mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 00:33:15 +00:00
b388ca9544
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43147 91177308-0d34-0410-b5e6-96231b3b80d8
1118 lines
34 KiB
C++
1118 lines
34 KiB
C++
//===- GVN.cpp - Eliminate redundant values and loads ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the Owen Anderson and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs global value numbering to eliminate fully redundant
|
|
// instructions. It also performs simple dead load elimination.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "gvn"
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Value.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ValueTable Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class holds the mapping between values and value numbers. It is used
|
|
/// as an efficient mechanism to determine the expression-wise equivalence of
|
|
/// two values.
|
|
namespace {
|
|
struct VISIBILITY_HIDDEN Expression {
|
|
enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM,
|
|
FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
|
|
ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
|
|
ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
|
|
FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
|
|
FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
|
|
FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
|
|
SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
|
|
FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
|
|
PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, EMPTY,
|
|
TOMBSTONE };
|
|
|
|
ExpressionOpcode opcode;
|
|
const Type* type;
|
|
uint32_t firstVN;
|
|
uint32_t secondVN;
|
|
uint32_t thirdVN;
|
|
SmallVector<uint32_t, 4> varargs;
|
|
Value* function;
|
|
|
|
Expression() { }
|
|
Expression(ExpressionOpcode o) : opcode(o) { }
|
|
|
|
bool operator==(const Expression &other) const {
|
|
if (opcode != other.opcode)
|
|
return false;
|
|
else if (opcode == EMPTY || opcode == TOMBSTONE)
|
|
return true;
|
|
else if (type != other.type)
|
|
return false;
|
|
else if (function != other.function)
|
|
return false;
|
|
else if (firstVN != other.firstVN)
|
|
return false;
|
|
else if (secondVN != other.secondVN)
|
|
return false;
|
|
else if (thirdVN != other.thirdVN)
|
|
return false;
|
|
else {
|
|
if (varargs.size() != other.varargs.size())
|
|
return false;
|
|
|
|
for (size_t i = 0; i < varargs.size(); ++i)
|
|
if (varargs[i] != other.varargs[i])
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool operator!=(const Expression &other) const {
|
|
if (opcode != other.opcode)
|
|
return true;
|
|
else if (opcode == EMPTY || opcode == TOMBSTONE)
|
|
return false;
|
|
else if (type != other.type)
|
|
return true;
|
|
else if (function != other.function)
|
|
return true;
|
|
else if (firstVN != other.firstVN)
|
|
return true;
|
|
else if (secondVN != other.secondVN)
|
|
return true;
|
|
else if (thirdVN != other.thirdVN)
|
|
return true;
|
|
else {
|
|
if (varargs.size() != other.varargs.size())
|
|
return true;
|
|
|
|
for (size_t i = 0; i < varargs.size(); ++i)
|
|
if (varargs[i] != other.varargs[i])
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
}
|
|
};
|
|
|
|
class VISIBILITY_HIDDEN ValueTable {
|
|
private:
|
|
DenseMap<Value*, uint32_t> valueNumbering;
|
|
DenseMap<Expression, uint32_t> expressionNumbering;
|
|
AliasAnalysis* AA;
|
|
|
|
uint32_t nextValueNumber;
|
|
|
|
Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
|
|
Expression::ExpressionOpcode getOpcode(CmpInst* C);
|
|
Expression::ExpressionOpcode getOpcode(CastInst* C);
|
|
Expression create_expression(BinaryOperator* BO);
|
|
Expression create_expression(CmpInst* C);
|
|
Expression create_expression(ShuffleVectorInst* V);
|
|
Expression create_expression(ExtractElementInst* C);
|
|
Expression create_expression(InsertElementInst* V);
|
|
Expression create_expression(SelectInst* V);
|
|
Expression create_expression(CastInst* C);
|
|
Expression create_expression(GetElementPtrInst* G);
|
|
Expression create_expression(CallInst* C);
|
|
public:
|
|
ValueTable() : nextValueNumber(1) { }
|
|
uint32_t lookup_or_add(Value* V);
|
|
uint32_t lookup(Value* V) const;
|
|
void add(Value* V, uint32_t num);
|
|
void clear();
|
|
void erase(Value* v);
|
|
unsigned size();
|
|
void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
|
|
};
|
|
}
|
|
|
|
namespace llvm {
|
|
template <> struct DenseMapInfo<Expression> {
|
|
static inline Expression getEmptyKey() {
|
|
return Expression(Expression::EMPTY);
|
|
}
|
|
|
|
static inline Expression getTombstoneKey() {
|
|
return Expression(Expression::TOMBSTONE);
|
|
}
|
|
|
|
static unsigned getHashValue(const Expression e) {
|
|
unsigned hash = e.opcode;
|
|
|
|
hash = e.firstVN + hash * 37;
|
|
hash = e.secondVN + hash * 37;
|
|
hash = e.thirdVN + hash * 37;
|
|
|
|
hash = (unsigned)((uintptr_t)e.type >> 4) ^
|
|
(unsigned)((uintptr_t)e.type >> 9) +
|
|
hash * 37;
|
|
|
|
for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
|
|
E = e.varargs.end(); I != E; ++I)
|
|
hash = *I + hash * 37;
|
|
|
|
hash = (unsigned)((uintptr_t)e.function >> 4) ^
|
|
(unsigned)((uintptr_t)e.function >> 9) +
|
|
hash * 37;
|
|
|
|
return hash;
|
|
}
|
|
static bool isEqual(const Expression &LHS, const Expression &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
static bool isPod() { return true; }
|
|
};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ValueTable Internal Functions
|
|
//===----------------------------------------------------------------------===//
|
|
Expression::ExpressionOpcode
|
|
ValueTable::getOpcode(BinaryOperator* BO) {
|
|
switch(BO->getOpcode()) {
|
|
case Instruction::Add:
|
|
return Expression::ADD;
|
|
case Instruction::Sub:
|
|
return Expression::SUB;
|
|
case Instruction::Mul:
|
|
return Expression::MUL;
|
|
case Instruction::UDiv:
|
|
return Expression::UDIV;
|
|
case Instruction::SDiv:
|
|
return Expression::SDIV;
|
|
case Instruction::FDiv:
|
|
return Expression::FDIV;
|
|
case Instruction::URem:
|
|
return Expression::UREM;
|
|
case Instruction::SRem:
|
|
return Expression::SREM;
|
|
case Instruction::FRem:
|
|
return Expression::FREM;
|
|
case Instruction::Shl:
|
|
return Expression::SHL;
|
|
case Instruction::LShr:
|
|
return Expression::LSHR;
|
|
case Instruction::AShr:
|
|
return Expression::ASHR;
|
|
case Instruction::And:
|
|
return Expression::AND;
|
|
case Instruction::Or:
|
|
return Expression::OR;
|
|
case Instruction::Xor:
|
|
return Expression::XOR;
|
|
|
|
// THIS SHOULD NEVER HAPPEN
|
|
default:
|
|
assert(0 && "Binary operator with unknown opcode?");
|
|
return Expression::ADD;
|
|
}
|
|
}
|
|
|
|
Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
|
|
if (C->getOpcode() == Instruction::ICmp) {
|
|
switch (C->getPredicate()) {
|
|
case ICmpInst::ICMP_EQ:
|
|
return Expression::ICMPEQ;
|
|
case ICmpInst::ICMP_NE:
|
|
return Expression::ICMPNE;
|
|
case ICmpInst::ICMP_UGT:
|
|
return Expression::ICMPUGT;
|
|
case ICmpInst::ICMP_UGE:
|
|
return Expression::ICMPUGE;
|
|
case ICmpInst::ICMP_ULT:
|
|
return Expression::ICMPULT;
|
|
case ICmpInst::ICMP_ULE:
|
|
return Expression::ICMPULE;
|
|
case ICmpInst::ICMP_SGT:
|
|
return Expression::ICMPSGT;
|
|
case ICmpInst::ICMP_SGE:
|
|
return Expression::ICMPSGE;
|
|
case ICmpInst::ICMP_SLT:
|
|
return Expression::ICMPSLT;
|
|
case ICmpInst::ICMP_SLE:
|
|
return Expression::ICMPSLE;
|
|
|
|
// THIS SHOULD NEVER HAPPEN
|
|
default:
|
|
assert(0 && "Comparison with unknown predicate?");
|
|
return Expression::ICMPEQ;
|
|
}
|
|
} else {
|
|
switch (C->getPredicate()) {
|
|
case FCmpInst::FCMP_OEQ:
|
|
return Expression::FCMPOEQ;
|
|
case FCmpInst::FCMP_OGT:
|
|
return Expression::FCMPOGT;
|
|
case FCmpInst::FCMP_OGE:
|
|
return Expression::FCMPOGE;
|
|
case FCmpInst::FCMP_OLT:
|
|
return Expression::FCMPOLT;
|
|
case FCmpInst::FCMP_OLE:
|
|
return Expression::FCMPOLE;
|
|
case FCmpInst::FCMP_ONE:
|
|
return Expression::FCMPONE;
|
|
case FCmpInst::FCMP_ORD:
|
|
return Expression::FCMPORD;
|
|
case FCmpInst::FCMP_UNO:
|
|
return Expression::FCMPUNO;
|
|
case FCmpInst::FCMP_UEQ:
|
|
return Expression::FCMPUEQ;
|
|
case FCmpInst::FCMP_UGT:
|
|
return Expression::FCMPUGT;
|
|
case FCmpInst::FCMP_UGE:
|
|
return Expression::FCMPUGE;
|
|
case FCmpInst::FCMP_ULT:
|
|
return Expression::FCMPULT;
|
|
case FCmpInst::FCMP_ULE:
|
|
return Expression::FCMPULE;
|
|
case FCmpInst::FCMP_UNE:
|
|
return Expression::FCMPUNE;
|
|
|
|
// THIS SHOULD NEVER HAPPEN
|
|
default:
|
|
assert(0 && "Comparison with unknown predicate?");
|
|
return Expression::FCMPOEQ;
|
|
}
|
|
}
|
|
}
|
|
|
|
Expression::ExpressionOpcode
|
|
ValueTable::getOpcode(CastInst* C) {
|
|
switch(C->getOpcode()) {
|
|
case Instruction::Trunc:
|
|
return Expression::TRUNC;
|
|
case Instruction::ZExt:
|
|
return Expression::ZEXT;
|
|
case Instruction::SExt:
|
|
return Expression::SEXT;
|
|
case Instruction::FPToUI:
|
|
return Expression::FPTOUI;
|
|
case Instruction::FPToSI:
|
|
return Expression::FPTOSI;
|
|
case Instruction::UIToFP:
|
|
return Expression::UITOFP;
|
|
case Instruction::SIToFP:
|
|
return Expression::SITOFP;
|
|
case Instruction::FPTrunc:
|
|
return Expression::FPTRUNC;
|
|
case Instruction::FPExt:
|
|
return Expression::FPEXT;
|
|
case Instruction::PtrToInt:
|
|
return Expression::PTRTOINT;
|
|
case Instruction::IntToPtr:
|
|
return Expression::INTTOPTR;
|
|
case Instruction::BitCast:
|
|
return Expression::BITCAST;
|
|
|
|
// THIS SHOULD NEVER HAPPEN
|
|
default:
|
|
assert(0 && "Cast operator with unknown opcode?");
|
|
return Expression::BITCAST;
|
|
}
|
|
}
|
|
|
|
Expression ValueTable::create_expression(CallInst* C) {
|
|
Expression e;
|
|
|
|
e.type = C->getType();
|
|
e.firstVN = 0;
|
|
e.secondVN = 0;
|
|
e.thirdVN = 0;
|
|
e.function = C->getCalledFunction();
|
|
e.opcode = Expression::CALL;
|
|
|
|
for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
|
|
I != E; ++I)
|
|
e.varargs.push_back(lookup_or_add(*I));
|
|
|
|
return e;
|
|
}
|
|
|
|
Expression ValueTable::create_expression(BinaryOperator* BO) {
|
|
Expression e;
|
|
|
|
e.firstVN = lookup_or_add(BO->getOperand(0));
|
|
e.secondVN = lookup_or_add(BO->getOperand(1));
|
|
e.thirdVN = 0;
|
|
e.function = 0;
|
|
e.type = BO->getType();
|
|
e.opcode = getOpcode(BO);
|
|
|
|
return e;
|
|
}
|
|
|
|
Expression ValueTable::create_expression(CmpInst* C) {
|
|
Expression e;
|
|
|
|
e.firstVN = lookup_or_add(C->getOperand(0));
|
|
e.secondVN = lookup_or_add(C->getOperand(1));
|
|
e.thirdVN = 0;
|
|
e.function = 0;
|
|
e.type = C->getType();
|
|
e.opcode = getOpcode(C);
|
|
|
|
return e;
|
|
}
|
|
|
|
Expression ValueTable::create_expression(CastInst* C) {
|
|
Expression e;
|
|
|
|
e.firstVN = lookup_or_add(C->getOperand(0));
|
|
e.secondVN = 0;
|
|
e.thirdVN = 0;
|
|
e.function = 0;
|
|
e.type = C->getType();
|
|
e.opcode = getOpcode(C);
|
|
|
|
return e;
|
|
}
|
|
|
|
Expression ValueTable::create_expression(ShuffleVectorInst* S) {
|
|
Expression e;
|
|
|
|
e.firstVN = lookup_or_add(S->getOperand(0));
|
|
e.secondVN = lookup_or_add(S->getOperand(1));
|
|
e.thirdVN = lookup_or_add(S->getOperand(2));
|
|
e.function = 0;
|
|
e.type = S->getType();
|
|
e.opcode = Expression::SHUFFLE;
|
|
|
|
return e;
|
|
}
|
|
|
|
Expression ValueTable::create_expression(ExtractElementInst* E) {
|
|
Expression e;
|
|
|
|
e.firstVN = lookup_or_add(E->getOperand(0));
|
|
e.secondVN = lookup_or_add(E->getOperand(1));
|
|
e.thirdVN = 0;
|
|
e.function = 0;
|
|
e.type = E->getType();
|
|
e.opcode = Expression::EXTRACT;
|
|
|
|
return e;
|
|
}
|
|
|
|
Expression ValueTable::create_expression(InsertElementInst* I) {
|
|
Expression e;
|
|
|
|
e.firstVN = lookup_or_add(I->getOperand(0));
|
|
e.secondVN = lookup_or_add(I->getOperand(1));
|
|
e.thirdVN = lookup_or_add(I->getOperand(2));
|
|
e.function = 0;
|
|
e.type = I->getType();
|
|
e.opcode = Expression::INSERT;
|
|
|
|
return e;
|
|
}
|
|
|
|
Expression ValueTable::create_expression(SelectInst* I) {
|
|
Expression e;
|
|
|
|
e.firstVN = lookup_or_add(I->getCondition());
|
|
e.secondVN = lookup_or_add(I->getTrueValue());
|
|
e.thirdVN = lookup_or_add(I->getFalseValue());
|
|
e.function = 0;
|
|
e.type = I->getType();
|
|
e.opcode = Expression::SELECT;
|
|
|
|
return e;
|
|
}
|
|
|
|
Expression ValueTable::create_expression(GetElementPtrInst* G) {
|
|
Expression e;
|
|
|
|
e.firstVN = lookup_or_add(G->getPointerOperand());
|
|
e.secondVN = 0;
|
|
e.thirdVN = 0;
|
|
e.function = 0;
|
|
e.type = G->getType();
|
|
e.opcode = Expression::GEP;
|
|
|
|
for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
|
|
I != E; ++I)
|
|
e.varargs.push_back(lookup_or_add(*I));
|
|
|
|
return e;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ValueTable External Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// lookup_or_add - Returns the value number for the specified value, assigning
|
|
/// it a new number if it did not have one before.
|
|
uint32_t ValueTable::lookup_or_add(Value* V) {
|
|
DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
|
|
if (VI != valueNumbering.end())
|
|
return VI->second;
|
|
|
|
if (CallInst* C = dyn_cast<CallInst>(V)) {
|
|
if (C->getCalledFunction() &&
|
|
AA->doesNotAccessMemory(C->getCalledFunction())) {
|
|
Expression e = create_expression(C);
|
|
|
|
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
|
|
if (EI != expressionNumbering.end()) {
|
|
valueNumbering.insert(std::make_pair(V, EI->second));
|
|
return EI->second;
|
|
} else {
|
|
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
|
|
valueNumbering.insert(std::make_pair(V, nextValueNumber));
|
|
|
|
return nextValueNumber++;
|
|
}
|
|
} else {
|
|
valueNumbering.insert(std::make_pair(V, nextValueNumber));
|
|
return nextValueNumber++;
|
|
}
|
|
} else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
|
|
Expression e = create_expression(BO);
|
|
|
|
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
|
|
if (EI != expressionNumbering.end()) {
|
|
valueNumbering.insert(std::make_pair(V, EI->second));
|
|
return EI->second;
|
|
} else {
|
|
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
|
|
valueNumbering.insert(std::make_pair(V, nextValueNumber));
|
|
|
|
return nextValueNumber++;
|
|
}
|
|
} else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
|
|
Expression e = create_expression(C);
|
|
|
|
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
|
|
if (EI != expressionNumbering.end()) {
|
|
valueNumbering.insert(std::make_pair(V, EI->second));
|
|
return EI->second;
|
|
} else {
|
|
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
|
|
valueNumbering.insert(std::make_pair(V, nextValueNumber));
|
|
|
|
return nextValueNumber++;
|
|
}
|
|
} else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
|
|
Expression e = create_expression(U);
|
|
|
|
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
|
|
if (EI != expressionNumbering.end()) {
|
|
valueNumbering.insert(std::make_pair(V, EI->second));
|
|
return EI->second;
|
|
} else {
|
|
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
|
|
valueNumbering.insert(std::make_pair(V, nextValueNumber));
|
|
|
|
return nextValueNumber++;
|
|
}
|
|
} else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
|
|
Expression e = create_expression(U);
|
|
|
|
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
|
|
if (EI != expressionNumbering.end()) {
|
|
valueNumbering.insert(std::make_pair(V, EI->second));
|
|
return EI->second;
|
|
} else {
|
|
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
|
|
valueNumbering.insert(std::make_pair(V, nextValueNumber));
|
|
|
|
return nextValueNumber++;
|
|
}
|
|
} else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
|
|
Expression e = create_expression(U);
|
|
|
|
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
|
|
if (EI != expressionNumbering.end()) {
|
|
valueNumbering.insert(std::make_pair(V, EI->second));
|
|
return EI->second;
|
|
} else {
|
|
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
|
|
valueNumbering.insert(std::make_pair(V, nextValueNumber));
|
|
|
|
return nextValueNumber++;
|
|
}
|
|
} else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
|
|
Expression e = create_expression(U);
|
|
|
|
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
|
|
if (EI != expressionNumbering.end()) {
|
|
valueNumbering.insert(std::make_pair(V, EI->second));
|
|
return EI->second;
|
|
} else {
|
|
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
|
|
valueNumbering.insert(std::make_pair(V, nextValueNumber));
|
|
|
|
return nextValueNumber++;
|
|
}
|
|
} else if (CastInst* U = dyn_cast<CastInst>(V)) {
|
|
Expression e = create_expression(U);
|
|
|
|
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
|
|
if (EI != expressionNumbering.end()) {
|
|
valueNumbering.insert(std::make_pair(V, EI->second));
|
|
return EI->second;
|
|
} else {
|
|
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
|
|
valueNumbering.insert(std::make_pair(V, nextValueNumber));
|
|
|
|
return nextValueNumber++;
|
|
}
|
|
} else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
|
|
Expression e = create_expression(U);
|
|
|
|
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
|
|
if (EI != expressionNumbering.end()) {
|
|
valueNumbering.insert(std::make_pair(V, EI->second));
|
|
return EI->second;
|
|
} else {
|
|
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
|
|
valueNumbering.insert(std::make_pair(V, nextValueNumber));
|
|
|
|
return nextValueNumber++;
|
|
}
|
|
} else {
|
|
valueNumbering.insert(std::make_pair(V, nextValueNumber));
|
|
return nextValueNumber++;
|
|
}
|
|
}
|
|
|
|
/// lookup - Returns the value number of the specified value. Fails if
|
|
/// the value has not yet been numbered.
|
|
uint32_t ValueTable::lookup(Value* V) const {
|
|
DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
|
|
if (VI != valueNumbering.end())
|
|
return VI->second;
|
|
else
|
|
assert(0 && "Value not numbered?");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// clear - Remove all entries from the ValueTable
|
|
void ValueTable::clear() {
|
|
valueNumbering.clear();
|
|
expressionNumbering.clear();
|
|
nextValueNumber = 1;
|
|
}
|
|
|
|
/// erase - Remove a value from the value numbering
|
|
void ValueTable::erase(Value* V) {
|
|
valueNumbering.erase(V);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ValueNumberedSet Class
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
class ValueNumberedSet {
|
|
private:
|
|
SmallPtrSet<Value*, 8> contents;
|
|
BitVector numbers;
|
|
public:
|
|
ValueNumberedSet() { numbers.resize(1); }
|
|
ValueNumberedSet(const ValueNumberedSet& other) {
|
|
numbers = other.numbers;
|
|
contents = other.contents;
|
|
}
|
|
|
|
typedef SmallPtrSet<Value*, 8>::iterator iterator;
|
|
|
|
iterator begin() { return contents.begin(); }
|
|
iterator end() { return contents.end(); }
|
|
|
|
bool insert(Value* v) { return contents.insert(v); }
|
|
void insert(iterator I, iterator E) { contents.insert(I, E); }
|
|
void erase(Value* v) { contents.erase(v); }
|
|
unsigned count(Value* v) { return contents.count(v); }
|
|
size_t size() { return contents.size(); }
|
|
|
|
void set(unsigned i) {
|
|
if (i >= numbers.size())
|
|
numbers.resize(i+1);
|
|
|
|
numbers.set(i);
|
|
}
|
|
|
|
void operator=(const ValueNumberedSet& other) {
|
|
contents = other.contents;
|
|
numbers = other.numbers;
|
|
}
|
|
|
|
void reset(unsigned i) {
|
|
if (i < numbers.size())
|
|
numbers.reset(i);
|
|
}
|
|
|
|
bool test(unsigned i) {
|
|
if (i >= numbers.size())
|
|
return false;
|
|
|
|
return numbers.test(i);
|
|
}
|
|
|
|
void clear() {
|
|
contents.clear();
|
|
numbers.clear();
|
|
}
|
|
};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GVN Pass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class VISIBILITY_HIDDEN GVN : public FunctionPass {
|
|
bool runOnFunction(Function &F);
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
GVN() : FunctionPass((intptr_t)&ID) { }
|
|
|
|
private:
|
|
ValueTable VN;
|
|
|
|
DenseMap<BasicBlock*, ValueNumberedSet> availableOut;
|
|
|
|
typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
|
|
PhiMapType phiMap;
|
|
|
|
|
|
// This transformation requires dominator postdominator info
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<DominatorTree>();
|
|
AU.addRequired<MemoryDependenceAnalysis>();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addPreserved<AliasAnalysis>();
|
|
AU.addPreserved<MemoryDependenceAnalysis>();
|
|
}
|
|
|
|
// Helper fuctions
|
|
// FIXME: eliminate or document these better
|
|
Value* find_leader(ValueNumberedSet& vals, uint32_t v) ;
|
|
void val_insert(ValueNumberedSet& s, Value* v);
|
|
bool processLoad(LoadInst* L,
|
|
DenseMap<Value*, LoadInst*>& lastLoad,
|
|
SmallVector<Instruction*, 4>& toErase);
|
|
bool processInstruction(Instruction* I,
|
|
ValueNumberedSet& currAvail,
|
|
DenseMap<Value*, LoadInst*>& lastSeenLoad,
|
|
SmallVector<Instruction*, 4>& toErase);
|
|
bool processNonLocalLoad(LoadInst* L,
|
|
SmallVector<Instruction*, 4>& toErase);
|
|
Value *GetValueForBlock(BasicBlock *BB, LoadInst* orig,
|
|
DenseMap<BasicBlock*, Value*> &Phis,
|
|
bool top_level = false);
|
|
void dump(DenseMap<BasicBlock*, Value*>& d);
|
|
bool iterateOnFunction(Function &F);
|
|
Value* CollapsePhi(PHINode* p);
|
|
bool isSafeReplacement(PHINode* p, Instruction* inst);
|
|
};
|
|
|
|
char GVN::ID = 0;
|
|
|
|
}
|
|
|
|
// createGVNPass - The public interface to this file...
|
|
FunctionPass *llvm::createGVNPass() { return new GVN(); }
|
|
|
|
static RegisterPass<GVN> X("gvn",
|
|
"Global Value Numbering");
|
|
|
|
STATISTIC(NumGVNInstr, "Number of instructions deleted");
|
|
STATISTIC(NumGVNLoad, "Number of loads deleted");
|
|
|
|
/// find_leader - Given a set and a value number, return the first
|
|
/// element of the set with that value number, or 0 if no such element
|
|
/// is present
|
|
Value* GVN::find_leader(ValueNumberedSet& vals, uint32_t v) {
|
|
if (!vals.test(v))
|
|
return 0;
|
|
|
|
for (ValueNumberedSet::iterator I = vals.begin(), E = vals.end();
|
|
I != E; ++I)
|
|
if (v == VN.lookup(*I))
|
|
return *I;
|
|
|
|
assert(0 && "No leader found, but present bit is set?");
|
|
return 0;
|
|
}
|
|
|
|
/// val_insert - Insert a value into a set only if there is not a value
|
|
/// with the same value number already in the set
|
|
void GVN::val_insert(ValueNumberedSet& s, Value* v) {
|
|
uint32_t num = VN.lookup(v);
|
|
if (!s.test(num))
|
|
s.insert(v);
|
|
}
|
|
|
|
void GVN::dump(DenseMap<BasicBlock*, Value*>& d) {
|
|
printf("{\n");
|
|
for (DenseMap<BasicBlock*, Value*>::iterator I = d.begin(),
|
|
E = d.end(); I != E; ++I) {
|
|
if (I->second == MemoryDependenceAnalysis::None)
|
|
printf("None\n");
|
|
else
|
|
I->second->dump();
|
|
}
|
|
printf("}\n");
|
|
}
|
|
|
|
Value* GVN::CollapsePhi(PHINode* p) {
|
|
DominatorTree &DT = getAnalysis<DominatorTree>();
|
|
Value* constVal = p->hasConstantValue();
|
|
|
|
if (constVal) {
|
|
if (Instruction* inst = dyn_cast<Instruction>(constVal)) {
|
|
if (DT.dominates(inst, p))
|
|
if (isSafeReplacement(p, inst))
|
|
return inst;
|
|
} else {
|
|
return constVal;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
|
|
if (!isa<PHINode>(inst))
|
|
return true;
|
|
|
|
for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
|
|
UI != E; ++UI)
|
|
if (PHINode* use_phi = dyn_cast<PHINode>(UI))
|
|
if (use_phi->getParent() == inst->getParent())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// GetValueForBlock - Get the value to use within the specified basic block.
|
|
/// available values are in Phis.
|
|
Value *GVN::GetValueForBlock(BasicBlock *BB, LoadInst* orig,
|
|
DenseMap<BasicBlock*, Value*> &Phis,
|
|
bool top_level) {
|
|
|
|
// If we have already computed this value, return the previously computed val.
|
|
DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
|
|
if (V != Phis.end() && !top_level) return V->second;
|
|
|
|
BasicBlock* singlePred = BB->getSinglePredecessor();
|
|
if (singlePred) {
|
|
Value *ret = GetValueForBlock(singlePred, orig, Phis);
|
|
Phis[BB] = ret;
|
|
return ret;
|
|
}
|
|
// Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
|
|
// now, then get values to fill in the incoming values for the PHI.
|
|
PHINode *PN = new PHINode(orig->getType(), orig->getName()+".rle",
|
|
BB->begin());
|
|
PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
|
|
|
|
if (Phis.count(BB) == 0)
|
|
Phis.insert(std::make_pair(BB, PN));
|
|
|
|
// Fill in the incoming values for the block.
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
|
|
Value* val = GetValueForBlock(*PI, orig, Phis);
|
|
|
|
PN->addIncoming(val, *PI);
|
|
}
|
|
|
|
// Attempt to collapse PHI nodes that are trivially redundant
|
|
Value* v = CollapsePhi(PN);
|
|
if (v) {
|
|
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
|
|
|
|
MD.removeInstruction(PN);
|
|
PN->replaceAllUsesWith(v);
|
|
|
|
for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
|
|
E = Phis.end(); I != E; ++I)
|
|
if (I->second == PN)
|
|
I->second = v;
|
|
|
|
PN->eraseFromParent();
|
|
|
|
Phis[BB] = v;
|
|
|
|
return v;
|
|
}
|
|
|
|
// Cache our phi construction results
|
|
phiMap[orig->getPointerOperand()].insert(PN);
|
|
return PN;
|
|
}
|
|
|
|
/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
|
|
/// non-local by performing PHI construction.
|
|
bool GVN::processNonLocalLoad(LoadInst* L,
|
|
SmallVector<Instruction*, 4>& toErase) {
|
|
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
|
|
|
|
// Find the non-local dependencies of the load
|
|
DenseMap<BasicBlock*, Value*> deps;
|
|
MD.getNonLocalDependency(L, deps);
|
|
|
|
DenseMap<BasicBlock*, Value*> repl;
|
|
|
|
// Filter out useless results (non-locals, etc)
|
|
for (DenseMap<BasicBlock*, Value*>::iterator I = deps.begin(), E = deps.end();
|
|
I != E; ++I)
|
|
if (I->second == MemoryDependenceAnalysis::None) {
|
|
return false;
|
|
} else if (I->second == MemoryDependenceAnalysis::NonLocal) {
|
|
continue;
|
|
} else if (StoreInst* S = dyn_cast<StoreInst>(I->second)) {
|
|
if (S->getPointerOperand() == L->getPointerOperand())
|
|
repl[I->first] = S->getOperand(0);
|
|
else
|
|
return false;
|
|
} else if (LoadInst* LD = dyn_cast<LoadInst>(I->second)) {
|
|
if (LD->getPointerOperand() == L->getPointerOperand())
|
|
repl[I->first] = LD;
|
|
else
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// Use cached PHI construction information from previous runs
|
|
SmallPtrSet<Instruction*, 4>& p = phiMap[L->getPointerOperand()];
|
|
for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
|
|
I != E; ++I) {
|
|
if ((*I)->getParent() == L->getParent()) {
|
|
MD.removeInstruction(L);
|
|
L->replaceAllUsesWith(*I);
|
|
toErase.push_back(L);
|
|
NumGVNLoad++;
|
|
|
|
return true;
|
|
} else {
|
|
repl.insert(std::make_pair((*I)->getParent(), *I));
|
|
}
|
|
}
|
|
|
|
// Perform PHI construction
|
|
SmallPtrSet<BasicBlock*, 4> visited;
|
|
Value* v = GetValueForBlock(L->getParent(), L, repl, true);
|
|
|
|
MD.removeInstruction(L);
|
|
L->replaceAllUsesWith(v);
|
|
toErase.push_back(L);
|
|
NumGVNLoad++;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// processLoad - Attempt to eliminate a load, first by eliminating it
|
|
/// locally, and then attempting non-local elimination if that fails.
|
|
bool GVN::processLoad(LoadInst* L,
|
|
DenseMap<Value*, LoadInst*>& lastLoad,
|
|
SmallVector<Instruction*, 4>& toErase) {
|
|
if (L->isVolatile()) {
|
|
lastLoad[L->getPointerOperand()] = L;
|
|
return false;
|
|
}
|
|
|
|
Value* pointer = L->getPointerOperand();
|
|
LoadInst*& last = lastLoad[pointer];
|
|
|
|
// ... to a pointer that has been loaded from before...
|
|
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
|
|
bool removedNonLocal = false;
|
|
Instruction* dep = MD.getDependency(L);
|
|
if (dep == MemoryDependenceAnalysis::NonLocal &&
|
|
L->getParent() != &L->getParent()->getParent()->getEntryBlock()) {
|
|
removedNonLocal = processNonLocalLoad(L, toErase);
|
|
|
|
if (!removedNonLocal)
|
|
last = L;
|
|
|
|
return removedNonLocal;
|
|
}
|
|
|
|
|
|
bool deletedLoad = false;
|
|
|
|
// Walk up the dependency chain until we either find
|
|
// a dependency we can use, or we can't walk any further
|
|
while (dep != MemoryDependenceAnalysis::None &&
|
|
dep != MemoryDependenceAnalysis::NonLocal &&
|
|
(isa<LoadInst>(dep) || isa<StoreInst>(dep))) {
|
|
// ... that depends on a store ...
|
|
if (StoreInst* S = dyn_cast<StoreInst>(dep)) {
|
|
if (S->getPointerOperand() == pointer) {
|
|
// Remove it!
|
|
MD.removeInstruction(L);
|
|
|
|
L->replaceAllUsesWith(S->getOperand(0));
|
|
toErase.push_back(L);
|
|
deletedLoad = true;
|
|
NumGVNLoad++;
|
|
}
|
|
|
|
// Whether we removed it or not, we can't
|
|
// go any further
|
|
break;
|
|
} else if (!last) {
|
|
// If we don't depend on a store, and we haven't
|
|
// been loaded before, bail.
|
|
break;
|
|
} else if (dep == last) {
|
|
// Remove it!
|
|
MD.removeInstruction(L);
|
|
|
|
L->replaceAllUsesWith(last);
|
|
toErase.push_back(L);
|
|
deletedLoad = true;
|
|
NumGVNLoad++;
|
|
|
|
break;
|
|
} else {
|
|
dep = MD.getDependency(L, dep);
|
|
}
|
|
}
|
|
|
|
if (!deletedLoad)
|
|
last = L;
|
|
|
|
return deletedLoad;
|
|
}
|
|
|
|
/// processInstruction - When calculating availability, handle an instruction
|
|
/// by inserting it into the appropriate sets
|
|
bool GVN::processInstruction(Instruction* I,
|
|
ValueNumberedSet& currAvail,
|
|
DenseMap<Value*, LoadInst*>& lastSeenLoad,
|
|
SmallVector<Instruction*, 4>& toErase) {
|
|
if (LoadInst* L = dyn_cast<LoadInst>(I)) {
|
|
return processLoad(L, lastSeenLoad, toErase);
|
|
}
|
|
|
|
unsigned num = VN.lookup_or_add(I);
|
|
|
|
// Collapse PHI nodes
|
|
if (PHINode* p = dyn_cast<PHINode>(I)) {
|
|
Value* constVal = CollapsePhi(p);
|
|
|
|
if (constVal) {
|
|
for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
|
|
PI != PE; ++PI)
|
|
if (PI->second.count(p))
|
|
PI->second.erase(p);
|
|
|
|
p->replaceAllUsesWith(constVal);
|
|
toErase.push_back(p);
|
|
}
|
|
// Perform value-number based elimination
|
|
} else if (currAvail.test(num)) {
|
|
Value* repl = find_leader(currAvail, num);
|
|
|
|
VN.erase(I);
|
|
I->replaceAllUsesWith(repl);
|
|
toErase.push_back(I);
|
|
return true;
|
|
} else if (!I->isTerminator()) {
|
|
currAvail.set(num);
|
|
currAvail.insert(I);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// GVN::runOnFunction - This is the main transformation entry point for a
|
|
// function.
|
|
//
|
|
bool GVN::runOnFunction(Function& F) {
|
|
VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
|
|
|
|
bool changed = false;
|
|
bool shouldContinue = true;
|
|
|
|
while (shouldContinue) {
|
|
shouldContinue = iterateOnFunction(F);
|
|
changed |= shouldContinue;
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
|
|
// GVN::iterateOnFunction - Executes one iteration of GVN
|
|
bool GVN::iterateOnFunction(Function &F) {
|
|
// Clean out global sets from any previous functions
|
|
VN.clear();
|
|
availableOut.clear();
|
|
phiMap.clear();
|
|
|
|
bool changed_function = false;
|
|
|
|
DominatorTree &DT = getAnalysis<DominatorTree>();
|
|
|
|
SmallVector<Instruction*, 4> toErase;
|
|
|
|
// Top-down walk of the dominator tree
|
|
for (df_iterator<DomTreeNode*> DI = df_begin(DT.getRootNode()),
|
|
E = df_end(DT.getRootNode()); DI != E; ++DI) {
|
|
|
|
// Get the set to update for this block
|
|
ValueNumberedSet& currAvail = availableOut[DI->getBlock()];
|
|
DenseMap<Value*, LoadInst*> lastSeenLoad;
|
|
|
|
BasicBlock* BB = DI->getBlock();
|
|
|
|
// A block inherits AVAIL_OUT from its dominator
|
|
if (DI->getIDom() != 0)
|
|
currAvail = availableOut[DI->getIDom()->getBlock()];
|
|
|
|
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
|
|
BI != BE; ) {
|
|
changed_function |= processInstruction(BI, currAvail,
|
|
lastSeenLoad, toErase);
|
|
|
|
NumGVNInstr += toErase.size();
|
|
|
|
// Avoid iterator invalidation
|
|
++BI;
|
|
|
|
for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
|
|
E = toErase.end(); I != E; ++I)
|
|
(*I)->eraseFromParent();
|
|
|
|
toErase.clear();
|
|
}
|
|
}
|
|
|
|
return changed_function;
|
|
}
|