       }
 | |
|       delete $5;                     // We're now done with the argument list
 | |
|     }
 | |
|     lastCallingConv = OldCallingConv::C;
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| BEGIN 
 | |
|   : BEGINTOK | '{'                // Allow BEGIN or '{' to start a function
 | |
|   ;
 | |
| 
 | |
| FunctionHeader 
 | |
|   : OptLinkage { CurFun.Linkage = $1; } FunctionHeaderH BEGIN {
 | |
|     $$ = CurFun.CurrentFunction;
 | |
| 
 | |
|     // Make sure that we keep track of the linkage type even if there was a
 | |
|     // previous "declare".
 | |
|     $$->setLinkage($1);
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| END 
 | |
|   : ENDTOK | '}'                    // Allow end of '}' to end a function
 | |
|   ;
 | |
| 
 | |
| Function 
 | |
|   : BasicBlockList END {
 | |
|     $$ = $1;
 | |
|   };
 | |
| 
 | |
| FnDeclareLinkage
 | |
|   : /*default*/ { $$ = GlobalValue::ExternalLinkage; }
 | |
|   | DLLIMPORT   { $$ = GlobalValue::DLLImportLinkage; } 
 | |
|   | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
 | |
|   ;
 | |
|   
 | |
| FunctionProto 
 | |
|   : DECLARE { CurFun.isDeclare = true; } 
 | |
|      FnDeclareLinkage { CurFun.Linkage = $3; } FunctionHeaderH {
 | |
|     $$ = CurFun.CurrentFunction;
 | |
|     CurFun.FunctionDone();
 | |
|     
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        Rules to match Basic Blocks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| OptSideEffect 
 | |
|   : /* empty */ { $$ = false; }
 | |
|   | SIDEEFFECT { $$ = true; }
 | |
|   ;
 | |
| 
 | |
| ConstValueRef 
 | |
|     // A reference to a direct constant
 | |
|   : ESINT64VAL { $$ = ValID::create($1); }
 | |
|   | EUINT64VAL { $$ = ValID::create($1); }
 | |
|   | FPVAL { $$ = ValID::create($1); } 
 | |
|   | TRUETOK { 
 | |
|     $$ = ValID::create(ConstantInt::get(Type::Int1Ty, true));
 | |
|     $$.S.makeUnsigned();
 | |
|   }
 | |
|   | FALSETOK { 
 | |
|     $$ = ValID::create(ConstantInt::get(Type::Int1Ty, false)); 
 | |
|     $$.S.makeUnsigned();
 | |
|   }
 | |
|   | NULL_TOK { $$ = ValID::createNull(); }
 | |
|   | UNDEF { $$ = ValID::createUndef(); }
 | |
|   | ZEROINITIALIZER { $$ = ValID::createZeroInit(); }
 | |
|   | '<' ConstVector '>' { // Nonempty unsized packed vector
 | |
|     const Type *ETy = (*$2)[0].C->getType();
 | |
|     int NumElements = $2->size(); 
 | |
|     VectorType* pt = VectorType::get(ETy, NumElements);
 | |
|     $$.S.makeComposite((*$2)[0].S);
 | |
|     PATypeHolder* PTy = new PATypeHolder(HandleUpRefs(pt, $$.S));
 | |
|     
 | |
|     // Verify all elements are correct type!
 | |
|     std::vector<Constant*> Elems;
 | |
|     for (unsigned i = 0; i < $2->size(); i++) {
 | |
|       Constant *C = (*$2)[i].C;
 | |
|       const Type *CTy = C->getType();
 | |
|       if (ETy != CTy)
 | |
|         error("Element #" + utostr(i) + " is not of type '" + 
 | |
|               ETy->getDescription() +"' as required!\nIt is of type '" +
 | |
|               CTy->getDescription() + "'");
 | |
|       Elems.push_back(C);
 | |
|     }
 | |
|     $$ = ValID::create(ConstantVector::get(pt, Elems));
 | |
|     delete PTy; delete $2;
 | |
|   }
 | |
|   | ConstExpr {
 | |
|     $$ = ValID::create($1.C);
 | |
|     $$.S.copy($1.S);
 | |
|   }
 | |
|   | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
 | |
|     char *End = UnEscapeLexed($3, true);
 | |
|     std::string AsmStr = std::string($3, End);
 | |
|     End = UnEscapeLexed($5, true);
 | |
|     std::string Constraints = std::string($5, End);
 | |
|     $$ = ValID::createInlineAsm(AsmStr, Constraints, $2);
 | |
|     free($3);
 | |
|     free($5);
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| // SymbolicValueRef - Reference to one of two ways of symbolically refering to // another value.
 | |
| //
 | |
| SymbolicValueRef 
 | |
|   : INTVAL {  $$ = ValID::create($1); $$.S.makeSignless(); }
 | |
|   | Name   {  $$ = ValID::create($1); $$.S.makeSignless(); }
 | |
|   ;
 | |
| 
 | |
| // ValueRef - A reference to a definition... either constant or symbolic
 | |
| ValueRef 
 | |
|   : SymbolicValueRef | ConstValueRef
 | |
|   ;
 | |
| 
 | |
| 
 | |
| // ResolvedVal - a <type> <value> pair.  This is used only in cases where the
 | |
| // type immediately preceeds the value reference, and allows complex constant
 | |
| // pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
 | |
| ResolvedVal 
 | |
|   : Types ValueRef { 
 | |
|     const Type *Ty = $1.PAT->get();
 | |
|     $2.S.copy($1.S);
 | |
|     $$.V = getVal(Ty, $2); 
 | |
|     $$.S.copy($1.S);
 | |
|     delete $1.PAT;
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| BasicBlockList 
 | |
|   : BasicBlockList BasicBlock {
 | |
|     $$ = $1;
 | |
|   }
 | |
|   | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks   
 | |
|     $$ = $1;
 | |
|   };
 | |
| 
 | |
| 
 | |
| // Basic blocks are terminated by branching instructions: 
 | |
| // br, br/cc, switch, ret
 | |
| //
 | |
| BasicBlock 
 | |
|   : InstructionList OptAssign BBTerminatorInst  {
 | |
|     ValueInfo VI; VI.V = $3.TI; VI.S.copy($3.S);
 | |
|     setValueName(VI, $2);
 | |
|     InsertValue($3.TI);
 | |
|     $1->getInstList().push_back($3.TI);
 | |
|     InsertValue($1);
 | |
|     $$ = $1;
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| InstructionList
 | |
|   : InstructionList Inst {
 | |
|     if ($2.I)
 | |
|       $1->getInstList().push_back($2.I);
 | |
|     $$ = $1;
 | |
|   }
 | |
|   | /* empty */ {
 | |
|     $$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++),true);
 | |
|     // Make sure to move the basic block to the correct location in the
 | |
|     // function, instead of leaving it inserted wherever it was first
 | |
|     // referenced.
 | |
|     Function::BasicBlockListType &BBL = 
 | |
|       CurFun.CurrentFunction->getBasicBlockList();
 | |
|     BBL.splice(BBL.end(), BBL, $$);
 | |
|   }
 | |
|   | LABELSTR {
 | |
|     $$ = CurBB = getBBVal(ValID::create($1), true);
 | |
|     // Make sure to move the basic block to the correct location in the
 | |
|     // function, instead of leaving it inserted wherever it was first
 | |
|     // referenced.
 | |
|     Function::BasicBlockListType &BBL = 
 | |
|       CurFun.CurrentFunction->getBasicBlockList();
 | |
|     BBL.splice(BBL.end(), BBL, $$);
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| Unwind : UNWIND | EXCEPT;
 | |
| 
 | |
| BBTerminatorInst 
 | |
|   : RET ResolvedVal {              // Return with a result...
 | |
|     $$.TI = new ReturnInst($2.V);
 | |
|     $$.S.makeSignless();
 | |
|   }
 | |
|   | RET VOID {                                       // Return with no result...
 | |
|     $$.TI = new ReturnInst();
 | |
|     $$.S.makeSignless();
 | |
|   }
 | |
|   | BR LABEL ValueRef {                         // Unconditional Branch...
 | |
|     BasicBlock* tmpBB = getBBVal($3);
 | |
|     $$.TI = new BranchInst(tmpBB);
 | |
|     $$.S.makeSignless();
 | |
|   }                                                  // Conditional Branch...
 | |
|   | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {  
 | |
|     $6.S.makeSignless();
 | |
|     $9.S.makeSignless();
 | |
|     BasicBlock* tmpBBA = getBBVal($6);
 | |
|     BasicBlock* tmpBBB = getBBVal($9);
 | |
|     $3.S.makeUnsigned();
 | |
|     Value* tmpVal = getVal(Type::Int1Ty, $3);
 | |
|     $$.TI = new BranchInst(tmpBBA, tmpBBB, tmpVal);
 | |
|     $$.S.makeSignless();
 | |
|   }
 | |
|   | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
 | |
|     $3.S.copy($2.S);
 | |
|     Value* tmpVal = getVal($2.T, $3);
 | |
|     $6.S.makeSignless();
 | |
|     BasicBlock* tmpBB = getBBVal($6);
 | |
|     SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size());
 | |
|     $$.TI = S;
 | |
|     $$.S.makeSignless();
 | |
|     std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
 | |
|       E = $8->end();
 | |
|     for (; I != E; ++I) {
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
 | |
|           S->addCase(CI, I->second);
 | |
|       else
 | |
|         error("Switch case is constant, but not a simple integer");
 | |
|     }
 | |
|     delete $8;
 | |
|   }
 | |
|   | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
 | |
|     $3.S.copy($2.S);
 | |
|     Value* tmpVal = getVal($2.T, $3);
 | |
|     $6.S.makeSignless();
 | |
|     BasicBlock* tmpBB = getBBVal($6);
 | |
|     SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0);
 | |
|     $$.TI = S;
 | |
|     $$.S.makeSignless();
 | |
|   }
 | |
|   | INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')'
 | |
|     TO LABEL ValueRef Unwind LABEL ValueRef {
 | |
|     const PointerType *PFTy;
 | |
|     const FunctionType *Ty;
 | |
|     Signedness FTySign;
 | |
| 
 | |
|     if (!(PFTy = dyn_cast<PointerType>($3.PAT->get())) ||
 | |
|         !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
 | |
|       // Pull out the types of all of the arguments...
 | |
|       std::vector<const Type*> ParamTypes;
 | |
|       FTySign.makeComposite($3.S);
 | |
|       if ($6) {
 | |
|         for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end();
 | |
|              I != E; ++I) {
 | |
|           ParamTypes.push_back((*I).V->getType());
 | |
|           FTySign.add(I->S);
 | |
|         }
 | |
|       }
 | |
|       ParamAttrsList *PAL = 0;
 | |
|       if ($2 == OldCallingConv::CSRet) {
 | |
|         ParamAttrsVector Attrs;
 | |
|         ParamAttrsWithIndex PAWI;
 | |
|         PAWI.index = 1;  PAWI.attrs = ParamAttr::StructRet; // first arg
 | |
|         Attrs.push_back(PAWI);
 | |
|         PAL = ParamAttrsList::get(Attrs);
 | |
|       }
 | |
|       bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
 | |
|       if (isVarArg) ParamTypes.pop_back();
 | |
|       Ty = FunctionType::get($3.PAT->get(), ParamTypes, isVarArg, PAL);
 | |
|       PFTy = PointerType::get(Ty);
 | |
|       $$.S.copy($3.S);
 | |
|     } else {
 | |
|       FTySign = $3.S;
 | |
|       // Get the signedness of the result type. $3 is the pointer to the
 | |
|       // function type so we get the 0th element to extract the function type,
 | |
|       // and then the 0th element again to get the result type.
 | |
|       $$.S.copy($3.S.get(0).get(0)); 
 | |
|     }
 | |
| 
 | |
|     $4.S.makeComposite(FTySign);
 | |
|     Value *V = getVal(PFTy, $4);   // Get the function we're calling...
 | |
|     BasicBlock *Normal = getBBVal($10);
 | |
|     BasicBlock *Except = getBBVal($13);
 | |
| 
 | |
|     // Create the call node...
 | |
|     if (!$6) {                                   // Has no arguments?
 | |
|       $$.TI = new InvokeInst(V, Normal, Except, 0, 0);
 | |
|     } else {                                     // Has arguments?
 | |
|       // Loop through FunctionType's arguments and ensure they are specified
 | |
|       // correctly!
 | |
|       //
 | |
|       FunctionType::param_iterator I = Ty->param_begin();
 | |
|       FunctionType::param_iterator E = Ty->param_end();
 | |
|       std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end();
 | |
| 
 | |
|       std::vector<Value*> Args;
 | |
|       for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
 | |
|         if ((*ArgI).V->getType() != *I)
 | |
|           error("Parameter " +(*ArgI).V->getName()+ " is not of type '" +
 | |
|                 (*I)->getDescription() + "'");
 | |
|         Args.push_back((*ArgI).V);
 | |
|       }
 | |
| 
 | |
|       if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
 | |
|         error("Invalid number of parameters detected");
 | |
| 
 | |
|       $$.TI = new InvokeInst(V, Normal, Except, &Args[0], Args.size());
 | |
|     }
 | |
|     cast<InvokeInst>($$.TI)->setCallingConv(upgradeCallingConv($2));
 | |
|     delete $3.PAT;
 | |
|     delete $6;
 | |
|     lastCallingConv = OldCallingConv::C;
 | |
|   }
 | |
|   | Unwind {
 | |
|     $$.TI = new UnwindInst();
 | |
|     $$.S.makeSignless();
 | |
|   }
 | |
|   | UNREACHABLE {
 | |
|     $$.TI = new UnreachableInst();
 | |
|     $$.S.makeSignless();
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| JumpTable 
 | |
|   : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
 | |
|     $$ = $1;
 | |
|     $3.S.copy($2.S);
 | |
|     Constant *V = cast<Constant>(getExistingValue($2.T, $3));
 | |
|     
 | |
|     if (V == 0)
 | |
|       error("May only switch on a constant pool value");
 | |
| 
 | |
|     $6.S.makeSignless();
 | |
|     BasicBlock* tmpBB = getBBVal($6);
 | |
|     $$->push_back(std::make_pair(V, tmpBB));
 | |
|   }
 | |
|   | IntType ConstValueRef ',' LABEL ValueRef {
 | |
|     $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
 | |
|     $2.S.copy($1.S);
 | |
|     Constant *V = cast<Constant>(getExistingValue($1.T, $2));
 | |
| 
 | |
|     if (V == 0)
 | |
|       error("May only switch on a constant pool value");
 | |
| 
 | |
|     $5.S.makeSignless();
 | |
|     BasicBlock* tmpBB = getBBVal($5);
 | |
|     $$->push_back(std::make_pair(V, tmpBB)); 
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| Inst 
 | |
|   : OptAssign InstVal {
 | |
|     bool omit = false;
 | |
|     if ($1)
 | |
|       if (BitCastInst *BCI = dyn_cast<BitCastInst>($2.I))
 | |
|         if (BCI->getSrcTy() == BCI->getDestTy() && 
 | |
|             BCI->getOperand(0)->getName() == $1)
 | |
|           // This is a useless bit cast causing a name redefinition. It is
 | |
|           // a bit cast from a type to the same type of an operand with the
 | |
|           // same name as the name we would give this instruction. Since this
 | |
|           // instruction results in no code generation, it is safe to omit
 | |
|           // the instruction. This situation can occur because of collapsed
 | |
|           // type planes. For example:
 | |
|           //   %X = add int %Y, %Z
 | |
|           //   %X = cast int %Y to uint
 | |
|           // After upgrade, this looks like:
 | |
|           //   %X = add i32 %Y, %Z
 | |
|           //   %X = bitcast i32 to i32
 | |
|           // The bitcast is clearly useless so we omit it.
 | |
|           omit = true;
 | |
|     if (omit) {
 | |
|       $$.I = 0;
 | |
|       $$.S.makeSignless();
 | |
|     } else {
 | |
|       ValueInfo VI; VI.V = $2.I; VI.S.copy($2.S);
 | |
|       setValueName(VI, $1);
 | |
|       InsertValue($2.I);
 | |
|       $$ = $2;
 | |
|     }
 | |
|   };
 | |
| 
 | |
| PHIList : Types '[' ValueRef ',' ValueRef ']' {    // Used for PHI nodes
 | |
|     $$.P = new std::list<std::pair<Value*, BasicBlock*> >();
 | |
|     $$.S.copy($1.S);
 | |
|     $3.S.copy($1.S);
 | |
|     Value* tmpVal = getVal($1.PAT->get(), $3);
 | |
|     $5.S.makeSignless();
 | |
|     BasicBlock* tmpBB = getBBVal($5);
 | |
|     $$.P->push_back(std::make_pair(tmpVal, tmpBB));
 | |
|     delete $1.PAT;
 | |
|   }
 | |
|   | PHIList ',' '[' ValueRef ',' ValueRef ']' {
 | |
|     $$ = $1;
 | |
|     $4.S.copy($1.S);
 | |
|     Value* tmpVal = getVal($1.P->front().first->getType(), $4);
 | |
|     $6.S.makeSignless();
 | |
|     BasicBlock* tmpBB = getBBVal($6);
 | |
|     $1.P->push_back(std::make_pair(tmpVal, tmpBB));
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| ValueRefList : ResolvedVal {    // Used for call statements, and memory insts...
 | |
|     $$ = new std::vector<ValueInfo>();
 | |
|     $$->push_back($1);
 | |
|   }
 | |
|   | ValueRefList ',' ResolvedVal {
 | |
|     $$ = $1;
 | |
|     $1->push_back($3);
 | |
|   };
 | |
| 
 | |
| // ValueRefListE - Just like ValueRefList, except that it may also be empty!
 | |
| ValueRefListE 
 | |
|   : ValueRefList 
 | |
|   | /*empty*/ { $$ = 0; }
 | |
|   ;
 | |
| 
 | |
| OptTailCall 
 | |
|   : TAIL CALL {
 | |
|     $$ = true;
 | |
|   }
 | |
|   | CALL {
 | |
|     $$ = false;
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| InstVal 
 | |
|   : ArithmeticOps Types ValueRef ',' ValueRef {
 | |
|     $3.S.copy($2.S);
 | |
|     $5.S.copy($2.S);
 | |
|     const Type* Ty = $2.PAT->get();
 | |
|     if (!Ty->isInteger() && !Ty->isFloatingPoint() && !isa<VectorType>(Ty))
 | |
|       error("Arithmetic operator requires integer, FP, or packed operands");
 | |
|     if (isa<VectorType>(Ty) && 
 | |
|         ($1 == URemOp || $1 == SRemOp || $1 == FRemOp || $1 == RemOp))
 | |
|       error("Remainder not supported on vector types");
 | |
|     // Upgrade the opcode from obsolete versions before we do anything with it.
 | |
|     Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S);
 | |
|     Value* val1 = getVal(Ty, $3); 
 | |
|     Value* val2 = getVal(Ty, $5);
 | |
|     $$.I = BinaryOperator::create(Opcode, val1, val2);
 | |
|     if ($$.I == 0)
 | |
|       error("binary operator returned null");
 | |
|     $$.S.copy($2.S);
 | |
|     delete $2.PAT;
 | |
|   }
 | |
|   | LogicalOps Types ValueRef ',' ValueRef {
 | |
|     $3.S.copy($2.S);
 | |
|     $5.S.copy($2.S);
 | |
|     const Type *Ty = $2.PAT->get();
 | |
|     if (!Ty->isInteger()) {
 | |
|       if (!isa<VectorType>(Ty) ||
 | |
|           !cast<VectorType>(Ty)->getElementType()->isInteger())
 | |
|         error("Logical operator requires integral operands");
 | |
|     }
 | |
|     Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S);
 | |
|     Value* tmpVal1 = getVal(Ty, $3);
 | |
|     Value* tmpVal2 = getVal(Ty, $5);
 | |
|     $$.I = BinaryOperator::create(Opcode, tmpVal1, tmpVal2);
 | |
|     if ($$.I == 0)
 | |
|       error("binary operator returned null");
 | |
|     $$.S.copy($2.S);
 | |
|     delete $2.PAT;
 | |
|   }
 | |
|   | SetCondOps Types ValueRef ',' ValueRef {
 | |
|     $3.S.copy($2.S);
 | |
|     $5.S.copy($2.S);
 | |
|     const Type* Ty = $2.PAT->get();
 | |
|     if(isa<VectorType>(Ty))
 | |
|       error("VectorTypes currently not supported in setcc instructions");
 | |
|     unsigned short pred;
 | |
|     Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $2.S);
 | |
|     Value* tmpVal1 = getVal(Ty, $3);
 | |
|     Value* tmpVal2 = getVal(Ty, $5);
 | |
|     $$.I = CmpInst::create(Opcode, pred, tmpVal1, tmpVal2);
 | |
|     if ($$.I == 0)
 | |
|       error("binary operator returned null");
 | |
|     $$.S.makeUnsigned();
 | |
|     delete $2.PAT;
 | |
|   }
 | |
|   | ICMP IPredicates Types ValueRef ',' ValueRef {
 | |
|     $4.S.copy($3.S);
 | |
|     $6.S.copy($3.S);
 | |
|     const Type *Ty = $3.PAT->get();
 | |
|     if (isa<VectorType>(Ty)) 
 | |
|       error("VectorTypes currently not supported in icmp instructions");
 | |
|     else if (!Ty->isInteger() && !isa<PointerType>(Ty))
 | |
|       error("icmp requires integer or pointer typed operands");
 | |
|     Value* tmpVal1 = getVal(Ty, $4);
 | |
|     Value* tmpVal2 = getVal(Ty, $6);
 | |
|     $$.I = new ICmpInst($2, tmpVal1, tmpVal2);
 | |
|     $$.S.makeUnsigned();
 | |
|     delete $3.PAT;
 | |
|   }
 | |
|   | FCMP FPredicates Types ValueRef ',' ValueRef {
 | |
|     $4.S.copy($3.S);
 | |
|     $6.S.copy($3.S);
 | |
|     const Type *Ty = $3.PAT->get();
 | |
|     if (isa<VectorType>(Ty))
 | |
|       error("VectorTypes currently not supported in fcmp instructions");
 | |
|     else if (!Ty->isFloatingPoint())
 | |
|       error("fcmp instruction requires floating point operands");
 | |
|     Value* tmpVal1 = getVal(Ty, $4);
 | |
|     Value* tmpVal2 = getVal(Ty, $6);
 | |
|     $$.I = new FCmpInst($2, tmpVal1, tmpVal2);
 | |
|     $$.S.makeUnsigned();
 | |
|     delete $3.PAT;
 | |
|   }
 | |
|   | NOT ResolvedVal {
 | |
|     warning("Use of obsolete 'not' instruction: Replacing with 'xor");
 | |
|     const Type *Ty = $2.V->getType();
 | |
|     Value *Ones = ConstantInt::getAllOnesValue(Ty);
 | |
|     if (Ones == 0)
 | |
|       error("Expected integral type for not instruction");
 | |
|     $$.I = BinaryOperator::create(Instruction::Xor, $2.V, Ones);
 | |
|     if ($$.I == 0)
 | |
|       error("Could not create a xor instruction");
 | |
|     $$.S.copy($2.S);
 | |
|   }
 | |
|   | ShiftOps ResolvedVal ',' ResolvedVal {
 | |
|     if (!$4.V->getType()->isInteger() ||
 | |
|         cast<IntegerType>($4.V->getType())->getBitWidth() != 8)
 | |
|       error("Shift amount must be int8");
 | |
|     const Type* Ty = $2.V->getType();
 | |
|     if (!Ty->isInteger())
 | |
|       error("Shift constant expression requires integer operand");
 | |
|     Value* ShiftAmt = 0;
 | |
|     if (cast<IntegerType>(Ty)->getBitWidth() > Type::Int8Ty->getBitWidth())
 | |
|       if (Constant *C = dyn_cast<Constant>($4.V))
 | |
|         ShiftAmt = ConstantExpr::getZExt(C, Ty);
 | |
|       else
 | |
|         ShiftAmt = new ZExtInst($4.V, Ty, makeNameUnique("shift"), CurBB);
 | |
|     else
 | |
|       ShiftAmt = $4.V;
 | |
|     $$.I = BinaryOperator::create(getBinaryOp($1, Ty, $2.S), $2.V, ShiftAmt);
 | |
|     $$.S.copy($2.S);
 | |
|   }
 | |
|   | CastOps ResolvedVal TO Types {
 | |
|     const Type *DstTy = $4.PAT->get();
 | |
|     if (!DstTy->isFirstClassType())
 | |
|       error("cast instruction to a non-primitive type: '" +
 | |
|             DstTy->getDescription() + "'");
 | |
|     $$.I = cast<Instruction>(getCast($1, $2.V, $2.S, DstTy, $4.S, true));
 | |
|     $$.S.copy($4.S);
 | |
|     delete $4.PAT;
 | |
|   }
 | |
|   | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
 | |
|     if (!$2.V->getType()->isInteger() ||
 | |
|         cast<IntegerType>($2.V->getType())->getBitWidth() != 1)
 | |
|       error("select condition must be bool");
 | |
|     if ($4.V->getType() != $6.V->getType())
 | |
|       error("select value types should match");
 | |
|     $$.I = new SelectInst($2.V, $4.V, $6.V);
 | |
|     $$.S.copy($4.S);
 | |
|   }
 | |
|   | VAARG ResolvedVal ',' Types {
 | |
|     const Type *Ty = $4.PAT->get();
 | |
|     NewVarArgs = true;
 | |
|     $$.I = new VAArgInst($2.V, Ty);
 | |
|     $$.S.copy($4.S);
 | |
|     delete $4.PAT;
 | |
|   }
 | |
|   | VAARG_old ResolvedVal ',' Types {
 | |
|     const Type* ArgTy = $2.V->getType();
 | |
|     const Type* DstTy = $4.PAT->get();
 | |
|     ObsoleteVarArgs = true;
 | |
|     Function* NF = cast<Function>(CurModule.CurrentModule->
 | |
|       getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0));
 | |
| 
 | |
|     //b = vaarg a, t -> 
 | |
|     //foo = alloca 1 of t
 | |
|     //bar = vacopy a 
 | |
|     //store bar -> foo
 | |
|     //b = vaarg foo, t
 | |
|     AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
 | |
|     CurBB->getInstList().push_back(foo);
 | |
|     CallInst* bar = new CallInst(NF, $2.V);
 | |
|     CurBB->getInstList().push_back(bar);
 | |
|     CurBB->getInstList().push_back(new StoreInst(bar, foo));
 | |
|     $$.I = new VAArgInst(foo, DstTy);
 | |
|     $$.S.copy($4.S);
 | |
|     delete $4.PAT;
 | |
|   }
 | |
|   | VANEXT_old ResolvedVal ',' Types {
 | |
|     const Type* ArgTy = $2.V->getType();
 | |
|     const Type* DstTy = $4.PAT->get();
 | |
|     ObsoleteVarArgs = true;
 | |
|     Function* NF = cast<Function>(CurModule.CurrentModule->
 | |
|       getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0));
 | |
| 
 | |
|     //b = vanext a, t ->
 | |
|     //foo = alloca 1 of t
 | |
|     //bar = vacopy a
 | |
|     //store bar -> foo
 | |
|     //tmp = vaarg foo, t
 | |
|     //b = load foo
 | |
|     AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
 | |
|     CurBB->getInstList().push_back(foo);
 | |
|     CallInst* bar = new CallInst(NF, $2.V);
 | |
|     CurBB->getInstList().push_back(bar);
 | |
|     CurBB->getInstList().push_back(new StoreInst(bar, foo));
 | |
|     Instruction* tmp = new VAArgInst(foo, DstTy);
 | |
|     CurBB->getInstList().push_back(tmp);
 | |
|     $$.I = new LoadInst(foo);
 | |
|     $$.S.copy($4.S);
 | |
|     delete $4.PAT;
 | |
|   }
 | |
|   | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
 | |
|     if (!ExtractElementInst::isValidOperands($2.V, $4.V))
 | |
|       error("Invalid extractelement operands");
 | |
|     $$.I = new ExtractElementInst($2.V, $4.V);
 | |
|     $$.S.copy($2.S.get(0));
 | |
|   }
 | |
|   | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
 | |
|     if (!InsertElementInst::isValidOperands($2.V, $4.V, $6.V))
 | |
|       error("Invalid insertelement operands");
 | |
|     $$.I = new InsertElementInst($2.V, $4.V, $6.V);
 | |
|     $$.S.copy($2.S);
 | |
|   }
 | |
|   | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
 | |
|     if (!ShuffleVectorInst::isValidOperands($2.V, $4.V, $6.V))
 | |
|       error("Invalid shufflevector operands");
 | |
|     $$.I = new ShuffleVectorInst($2.V, $4.V, $6.V);
 | |
|     $$.S.copy($2.S);
 | |
|   }
 | |
|   | PHI_TOK PHIList {
 | |
|     const Type *Ty = $2.P->front().first->getType();
 | |
|     if (!Ty->isFirstClassType())
 | |
|       error("PHI node operands must be of first class type");
 | |
|     PHINode *PHI = new PHINode(Ty);
 | |
|     PHI->reserveOperandSpace($2.P->size());
 | |
|     while ($2.P->begin() != $2.P->end()) {
 | |
|       if ($2.P->front().first->getType() != Ty) 
 | |
|         error("All elements of a PHI node must be of the same type");
 | |
|       PHI->addIncoming($2.P->front().first, $2.P->front().second);
 | |
|       $2.P->pop_front();
 | |
|     }
 | |
|     $$.I = PHI;
 | |
|     $$.S.copy($2.S);
 | |
|     delete $2.P;  // Free the list...
 | |
|   }
 | |
|   | OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')' {
 | |
|     // Handle the short call syntax
 | |
|     const PointerType *PFTy;
 | |
|     const FunctionType *FTy;
 | |
|     Signedness FTySign;
 | |
|     if (!(PFTy = dyn_cast<PointerType>($3.PAT->get())) ||
 | |
|         !(FTy = dyn_cast<FunctionType>(PFTy->getElementType()))) {
 | |
|       // Pull out the types of all of the arguments...
 | |
|       std::vector<const Type*> ParamTypes;
 | |
|       FTySign.makeComposite($3.S);
 | |
|       if ($6) {
 | |
|         for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end();
 | |
|              I != E; ++I) {
 | |
|           ParamTypes.push_back((*I).V->getType());
 | |
|           FTySign.add(I->S);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
 | |
|       if (isVarArg) ParamTypes.pop_back();
 | |
| 
 | |
|       const Type *RetTy = $3.PAT->get();
 | |
|       if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy)
 | |
|         error("Functions cannot return aggregate types");
 | |
| 
 | |
|       // Deal with CSRetCC
 | |
|       ParamAttrsList *PAL = 0;
 | |
|       if ($2 == OldCallingConv::CSRet) {
 | |
|         ParamAttrsVector Attrs;
 | |
|         ParamAttrsWithIndex PAWI;
 | |
|         PAWI.index = 1;  PAWI.attrs = ParamAttr::StructRet; // first arg
 | |
|         Attrs.push_back(PAWI);
 | |
|         PAL = ParamAttrsList::get(Attrs);
 | |
|       }
 | |
| 
 | |
|       FTy = FunctionType::get(RetTy, ParamTypes, isVarArg, PAL);
 | |
|       PFTy = PointerType::get(FTy);
 | |
|       $$.S.copy($3.S);
 | |
|     } else {
 | |
|       FTySign = $3.S;
 | |
|       // Get the signedness of the result type. $3 is the pointer to the
 | |
|       // function type so we get the 0th element to extract the function type,
 | |
|       // and then the 0th element again to get the result type.
 | |
|       $$.S.copy($3.S.get(0).get(0)); 
 | |
|     }
 | |
|     $4.S.makeComposite(FTySign);
 | |
| 
 | |
|     // First upgrade any intrinsic calls.
 | |
|     std::vector<Value*> Args;
 | |
|     if ($6)
 | |
|       for (unsigned i = 0, e = $6->size(); i < e; ++i) 
 | |
|         Args.push_back((*$6)[i].V);
 | |
|     Instruction *Inst = upgradeIntrinsicCall(FTy->getReturnType(), $4, Args);
 | |
| 
 | |
|     // If we got an upgraded intrinsic
 | |
|     if (Inst) {
 | |
|       $$.I = Inst;
 | |
|     } else {
 | |
|       // Get the function we're calling
 | |
|       Value *V = getVal(PFTy, $4);
 | |
| 
 | |
|       // Check the argument values match
 | |
|       if (!$6) {                                   // Has no arguments?
 | |
|         // Make sure no arguments is a good thing!
 | |
|         if (FTy->getNumParams() != 0)
 | |
|           error("No arguments passed to a function that expects arguments");
 | |
|       } else {                                     // Has arguments?
 | |
|         // Loop through FunctionType's arguments and ensure they are specified
 | |
|         // correctly!
 | |
|         //
 | |
|         FunctionType::param_iterator I = FTy->param_begin();
 | |
|         FunctionType::param_iterator E = FTy->param_end();
 | |
|         std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end();
 | |
| 
 | |
|         for (; ArgI != ArgE && I != E; ++ArgI, ++I)
 | |
|           if ((*ArgI).V->getType() != *I)
 | |
|             error("Parameter " +(*ArgI).V->getName()+ " is not of type '" +
 | |
|                   (*I)->getDescription() + "'");
 | |
| 
 | |
|         if (I != E || (ArgI != ArgE && !FTy->isVarArg()))
 | |
|           error("Invalid number of parameters detected");
 | |
|       }
 | |
| 
 | |
|       // Create the call instruction
 | |
|       CallInst *CI = new CallInst(V, &Args[0], Args.size());
 | |
|       CI->setTailCall($1);
 | |
|       CI->setCallingConv(upgradeCallingConv($2));
 | |
|       $$.I = CI;
 | |
|     }
 | |
|     delete $3.PAT;
 | |
|     delete $6;
 | |
|     lastCallingConv = OldCallingConv::C;
 | |
|   }
 | |
|   | MemoryInst {
 | |
|     $$ = $1;
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| 
 | |
| // IndexList - List of indices for GEP based instructions...
 | |
| IndexList 
 | |
|   : ',' ValueRefList { $$ = $2; } 
 | |
|   | /* empty */ { $$ = new std::vector<ValueInfo>(); }
 | |
|   ;
 | |
| 
 | |
| OptVolatile 
 | |
|   : VOLATILE { $$ = true; }
 | |
|   | /* empty */ { $$ = false; }
 | |
|   ;
 | |
| 
 | |
| MemoryInst 
 | |
|   : MALLOC Types OptCAlign {
 | |
|     const Type *Ty = $2.PAT->get();
 | |
|     $$.S.makeComposite($2.S);
 | |
|     $$.I = new MallocInst(Ty, 0, $3);
 | |
|     delete $2.PAT;
 | |
|   }
 | |
|   | MALLOC Types ',' UINT ValueRef OptCAlign {
 | |
|     const Type *Ty = $2.PAT->get();
 | |
|     $5.S.makeUnsigned();
 | |
|     $$.S.makeComposite($2.S);
 | |
|     $$.I = new MallocInst(Ty, getVal($4.T, $5), $6);
 | |
|     delete $2.PAT;
 | |
|   }
 | |
|   | ALLOCA Types OptCAlign {
 | |
|     const Type *Ty = $2.PAT->get();
 | |
|     $$.S.makeComposite($2.S);
 | |
|     $$.I = new AllocaInst(Ty, 0, $3);
 | |
|     delete $2.PAT;
 | |
|   }
 | |
|   | ALLOCA Types ',' UINT ValueRef OptCAlign {
 | |
|     const Type *Ty = $2.PAT->get();
 | |
|     $5.S.makeUnsigned();
 | |
|     $$.S.makeComposite($4.S);
 | |
|     $$.I = new AllocaInst(Ty, getVal($4.T, $5), $6);
 | |
|     delete $2.PAT;
 | |
|   }
 | |
|   | FREE ResolvedVal {
 | |
|     const Type *PTy = $2.V->getType();
 | |
|     if (!isa<PointerType>(PTy))
 | |
|       error("Trying to free nonpointer type '" + PTy->getDescription() + "'");
 | |
|     $$.I = new FreeInst($2.V);
 | |
|     $$.S.makeSignless();
 | |
|   }
 | |
|   | OptVolatile LOAD Types ValueRef {
 | |
|     const Type* Ty = $3.PAT->get();
 | |
|     $4.S.copy($3.S);
 | |
|     if (!isa<PointerType>(Ty))
 | |
|       error("Can't load from nonpointer type: " + Ty->getDescription());
 | |
|     if (!cast<PointerType>(Ty)->getElementType()->isFirstClassType())
 | |
|       error("Can't load from pointer of non-first-class type: " +
 | |
|                      Ty->getDescription());
 | |
|     Value* tmpVal = getVal(Ty, $4);
 | |
|     $$.I = new LoadInst(tmpVal, "", $1);
 | |
|     $$.S.copy($3.S.get(0));
 | |
|     delete $3.PAT;
 | |
|   }
 | |
|   | OptVolatile STORE ResolvedVal ',' Types ValueRef {
 | |
|     $6.S.copy($5.S);
 | |
|     const PointerType *PTy = dyn_cast<PointerType>($5.PAT->get());
 | |
|     if (!PTy)
 | |
|       error("Can't store to a nonpointer type: " + 
 | |
|              $5.PAT->get()->getDescription());
 | |
|     const Type *ElTy = PTy->getElementType();
 | |
|     Value *StoreVal = $3.V;
 | |
|     Value* tmpVal = getVal(PTy, $6);
 | |
|     if (ElTy != $3.V->getType()) {
 | |
|       StoreVal = handleSRetFuncTypeMerge($3.V, ElTy);
 | |
|       if (!StoreVal)
 | |
|         error("Can't store '" + $3.V->getType()->getDescription() +
 | |
|               "' into space of type '" + ElTy->getDescription() + "'");
 | |
|       else {
 | |
|         PTy = PointerType::get(StoreVal->getType());
 | |
|         if (Constant *C = dyn_cast<Constant>(tmpVal))
 | |
|           tmpVal = ConstantExpr::getBitCast(C, PTy);
 | |
|         else
 | |
|           tmpVal = new BitCastInst(tmpVal, PTy, "upgrd.cast", CurBB);
 | |
|       }
 | |
|     }
 | |
|     $$.I = new StoreInst(StoreVal, tmpVal, $1);
 | |
|     $$.S.makeSignless();
 | |
|     delete $5.PAT;
 | |
|   }
 | |
|   | GETELEMENTPTR Types ValueRef IndexList {
 | |
|     $3.S.copy($2.S);
 | |
|     const Type* Ty = $2.PAT->get();
 | |
|     if (!isa<PointerType>(Ty))
 | |
|       error("getelementptr insn requires pointer operand");
 | |
| 
 | |
|     std::vector<Value*> VIndices;
 | |
|     upgradeGEPInstIndices(Ty, $4, VIndices);
 | |
| 
 | |
|     Value* tmpVal = getVal(Ty, $3);
 | |
|     $$.I = new GetElementPtrInst(tmpVal, &VIndices[0], VIndices.size());
 | |
|     ValueInfo VI; VI.V = tmpVal; VI.S.copy($2.S);
 | |
|     $$.S.copy(getElementSign(VI, VIndices));
 | |
|     delete $2.PAT;
 | |
|     delete $4;
 | |
|   };
 | |
| 
 | |
| 
 | |
| %%
 | |
| 
 | |
| int yyerror(const char *ErrorMsg) {
 | |
|   std::string where 
 | |
|     = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
 | |
|                   + ":" + llvm::utostr((unsigned) Upgradelineno) + ": ";
 | |
|   std::string errMsg = where + "error: " + std::string(ErrorMsg);
 | |
|   if (yychar != YYEMPTY && yychar != 0)
 | |
|     errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) +
 | |
|               "'.";
 | |
|   std::cerr << "llvm-upgrade: " << errMsg << '\n';
 | |
|   std::cout << "llvm-upgrade: parse failed.\n";
 | |
|   exit(1);
 | |
| }
 | |
| 
 | |
| void warning(const std::string& ErrorMsg) {
 | |
|   std::string where 
 | |
|     = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
 | |
|                   + ":" + llvm::utostr((unsigned) Upgradelineno) + ": ";
 | |
|   std::string errMsg = where + "warning: " + std::string(ErrorMsg);
 | |
|   if (yychar != YYEMPTY && yychar != 0)
 | |
|     errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) +
 | |
|               "'.";
 | |
|   std::cerr << "llvm-upgrade: " << errMsg << '\n';
 | |
| }
 | |
| 
 | |
| void error(const std::string& ErrorMsg, int LineNo) {
 | |
|   if (LineNo == -1) LineNo = Upgradelineno;
 | |
|   Upgradelineno = LineNo;
 | |
|   yyerror(ErrorMsg.c_str());
 | |
| }
 | |
| 
 |