llvm-6502/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
2005-09-28 18:04:52 +00:00

1565 lines
61 KiB
C++

//===-- PPC32ISelDAGToDAG.cpp - PPC32 pattern matching inst selector ------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for 32 bit PowerPC,
// converting from a legalized dag to a PPC dag.
//
//===----------------------------------------------------------------------===//
#include "PowerPC.h"
#include "PPC32TargetMachine.h"
#include "PPC32ISelLowering.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
namespace {
Statistic<> FusedFP ("ppc-codegen", "Number of fused fp operations");
Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed");
//===--------------------------------------------------------------------===//
/// PPC32DAGToDAGISel - PPC32 specific code to select PPC32 machine
/// instructions for SelectionDAG operations.
///
class PPC32DAGToDAGISel : public SelectionDAGISel {
PPC32TargetLowering PPC32Lowering;
unsigned GlobalBaseReg;
public:
PPC32DAGToDAGISel(TargetMachine &TM)
: SelectionDAGISel(PPC32Lowering), PPC32Lowering(TM) {}
virtual bool runOnFunction(Function &Fn) {
// Make sure we re-emit a set of the global base reg if necessary
GlobalBaseReg = 0;
return SelectionDAGISel::runOnFunction(Fn);
}
/// getI32Imm - Return a target constant with the specified value, of type
/// i32.
inline SDOperand getI32Imm(unsigned Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i32);
}
/// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
/// base register. Return the virtual register that holds this value.
SDOperand getGlobalBaseReg();
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
SDOperand Select(SDOperand Op);
SDNode *SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS,
unsigned OCHi, unsigned OCLo,
bool IsArithmetic = false,
bool Negate = false);
SDNode *SelectBitfieldInsert(SDNode *N);
/// SelectCC - Select a comparison of the specified values with the
/// specified condition code, returning the CR# of the expression.
SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
/// SelectAddr - Given the specified address, return the two operands for a
/// load/store instruction, and return true if it should be an indexed [r+r]
/// operation.
bool SelectAddr(SDOperand Addr, SDOperand &Op1, SDOperand &Op2);
SDOperand BuildSDIVSequence(SDNode *N);
SDOperand BuildUDIVSequence(SDNode *N);
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
DEBUG(BB->dump());
// Select target instructions for the DAG.
DAG.setRoot(Select(DAG.getRoot()));
CodeGenMap.clear();
DAG.RemoveDeadNodes();
// Emit machine code to BB.
ScheduleAndEmitDAG(DAG);
}
virtual const char *getPassName() const {
return "PowerPC DAG->DAG Pattern Instruction Selection";
}
// Include the pieces autogenerated from the target description.
#include "PPC32GenDAGISel.inc"
};
}
/// getGlobalBaseReg - Output the instructions required to put the
/// base address to use for accessing globals into a register.
///
SDOperand PPC32DAGToDAGISel::getGlobalBaseReg() {
if (!GlobalBaseReg) {
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = BB->getParent()->front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
SSARegMap *RegMap = BB->getParent()->getSSARegMap();
GlobalBaseReg = RegMap->createVirtualRegister(PPC32::GPRCRegisterClass);
BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg);
}
return CurDAG->getRegister(GlobalBaseReg, MVT::i32);
}
// isIntImmediate - This method tests to see if a constant operand.
// If so Imm will receive the 32 bit value.
static bool isIntImmediate(SDNode *N, unsigned& Imm) {
if (N->getOpcode() == ISD::Constant) {
Imm = cast<ConstantSDNode>(N)->getValue();
return true;
}
return false;
}
// isOprShiftImm - Returns true if the specified operand is a shift opcode with
// a immediate shift count less than 32.
static bool isOprShiftImm(SDNode *N, unsigned& Opc, unsigned& SH) {
Opc = N->getOpcode();
return (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) &&
isIntImmediate(N->getOperand(1).Val, SH) && SH < 32;
}
// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
// any number of 0s on either side. The 1s are allowed to wrap from LSB to
// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
// not, since all 1s are not contiguous.
static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
if (isShiftedMask_32(Val)) {
// look for the first non-zero bit
MB = CountLeadingZeros_32(Val);
// look for the first zero bit after the run of ones
ME = CountLeadingZeros_32((Val - 1) ^ Val);
return true;
} else {
Val = ~Val; // invert mask
if (isShiftedMask_32(Val)) {
// effectively look for the first zero bit
ME = CountLeadingZeros_32(Val) - 1;
// effectively look for the first one bit after the run of zeros
MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
return true;
}
}
// no run present
return false;
}
// isRotateAndMask - Returns true if Mask and Shift can be folded in to a rotate
// and mask opcode and mask operation.
static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
unsigned &SH, unsigned &MB, unsigned &ME) {
unsigned Shift = 32;
unsigned Indeterminant = ~0; // bit mask marking indeterminant results
unsigned Opcode = N->getOpcode();
if (N->getNumOperands() != 2 ||
!isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31))
return false;
if (Opcode == ISD::SHL) {
// apply shift left to mask if it comes first
if (IsShiftMask) Mask = Mask << Shift;
// determine which bits are made indeterminant by shift
Indeterminant = ~(0xFFFFFFFFu << Shift);
} else if (Opcode == ISD::SRA || Opcode == ISD::SRL) {
// apply shift right to mask if it comes first
if (IsShiftMask) Mask = Mask >> Shift;
// determine which bits are made indeterminant by shift
Indeterminant = ~(0xFFFFFFFFu >> Shift);
// adjust for the left rotate
Shift = 32 - Shift;
} else {
return false;
}
// if the mask doesn't intersect any Indeterminant bits
if (Mask && !(Mask & Indeterminant)) {
SH = Shift;
// make sure the mask is still a mask (wrap arounds may not be)
return isRunOfOnes(Mask, MB, ME);
}
return false;
}
// isOpcWithIntImmediate - This method tests to see if the node is a specific
// opcode and that it has a immediate integer right operand.
// If so Imm will receive the 32 bit value.
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).Val, Imm);
}
// isOprNot - Returns true if the specified operand is an xor with immediate -1.
static bool isOprNot(SDNode *N) {
unsigned Imm;
return isOpcWithIntImmediate(N, ISD::XOR, Imm) && (signed)Imm == -1;
}
// Immediate constant composers.
// Lo16 - grabs the lo 16 bits from a 32 bit constant.
// Hi16 - grabs the hi 16 bits from a 32 bit constant.
// HA16 - computes the hi bits required if the lo bits are add/subtracted in
// arithmethically.
static unsigned Lo16(unsigned x) { return x & 0x0000FFFF; }
static unsigned Hi16(unsigned x) { return Lo16(x >> 16); }
static unsigned HA16(unsigned x) { return Hi16((signed)x - (signed short)x); }
// isIntImmediate - This method tests to see if a constant operand.
// If so Imm will receive the 32 bit value.
static bool isIntImmediate(SDOperand N, unsigned& Imm) {
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
Imm = (unsigned)CN->getSignExtended();
return true;
}
return false;
}
/// SelectBitfieldInsert - turn an or of two masked values into
/// the rotate left word immediate then mask insert (rlwimi) instruction.
/// Returns true on success, false if the caller still needs to select OR.
///
/// Patterns matched:
/// 1. or shl, and 5. or and, and
/// 2. or and, shl 6. or shl, shr
/// 3. or shr, and 7. or shr, shl
/// 4. or and, shr
SDNode *PPC32DAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
bool IsRotate = false;
unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, SH = 0;
unsigned Value;
SDOperand Op0 = N->getOperand(0);
SDOperand Op1 = N->getOperand(1);
unsigned Op0Opc = Op0.getOpcode();
unsigned Op1Opc = Op1.getOpcode();
// Verify that we have the correct opcodes
if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc)
return false;
if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc)
return false;
// Generate Mask value for Target
if (isIntImmediate(Op0.getOperand(1), Value)) {
switch(Op0Opc) {
case ISD::SHL: TgtMask <<= Value; break;
case ISD::SRL: TgtMask >>= Value; break;
case ISD::AND: TgtMask &= Value; break;
}
} else {
return 0;
}
// Generate Mask value for Insert
if (!isIntImmediate(Op1.getOperand(1), Value))
return 0;
switch(Op1Opc) {
case ISD::SHL:
SH = Value;
InsMask <<= SH;
if (Op0Opc == ISD::SRL) IsRotate = true;
break;
case ISD::SRL:
SH = Value;
InsMask >>= SH;
SH = 32-SH;
if (Op0Opc == ISD::SHL) IsRotate = true;
break;
case ISD::AND:
InsMask &= Value;
break;
}
// If both of the inputs are ANDs and one of them has a logical shift by
// constant as its input, make that AND the inserted value so that we can
// combine the shift into the rotate part of the rlwimi instruction
bool IsAndWithShiftOp = false;
if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
if (Op1.getOperand(0).getOpcode() == ISD::SHL ||
Op1.getOperand(0).getOpcode() == ISD::SRL) {
if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) {
SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
IsAndWithShiftOp = true;
}
} else if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
Op0.getOperand(0).getOpcode() == ISD::SRL) {
if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) {
std::swap(Op0, Op1);
std::swap(TgtMask, InsMask);
SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
IsAndWithShiftOp = true;
}
}
}
// Verify that the Target mask and Insert mask together form a full word mask
// and that the Insert mask is a run of set bits (which implies both are runs
// of set bits). Given that, Select the arguments and generate the rlwimi
// instruction.
unsigned MB, ME;
if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) {
bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF;
bool Op0IsAND = Op0Opc == ISD::AND;
// Check for rotlwi / rotrwi here, a special case of bitfield insert
// where both bitfield halves are sourced from the same value.
if (IsRotate && fullMask &&
N->getOperand(0).getOperand(0) == N->getOperand(1).getOperand(0)) {
Op0 = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32,
Select(N->getOperand(0).getOperand(0)),
getI32Imm(SH), getI32Imm(0), getI32Imm(31));
return Op0.Val;
}
SDOperand Tmp1 = (Op0IsAND && fullMask) ? Select(Op0.getOperand(0))
: Select(Op0);
SDOperand Tmp2 = IsAndWithShiftOp ? Select(Op1.getOperand(0).getOperand(0))
: Select(Op1.getOperand(0));
Op0 = CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2,
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
return Op0.Val;
}
return 0;
}
// SelectIntImmediateExpr - Choose code for integer operations with an immediate
// operand.
SDNode *PPC32DAGToDAGISel::SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS,
unsigned OCHi, unsigned OCLo,
bool IsArithmetic,
bool Negate) {
// Check to make sure this is a constant.
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS);
// Exit if not a constant.
if (!CN) return 0;
// Extract immediate.
unsigned C = (unsigned)CN->getValue();
// Negate if required (ISD::SUB).
if (Negate) C = -C;
// Get the hi and lo portions of constant.
unsigned Hi = IsArithmetic ? HA16(C) : Hi16(C);
unsigned Lo = Lo16(C);
// If two instructions are needed and usage indicates it would be better to
// load immediate into a register, bail out.
if (Hi && Lo && CN->use_size() > 2) return false;
// Select the first operand.
SDOperand Opr0 = Select(LHS);
if (Lo) // Add in the lo-part.
Opr0 = CurDAG->getTargetNode(OCLo, MVT::i32, Opr0, getI32Imm(Lo));
if (Hi) // Add in the hi-part.
Opr0 = CurDAG->getTargetNode(OCHi, MVT::i32, Opr0, getI32Imm(Hi));
return Opr0.Val;
}
/// SelectAddr - Given the specified address, return the two operands for a
/// load/store instruction, and return true if it should be an indexed [r+r]
/// operation.
bool PPC32DAGToDAGISel::SelectAddr(SDOperand Addr, SDOperand &Op1,
SDOperand &Op2) {
unsigned imm = 0;
if (Addr.getOpcode() == ISD::ADD) {
if (isIntImmediate(Addr.getOperand(1), imm) && isInt16(imm)) {
Op1 = getI32Imm(Lo16(imm));
if (FrameIndexSDNode *FI =
dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) {
++FrameOff;
Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
} else {
Op2 = Select(Addr.getOperand(0));
}
return false;
} else {
Op1 = Select(Addr.getOperand(0));
Op2 = Select(Addr.getOperand(1));
return true; // [r+r]
}
}
// Now check if we're dealing with a global, and whether or not we should emit
// an optimized load or store for statics.
if (GlobalAddressSDNode *GN = dyn_cast<GlobalAddressSDNode>(Addr)) {
GlobalValue *GV = GN->getGlobal();
if (!GV->hasWeakLinkage() && !GV->isExternal()) {
Op1 = CurDAG->getTargetGlobalAddress(GV, MVT::i32);
if (PICEnabled)
Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),
Op1);
else
Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1);
return false;
}
} else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Addr)) {
Op1 = getI32Imm(0);
Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
return false;
} else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Addr)) {
Op1 = Addr;
if (PICEnabled)
Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),Op1);
else
Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1);
return false;
}
Op1 = getI32Imm(0);
Op2 = Select(Addr);
return false;
}
/// SelectCC - Select a comparison of the specified values with the specified
/// condition code, returning the CR# of the expression.
SDOperand PPC32DAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
ISD::CondCode CC) {
// Always select the LHS.
LHS = Select(LHS);
// Use U to determine whether the SETCC immediate range is signed or not.
if (MVT::isInteger(LHS.getValueType())) {
bool U = ISD::isUnsignedIntSetCC(CC);
unsigned Imm;
if (isIntImmediate(RHS, Imm) &&
((U && isUInt16(Imm)) || (!U && isInt16(Imm))))
return CurDAG->getTargetNode(U ? PPC::CMPLWI : PPC::CMPWI, MVT::i32,
LHS, getI32Imm(Lo16(Imm)));
return CurDAG->getTargetNode(U ? PPC::CMPLW : PPC::CMPW, MVT::i32,
LHS, Select(RHS));
} else {
return CurDAG->getTargetNode(PPC::FCMPU, MVT::i32, LHS, Select(RHS));
}
}
/// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
/// to Condition.
static unsigned getBCCForSetCC(ISD::CondCode CC) {
switch (CC) {
default: assert(0 && "Unknown condition!"); abort();
case ISD::SETEQ: return PPC::BEQ;
case ISD::SETNE: return PPC::BNE;
case ISD::SETULT:
case ISD::SETLT: return PPC::BLT;
case ISD::SETULE:
case ISD::SETLE: return PPC::BLE;
case ISD::SETUGT:
case ISD::SETGT: return PPC::BGT;
case ISD::SETUGE:
case ISD::SETGE: return PPC::BGE;
}
return 0;
}
/// getCRIdxForSetCC - Return the index of the condition register field
/// associated with the SetCC condition, and whether or not the field is
/// treated as inverted. That is, lt = 0; ge = 0 inverted.
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
switch (CC) {
default: assert(0 && "Unknown condition!"); abort();
case ISD::SETULT:
case ISD::SETLT: Inv = false; return 0;
case ISD::SETUGE:
case ISD::SETGE: Inv = true; return 0;
case ISD::SETUGT:
case ISD::SETGT: Inv = false; return 1;
case ISD::SETULE:
case ISD::SETLE: Inv = true; return 1;
case ISD::SETEQ: Inv = false; return 2;
case ISD::SETNE: Inv = true; return 2;
}
return 0;
}
// Structure used to return the necessary information to codegen an SDIV as
// a multiply.
struct ms {
int m; // magic number
int s; // shift amount
};
struct mu {
unsigned int m; // magic number
int a; // add indicator
int s; // shift amount
};
/// magic - calculate the magic numbers required to codegen an integer sdiv as
/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
/// or -1.
static struct ms magic(int d) {
int p;
unsigned int ad, anc, delta, q1, r1, q2, r2, t;
const unsigned int two31 = 0x80000000U;
struct ms mag;
ad = abs(d);
t = two31 + ((unsigned int)d >> 31);
anc = t - 1 - t%ad; // absolute value of nc
p = 31; // initialize p
q1 = two31/anc; // initialize q1 = 2p/abs(nc)
r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
q2 = two31/ad; // initialize q2 = 2p/abs(d)
r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
do {
p = p + 1;
q1 = 2*q1; // update q1 = 2p/abs(nc)
r1 = 2*r1; // update r1 = rem(2p/abs(nc))
if (r1 >= anc) { // must be unsigned comparison
q1 = q1 + 1;
r1 = r1 - anc;
}
q2 = 2*q2; // update q2 = 2p/abs(d)
r2 = 2*r2; // update r2 = rem(2p/abs(d))
if (r2 >= ad) { // must be unsigned comparison
q2 = q2 + 1;
r2 = r2 - ad;
}
delta = ad - r2;
} while (q1 < delta || (q1 == delta && r1 == 0));
mag.m = q2 + 1;
if (d < 0) mag.m = -mag.m; // resulting magic number
mag.s = p - 32; // resulting shift
return mag;
}
/// magicu - calculate the magic numbers required to codegen an integer udiv as
/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
static struct mu magicu(unsigned d)
{
int p;
unsigned int nc, delta, q1, r1, q2, r2;
struct mu magu;
magu.a = 0; // initialize "add" indicator
nc = - 1 - (-d)%d;
p = 31; // initialize p
q1 = 0x80000000/nc; // initialize q1 = 2p/nc
r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
do {
p = p + 1;
if (r1 >= nc - r1 ) {
q1 = 2*q1 + 1; // update q1
r1 = 2*r1 - nc; // update r1
}
else {
q1 = 2*q1; // update q1
r1 = 2*r1; // update r1
}
if (r2 + 1 >= d - r2) {
if (q2 >= 0x7FFFFFFF) magu.a = 1;
q2 = 2*q2 + 1; // update q2
r2 = 2*r2 + 1 - d; // update r2
}
else {
if (q2 >= 0x80000000) magu.a = 1;
q2 = 2*q2; // update q2
r2 = 2*r2 + 1; // update r2
}
delta = d - 1 - r2;
} while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
magu.m = q2 + 1; // resulting magic number
magu.s = p - 32; // resulting shift
return magu;
}
/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number. See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDOperand PPC32DAGToDAGISel::BuildSDIVSequence(SDNode *N) {
int d = (int)cast<ConstantSDNode>(N->getOperand(1))->getValue();
ms magics = magic(d);
// Multiply the numerator (operand 0) by the magic value
SDOperand Q = CurDAG->getNode(ISD::MULHS, MVT::i32, N->getOperand(0),
CurDAG->getConstant(magics.m, MVT::i32));
// If d > 0 and m < 0, add the numerator
if (d > 0 && magics.m < 0)
Q = CurDAG->getNode(ISD::ADD, MVT::i32, Q, N->getOperand(0));
// If d < 0 and m > 0, subtract the numerator.
if (d < 0 && magics.m > 0)
Q = CurDAG->getNode(ISD::SUB, MVT::i32, Q, N->getOperand(0));
// Shift right algebraic if shift value is nonzero
if (magics.s > 0)
Q = CurDAG->getNode(ISD::SRA, MVT::i32, Q,
CurDAG->getConstant(magics.s, MVT::i32));
// Extract the sign bit and add it to the quotient
SDOperand T =
CurDAG->getNode(ISD::SRL, MVT::i32, Q, CurDAG->getConstant(31, MVT::i32));
return CurDAG->getNode(ISD::ADD, MVT::i32, Q, T);
}
/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number. See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDOperand PPC32DAGToDAGISel::BuildUDIVSequence(SDNode *N) {
unsigned d = (unsigned)cast<ConstantSDNode>(N->getOperand(1))->getValue();
mu magics = magicu(d);
// Multiply the numerator (operand 0) by the magic value
SDOperand Q = CurDAG->getNode(ISD::MULHU, MVT::i32, N->getOperand(0),
CurDAG->getConstant(magics.m, MVT::i32));
if (magics.a == 0) {
return CurDAG->getNode(ISD::SRL, MVT::i32, Q,
CurDAG->getConstant(magics.s, MVT::i32));
} else {
SDOperand NPQ = CurDAG->getNode(ISD::SUB, MVT::i32, N->getOperand(0), Q);
NPQ = CurDAG->getNode(ISD::SRL, MVT::i32, NPQ,
CurDAG->getConstant(1, MVT::i32));
NPQ = CurDAG->getNode(ISD::ADD, MVT::i32, NPQ, Q);
return CurDAG->getNode(ISD::SRL, MVT::i32, NPQ,
CurDAG->getConstant(magics.s-1, MVT::i32));
}
}
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
SDOperand PPC32DAGToDAGISel::Select(SDOperand Op) {
SDNode *N = Op.Val;
if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
N->getOpcode() < PPCISD::FIRST_NUMBER)
return Op; // Already selected.
switch (N->getOpcode()) {
default: break;
case ISD::TokenFactor: {
SDOperand New;
if (N->getNumOperands() == 2) {
SDOperand Op0 = Select(N->getOperand(0));
SDOperand Op1 = Select(N->getOperand(1));
New = CurDAG->getNode(ISD::TokenFactor, MVT::Other, Op0, Op1);
} else {
std::vector<SDOperand> Ops;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
Ops.push_back(Select(N->getOperand(i)));
New = CurDAG->getNode(ISD::TokenFactor, MVT::Other, Ops);
}
if (New.Val != N) {
CurDAG->ReplaceAllUsesWith(Op, New);
N = New.Val;
}
return SDOperand(N, 0);
}
case ISD::CopyFromReg: {
SDOperand Chain = Select(N->getOperand(0));
if (Chain == N->getOperand(0)) return Op; // No change
SDOperand New = CurDAG->getCopyFromReg(Chain,
cast<RegisterSDNode>(N->getOperand(1))->getReg(), N->getValueType(0));
return New.getValue(Op.ResNo);
}
case ISD::CopyToReg: {
SDOperand Chain = Select(N->getOperand(0));
SDOperand Reg = N->getOperand(1);
SDOperand Val = Select(N->getOperand(2));
if (Chain != N->getOperand(0) || Val != N->getOperand(2)) {
SDOperand New = CurDAG->getNode(ISD::CopyToReg, MVT::Other,
Chain, Reg, Val);
CurDAG->ReplaceAllUsesWith(Op, New);
N = New.Val;
}
return SDOperand(N, 0);
}
case ISD::UNDEF:
if (N->getValueType(0) == MVT::i32)
CurDAG->SelectNodeTo(N, PPC::IMPLICIT_DEF_GPR, MVT::i32);
else
CurDAG->SelectNodeTo(N, PPC::IMPLICIT_DEF_FP, N->getValueType(0));
return SDOperand(N, 0);
case ISD::FrameIndex: {
int FI = cast<FrameIndexSDNode>(N)->getIndex();
CurDAG->SelectNodeTo(N, PPC::ADDI, MVT::i32,
CurDAG->getTargetFrameIndex(FI, MVT::i32),
getI32Imm(0));
return SDOperand(N, 0);
}
case ISD::ConstantPool: {
Constant *C = cast<ConstantPoolSDNode>(N)->get();
SDOperand Tmp, CPI = CurDAG->getTargetConstantPool(C, MVT::i32);
if (PICEnabled)
Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),CPI);
else
Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, CPI);
CurDAG->SelectNodeTo(N, PPC::LA, MVT::i32, Tmp, CPI);
return SDOperand(N, 0);
}
case ISD::GlobalAddress: {
GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
SDOperand Tmp;
SDOperand GA = CurDAG->getTargetGlobalAddress(GV, MVT::i32);
if (PICEnabled)
Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(), GA);
else
Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, GA);
if (GV->hasWeakLinkage() || GV->isExternal())
CurDAG->SelectNodeTo(N, PPC::LWZ, MVT::i32, GA, Tmp);
else
CurDAG->SelectNodeTo(N, PPC::LA, MVT::i32, Tmp, GA);
return SDOperand(N, 0);
}
case ISD::DYNAMIC_STACKALLOC: {
// FIXME: We are currently ignoring the requested alignment for handling
// greater than the stack alignment. This will need to be revisited at some
// point. Align = N.getOperand(2);
if (!isa<ConstantSDNode>(N->getOperand(2)) ||
cast<ConstantSDNode>(N->getOperand(2))->getValue() != 0) {
std::cerr << "Cannot allocate stack object with greater alignment than"
<< " the stack alignment yet!";
abort();
}
SDOperand Chain = Select(N->getOperand(0));
SDOperand Amt = Select(N->getOperand(1));
SDOperand R1Reg = CurDAG->getRegister(PPC::R1, MVT::i32);
SDOperand R1Val = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32);
Chain = R1Val.getValue(1);
// Subtract the amount (guaranteed to be a multiple of the stack alignment)
// from the stack pointer, giving us the result pointer.
SDOperand Result = CurDAG->getTargetNode(PPC::SUBF, MVT::i32, Amt, R1Val);
// Copy this result back into R1.
Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R1Reg, Result);
// Copy this result back out of R1 to make sure we're not using the stack
// space without decrementing the stack pointer.
Result = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32);
// Finally, replace the DYNAMIC_STACKALLOC with the copyfromreg.
CurDAG->ReplaceAllUsesWith(N, Result.Val);
return SDOperand(Result.Val, Op.ResNo);
}
case PPCISD::FSEL:
CurDAG->SelectNodeTo(N, PPC::FSEL, N->getValueType(0),
Select(N->getOperand(0)),
Select(N->getOperand(1)),
Select(N->getOperand(2)));
return SDOperand(N, 0);
case PPCISD::FCFID:
CurDAG->SelectNodeTo(N, PPC::FCFID, N->getValueType(0),
Select(N->getOperand(0)));
return SDOperand(N, 0);
case PPCISD::FCTIDZ:
CurDAG->SelectNodeTo(N, PPC::FCTIDZ, N->getValueType(0),
Select(N->getOperand(0)));
return SDOperand(N, 0);
case PPCISD::FCTIWZ:
CurDAG->SelectNodeTo(N, PPC::FCTIWZ, N->getValueType(0),
Select(N->getOperand(0)));
return SDOperand(N, 0);
case ISD::ADD: {
MVT::ValueType Ty = N->getValueType(0);
if (Ty == MVT::i32) {
if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0), N->getOperand(1),
PPC::ADDIS, PPC::ADDI, true)) {
CurDAG->ReplaceAllUsesWith(Op, SDOperand(I, 0));
N = I;
} else {
CurDAG->SelectNodeTo(N, PPC::ADD, MVT::i32, Select(N->getOperand(0)),
Select(N->getOperand(1)));
}
return SDOperand(N, 0);
}
if (!NoExcessFPPrecision) { // Match FMA ops
if (N->getOperand(0).getOpcode() == ISD::MUL &&
N->getOperand(0).Val->hasOneUse()) {
++FusedFP; // Statistic
CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty,
Select(N->getOperand(0).getOperand(0)),
Select(N->getOperand(0).getOperand(1)),
Select(N->getOperand(1)));
return SDOperand(N, 0);
} else if (N->getOperand(1).getOpcode() == ISD::MUL &&
N->getOperand(1).hasOneUse()) {
++FusedFP; // Statistic
CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty,
Select(N->getOperand(1).getOperand(0)),
Select(N->getOperand(1).getOperand(1)),
Select(N->getOperand(0)));
return SDOperand(N, 0);
}
}
CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FADD : PPC::FADDS, Ty,
Select(N->getOperand(0)), Select(N->getOperand(1)));
return SDOperand(N, 0);
}
case ISD::SUB: {
MVT::ValueType Ty = N->getValueType(0);
if (Ty == MVT::i32) {
unsigned Imm;
if (isIntImmediate(N->getOperand(0), Imm) && isInt16(Imm)) {
if (0 == Imm)
CurDAG->SelectNodeTo(N, PPC::NEG, Ty, Select(N->getOperand(1)));
else
CurDAG->SelectNodeTo(N, PPC::SUBFIC, Ty, Select(N->getOperand(1)),
getI32Imm(Lo16(Imm)));
return SDOperand(N, 0);
}
if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0), N->getOperand(1),
PPC::ADDIS, PPC::ADDI, true, true)) {
CurDAG->ReplaceAllUsesWith(Op, SDOperand(I, 0));
N = I;
} else {
CurDAG->SelectNodeTo(N, PPC::SUBF, Ty, Select(N->getOperand(1)),
Select(N->getOperand(0)));
}
return SDOperand(N, 0);
}
if (!NoExcessFPPrecision) { // Match FMA ops
if (N->getOperand(0).getOpcode() == ISD::MUL &&
N->getOperand(0).Val->hasOneUse()) {
++FusedFP; // Statistic
CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS, Ty,
Select(N->getOperand(0).getOperand(0)),
Select(N->getOperand(0).getOperand(1)),
Select(N->getOperand(1)));
return SDOperand(N, 0);
} else if (N->getOperand(1).getOpcode() == ISD::MUL &&
N->getOperand(1).Val->hasOneUse()) {
++FusedFP; // Statistic
CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS, Ty,
Select(N->getOperand(1).getOperand(0)),
Select(N->getOperand(1).getOperand(1)),
Select(N->getOperand(0)));
return SDOperand(N, 0);
}
}
CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FSUB : PPC::FSUBS, Ty,
Select(N->getOperand(0)),
Select(N->getOperand(1)));
return SDOperand(N, 0);
}
case ISD::MUL: {
unsigned Imm, Opc;
if (isIntImmediate(N->getOperand(1), Imm) && isInt16(Imm)) {
CurDAG->SelectNodeTo(N, PPC::MULLI, MVT::i32,
Select(N->getOperand(0)), getI32Imm(Lo16(Imm)));
return SDOperand(N, 0);
}
switch (N->getValueType(0)) {
default: assert(0 && "Unhandled multiply type!");
case MVT::i32: Opc = PPC::MULLW; break;
case MVT::f32: Opc = PPC::FMULS; break;
case MVT::f64: Opc = PPC::FMUL; break;
}
CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), Select(N->getOperand(0)),
Select(N->getOperand(1)));
return SDOperand(N, 0);
}
case ISD::SDIV: {
unsigned Imm;
if (isIntImmediate(N->getOperand(1), Imm)) {
if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
SDOperand Op =
CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
Select(N->getOperand(0)),
getI32Imm(Log2_32(Imm)));
CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
Op.getValue(0), Op.getValue(1));
return SDOperand(N, 0);
} else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
SDOperand Op =
CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
Select(N->getOperand(0)),
getI32Imm(Log2_32(-Imm)));
SDOperand PT =
CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, Op.getValue(0),
Op.getValue(1));
CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
return SDOperand(N, 0);
} else if (Imm) {
SDOperand Result = Select(BuildSDIVSequence(N));
assert(Result.ResNo == 0);
CurDAG->ReplaceAllUsesWith(Op, Result);
N = Result.Val;
return SDOperand(N, 0);
}
}
unsigned Opc;
switch (N->getValueType(0)) {
default: assert(0 && "Unknown type to ISD::SDIV");
case MVT::i32: Opc = PPC::DIVW; break;
case MVT::f32: Opc = PPC::FDIVS; break;
case MVT::f64: Opc = PPC::FDIV; break;
}
CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), Select(N->getOperand(0)),
Select(N->getOperand(1)));
return SDOperand(N, 0);
}
case ISD::UDIV: {
// If this is a divide by constant, we can emit code using some magic
// constants to implement it as a multiply instead.
unsigned Imm;
if (isIntImmediate(N->getOperand(1), Imm) && Imm) {
SDOperand Result = Select(BuildUDIVSequence(N));
assert(Result.ResNo == 0);
CurDAG->ReplaceAllUsesWith(Op, Result);
N = Result.Val;
return SDOperand(N, 0);
}
CurDAG->SelectNodeTo(N, PPC::DIVWU, MVT::i32, Select(N->getOperand(0)),
Select(N->getOperand(1)));
return SDOperand(N, 0);
}
case ISD::AND: {
unsigned Imm;
// If this is an and of a value rotated between 0 and 31 bits and then and'd
// with a mask, emit rlwinm
if (isIntImmediate(N->getOperand(1), Imm) && (isShiftedMask_32(Imm) ||
isShiftedMask_32(~Imm))) {
SDOperand Val;
unsigned SH, MB, ME;
if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
Val = Select(N->getOperand(0).getOperand(0));
} else {
Val = Select(N->getOperand(0));
isRunOfOnes(Imm, MB, ME);
SH = 0;
}
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val, getI32Imm(SH),
getI32Imm(MB), getI32Imm(ME));
return SDOperand(N, 0);
}
// Finally, check for the case where we are being asked to select
// and (not(a), b) or and (a, not(b)) which can be selected as andc.
if (isOprNot(N->getOperand(0).Val))
CurDAG->SelectNodeTo(N, PPC::ANDC, MVT::i32, Select(N->getOperand(1)),
Select(N->getOperand(0).getOperand(0)));
else if (isOprNot(N->getOperand(1).Val))
CurDAG->SelectNodeTo(N, PPC::ANDC, MVT::i32, Select(N->getOperand(0)),
Select(N->getOperand(1).getOperand(0)));
else
CurDAG->SelectNodeTo(N, PPC::AND, MVT::i32, Select(N->getOperand(0)),
Select(N->getOperand(1)));
return SDOperand(N, 0);
}
case ISD::OR:
if (SDNode *I = SelectBitfieldInsert(N)) {
CurDAG->ReplaceAllUsesWith(Op, SDOperand(I, 0));
N = I;
return SDOperand(N, 0);
}
if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0),
N->getOperand(1),
PPC::ORIS, PPC::ORI)) {
CurDAG->ReplaceAllUsesWith(Op, SDOperand(I, 0));
N = I;
return SDOperand(N, 0);
}
// Finally, check for the case where we are being asked to select
// 'or (not(a), b)' or 'or (a, not(b))' which can be selected as orc.
if (isOprNot(N->getOperand(0).Val))
CurDAG->SelectNodeTo(N, PPC::ORC, MVT::i32, Select(N->getOperand(1)),
Select(N->getOperand(0).getOperand(0)));
else if (isOprNot(N->getOperand(1).Val))
CurDAG->SelectNodeTo(N, PPC::ORC, MVT::i32, Select(N->getOperand(0)),
Select(N->getOperand(1).getOperand(0)));
else
CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Select(N->getOperand(0)),
Select(N->getOperand(1)));
return SDOperand(N, 0);
case ISD::XOR:
// Check whether or not this node is a logical 'not'. This is represented
// by llvm as a xor with the constant value -1 (all bits set). If this is a
// 'not', then fold 'or' into 'nor', and so forth for the supported ops.
if (isOprNot(N)) {
unsigned Opc;
SDOperand Val = Select(N->getOperand(0));
switch (Val.isTargetOpcode() ? Val.getTargetOpcode() : 0) {
default: Opc = 0; break;
case PPC::OR: Opc = PPC::NOR; break;
case PPC::AND: Opc = PPC::NAND; break;
case PPC::XOR: Opc = PPC::EQV; break;
}
if (Opc)
CurDAG->SelectNodeTo(N, Opc, MVT::i32, Val.getOperand(0),
Val.getOperand(1));
else
CurDAG->SelectNodeTo(N, PPC::NOR, MVT::i32, Val, Val);
return SDOperand(N, 0);
}
// If this is a xor with an immediate other than -1, then codegen it as high
// and low 16 bit immediate xors.
if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0),
N->getOperand(1),
PPC::XORIS, PPC::XORI)) {
CurDAG->ReplaceAllUsesWith(Op, SDOperand(I, 0));
N = I;
return SDOperand(N, 0);
}
// Check for the case where we are being asked to select
// xor (not(a), b) which is equivalent to not(xor a, b), which is eqv
if (isOprNot(N->getOperand(0).Val))
CurDAG->SelectNodeTo(N, PPC::EQV, MVT::i32,
Select(N->getOperand(0).getOperand(0)),
Select(N->getOperand(1)));
else if (isOprNot(N->getOperand(1).Val))
CurDAG->SelectNodeTo(N, PPC::EQV, MVT::i32,
Select(N->getOperand(1).getOperand(0)),
Select(N->getOperand(0)));
else
CurDAG->SelectNodeTo(N, PPC::XOR, MVT::i32, Select(N->getOperand(0)),
Select(N->getOperand(1)));
return SDOperand(N, 0);
case ISD::SHL: {
unsigned Imm, SH, MB, ME;
if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
isRotateAndMask(N, Imm, true, SH, MB, ME))
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32,
Select(N->getOperand(0).getOperand(0)),
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
else if (isIntImmediate(N->getOperand(1), Imm))
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Select(N->getOperand(0)),
getI32Imm(Imm), getI32Imm(0), getI32Imm(31-Imm));
else
CurDAG->SelectNodeTo(N, PPC::SLW, MVT::i32, Select(N->getOperand(0)),
Select(N->getOperand(1)));
return SDOperand(N, 0);
}
case ISD::SRL: {
unsigned Imm, SH, MB, ME;
if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
isRotateAndMask(N, Imm, true, SH, MB, ME))
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32,
Select(N->getOperand(0).getOperand(0)),
getI32Imm(SH & 0x1F), getI32Imm(MB), getI32Imm(ME));
else if (isIntImmediate(N->getOperand(1), Imm))
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Select(N->getOperand(0)),
getI32Imm((32-Imm) & 0x1F), getI32Imm(Imm),
getI32Imm(31));
else
CurDAG->SelectNodeTo(N, PPC::SRW, MVT::i32, Select(N->getOperand(0)),
Select(N->getOperand(1)));
return SDOperand(N, 0);
}
case ISD::SRA: {
unsigned Imm, SH, MB, ME;
if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
isRotateAndMask(N, Imm, true, SH, MB, ME))
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32,
Select(N->getOperand(0).getOperand(0)),
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
else if (isIntImmediate(N->getOperand(1), Imm))
CurDAG->SelectNodeTo(N, PPC::SRAWI, MVT::i32, Select(N->getOperand(0)),
getI32Imm(Imm));
else
CurDAG->SelectNodeTo(N, PPC::SRAW, MVT::i32, Select(N->getOperand(0)),
Select(N->getOperand(1)));
return SDOperand(N, 0);
}
case ISD::FABS:
CurDAG->SelectNodeTo(N, PPC::FABS, N->getValueType(0),
Select(N->getOperand(0)));
return SDOperand(N, 0);
case ISD::FP_EXTEND:
assert(MVT::f64 == N->getValueType(0) &&
MVT::f32 == N->getOperand(0).getValueType() && "Illegal FP_EXTEND");
// We need to emit an FMR to make sure that the result has the right value
// type.
CurDAG->SelectNodeTo(N, PPC::FMR, MVT::f64, Select(N->getOperand(0)));
return SDOperand(N, 0);
case ISD::FP_ROUND:
assert(MVT::f32 == N->getValueType(0) &&
MVT::f64 == N->getOperand(0).getValueType() && "Illegal FP_ROUND");
CurDAG->SelectNodeTo(N, PPC::FRSP, MVT::f32, Select(N->getOperand(0)));
return SDOperand(N, 0);
case ISD::FNEG: {
SDOperand Val = Select(N->getOperand(0));
MVT::ValueType Ty = N->getValueType(0);
if (Val.Val->hasOneUse()) {
unsigned Opc;
switch (Val.isTargetOpcode() ? Val.getTargetOpcode() : 0) {
default: Opc = 0; break;
case PPC::FABS: Opc = PPC::FNABS; break;
case PPC::FMADD: Opc = PPC::FNMADD; break;
case PPC::FMADDS: Opc = PPC::FNMADDS; break;
case PPC::FMSUB: Opc = PPC::FNMSUB; break;
case PPC::FMSUBS: Opc = PPC::FNMSUBS; break;
}
// If we inverted the opcode, then emit the new instruction with the
// inverted opcode and the original instruction's operands. Otherwise,
// fall through and generate a fneg instruction.
if (Opc) {
if (PPC::FNABS == Opc)
CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0));
else
CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0),
Val.getOperand(1), Val.getOperand(2));
return SDOperand(N, 0);
}
}
CurDAG->SelectNodeTo(N, PPC::FNEG, Ty, Val);
return SDOperand(N, 0);
}
case ISD::FSQRT: {
MVT::ValueType Ty = N->getValueType(0);
CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FSQRT : PPC::FSQRTS, Ty,
Select(N->getOperand(0)));
return SDOperand(N, 0);
}
case ISD::ADD_PARTS: {
SDOperand LHSL = Select(N->getOperand(0));
SDOperand LHSH = Select(N->getOperand(1));
unsigned Imm;
bool ME = false, ZE = false;
if (isIntImmediate(N->getOperand(3), Imm)) {
ME = (signed)Imm == -1;
ZE = Imm == 0;
}
std::vector<SDOperand> Result;
SDOperand CarryFromLo;
if (isIntImmediate(N->getOperand(2), Imm) &&
((signed)Imm >= -32768 || (signed)Imm < 32768)) {
// Codegen the low 32 bits of the add. Interestingly, there is no
// shifted form of add immediate carrying.
CarryFromLo = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
LHSL, getI32Imm(Imm));
} else {
CarryFromLo = CurDAG->getTargetNode(PPC::ADDC, MVT::i32, MVT::Flag,
LHSL, Select(N->getOperand(2)));
}
CarryFromLo = CarryFromLo.getValue(1);
// Codegen the high 32 bits, adding zero, minus one, or the full value
// along with the carry flag produced by addc/addic.
SDOperand ResultHi;
if (ZE)
ResultHi = CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, LHSH, CarryFromLo);
else if (ME)
ResultHi = CurDAG->getTargetNode(PPC::ADDME, MVT::i32, LHSH, CarryFromLo);
else
ResultHi = CurDAG->getTargetNode(PPC::ADDE, MVT::i32, LHSH,
Select(N->getOperand(3)), CarryFromLo);
Result.push_back(CarryFromLo.getValue(0));
Result.push_back(ResultHi);
CurDAG->ReplaceAllUsesWith(N, Result);
return Result[Op.ResNo];
}
case ISD::SUB_PARTS: {
SDOperand LHSL = Select(N->getOperand(0));
SDOperand LHSH = Select(N->getOperand(1));
SDOperand RHSL = Select(N->getOperand(2));
SDOperand RHSH = Select(N->getOperand(3));
std::vector<SDOperand> Result;
Result.push_back(CurDAG->getTargetNode(PPC::SUBFC, MVT::i32, MVT::Flag,
RHSL, LHSL));
Result.push_back(CurDAG->getTargetNode(PPC::SUBFE, MVT::i32, RHSH, LHSH,
Result[0].getValue(1)));
CurDAG->ReplaceAllUsesWith(N, Result);
return Result[Op.ResNo];
}
case ISD::LOAD:
case ISD::EXTLOAD:
case ISD::ZEXTLOAD:
case ISD::SEXTLOAD: {
SDOperand Op1, Op2;
bool isIdx = SelectAddr(N->getOperand(1), Op1, Op2);
MVT::ValueType TypeBeingLoaded = (N->getOpcode() == ISD::LOAD) ?
N->getValueType(0) : cast<VTSDNode>(N->getOperand(3))->getVT();
unsigned Opc;
switch (TypeBeingLoaded) {
default: N->dump(); assert(0 && "Cannot load this type!");
case MVT::i1:
case MVT::i8: Opc = isIdx ? PPC::LBZX : PPC::LBZ; break;
case MVT::i16:
if (N->getOpcode() == ISD::SEXTLOAD) { // SEXT load?
Opc = isIdx ? PPC::LHAX : PPC::LHA;
} else {
Opc = isIdx ? PPC::LHZX : PPC::LHZ;
}
break;
case MVT::i32: Opc = isIdx ? PPC::LWZX : PPC::LWZ; break;
case MVT::f32: Opc = isIdx ? PPC::LFSX : PPC::LFS; break;
case MVT::f64: Opc = isIdx ? PPC::LFDX : PPC::LFD; break;
}
CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other,
Op1, Op2, Select(N->getOperand(0)));
return SDOperand(N, Op.ResNo);
}
case ISD::TRUNCSTORE:
case ISD::STORE: {
SDOperand AddrOp1, AddrOp2;
bool isIdx = SelectAddr(N->getOperand(2), AddrOp1, AddrOp2);
unsigned Opc;
if (N->getOpcode() == ISD::STORE) {
switch (N->getOperand(1).getValueType()) {
default: assert(0 && "unknown Type in store");
case MVT::i32: Opc = isIdx ? PPC::STWX : PPC::STW; break;
case MVT::f64: Opc = isIdx ? PPC::STFDX : PPC::STFD; break;
case MVT::f32: Opc = isIdx ? PPC::STFSX : PPC::STFS; break;
}
} else { //ISD::TRUNCSTORE
switch(cast<VTSDNode>(N->getOperand(4))->getVT()) {
default: assert(0 && "unknown Type in store");
case MVT::i8: Opc = isIdx ? PPC::STBX : PPC::STB; break;
case MVT::i16: Opc = isIdx ? PPC::STHX : PPC::STH; break;
}
}
CurDAG->SelectNodeTo(N, Opc, MVT::Other, Select(N->getOperand(1)),
AddrOp1, AddrOp2, Select(N->getOperand(0)));
return SDOperand(N, 0);
}
case ISD::SETCC: {
unsigned Imm;
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
if (isIntImmediate(N->getOperand(1), Imm)) {
// We can codegen setcc op, imm very efficiently compared to a brcond.
// Check for those cases here.
// setcc op, 0
if (Imm == 0) {
SDOperand Op = Select(N->getOperand(0));
switch (CC) {
default: assert(0 && "Unhandled SetCC condition"); abort();
case ISD::SETEQ:
Op = CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op);
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27),
getI32Imm(5), getI32Imm(31));
break;
case ISD::SETNE: {
SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
Op, getI32Imm(~0U));
CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
break;
}
case ISD::SETLT:
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1),
getI32Imm(31), getI32Imm(31));
break;
case ISD::SETGT: {
SDOperand T = CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op);
T = CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op);;
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1),
getI32Imm(31), getI32Imm(31));
break;
}
}
return SDOperand(N, 0);
} else if (Imm == ~0U) { // setcc op, -1
SDOperand Op = Select(N->getOperand(0));
switch (CC) {
default: assert(0 && "Unhandled SetCC condition"); abort();
case ISD::SETEQ:
Op = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
Op, getI32Imm(1));
CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
CurDAG->getTargetNode(PPC::LI, MVT::i32,
getI32Imm(0)),
Op.getValue(1));
break;
case ISD::SETNE: {
Op = CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op);
SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
Op, getI32Imm(~0U));
CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
break;
}
case ISD::SETLT: {
SDOperand AD = CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
getI32Imm(1));
SDOperand AN = CurDAG->getTargetNode(PPC::AND, MVT::i32, AD, Op);
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1),
getI32Imm(31), getI32Imm(31));
break;
}
case ISD::SETGT:
Op = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op, getI32Imm(1),
getI32Imm(31), getI32Imm(31));
CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1));
break;
}
return SDOperand(N, 0);
}
}
bool Inv;
unsigned Idx = getCRIdxForSetCC(CC, Inv);
SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
SDOperand IntCR;
// Force the ccreg into CR7.
SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
std::vector<MVT::ValueType> VTs;
VTs.push_back(MVT::Other);
VTs.push_back(MVT::Flag); // NONSTANDARD CopyToReg node: defines a flag
std::vector<SDOperand> Ops;
Ops.push_back(CurDAG->getEntryNode());
Ops.push_back(CR7Reg);
Ops.push_back(CCReg);
CCReg = CurDAG->getNode(ISD::CopyToReg, VTs, Ops).getValue(1);
if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
IntCR = CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg, CCReg);
else
IntCR = CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg);
if (!Inv) {
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR,
getI32Imm(32-(3-Idx)), getI32Imm(31), getI32Imm(31));
} else {
SDOperand Tmp =
CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR,
getI32Imm(32-(3-Idx)), getI32Imm(31),getI32Imm(31));
CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
}
return SDOperand(N, 0);
}
case ISD::SELECT_CC: {
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
// handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
if (N1C->isNullValue() && N3C->isNullValue() &&
N2C->getValue() == 1ULL && CC == ISD::SETNE) {
SDOperand LHS = Select(N->getOperand(0));
SDOperand Tmp =
CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
LHS, getI32Imm(~0U));
CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, Tmp, LHS,
Tmp.getValue(1));
return SDOperand(N, 0);
}
SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
unsigned BROpc = getBCCForSetCC(CC);
bool isFP = MVT::isFloatingPoint(N->getValueType(0));
unsigned SelectCCOp = isFP ? PPC::SELECT_CC_FP : PPC::SELECT_CC_Int;
CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg,
Select(N->getOperand(2)), Select(N->getOperand(3)),
getI32Imm(BROpc));
return SDOperand(N, 0);
}
case ISD::CALLSEQ_START:
case ISD::CALLSEQ_END: {
unsigned Amt = cast<ConstantSDNode>(N->getOperand(1))->getValue();
unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ?
PPC::ADJCALLSTACKDOWN : PPC::ADJCALLSTACKUP;
CurDAG->SelectNodeTo(N, Opc, MVT::Other,
getI32Imm(Amt), Select(N->getOperand(0)));
return SDOperand(N, 0);
}
case ISD::CALL:
case ISD::TAILCALL: {
SDOperand Chain = Select(N->getOperand(0));
unsigned CallOpcode;
std::vector<SDOperand> CallOperands;
if (GlobalAddressSDNode *GASD =
dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
CallOpcode = PPC::CALLpcrel;
CallOperands.push_back(CurDAG->getTargetGlobalAddress(GASD->getGlobal(),
MVT::i32));
} else if (ExternalSymbolSDNode *ESSDN =
dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) {
CallOpcode = PPC::CALLpcrel;
CallOperands.push_back(N->getOperand(1));
} else {
// Copy the callee address into the CTR register.
SDOperand Callee = Select(N->getOperand(1));
Chain = CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Callee, Chain);
// Copy the callee address into R12 on darwin.
SDOperand R12 = CurDAG->getRegister(PPC::R12, MVT::i32);
Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R12, Callee);
CallOperands.push_back(getI32Imm(20)); // Information to encode indcall
CallOperands.push_back(getI32Imm(0)); // Information to encode indcall
CallOperands.push_back(R12);
CallOpcode = PPC::CALLindirect;
}
unsigned GPR_idx = 0, FPR_idx = 0;
static const unsigned GPR[] = {
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
static const unsigned FPR[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
};
SDOperand InFlag; // Null incoming flag value.
for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) {
unsigned DestReg = 0;
MVT::ValueType RegTy = N->getOperand(i).getValueType();
if (RegTy == MVT::i32) {
assert(GPR_idx < 8 && "Too many int args");
DestReg = GPR[GPR_idx++];
} else {
assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) &&
"Unpromoted integer arg?");
assert(FPR_idx < 13 && "Too many fp args");
DestReg = FPR[FPR_idx++];
}
if (N->getOperand(i).getOpcode() != ISD::UNDEF) {
SDOperand Val = Select(N->getOperand(i));
Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag);
InFlag = Chain.getValue(1);
CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy));
}
}
// Finally, once everything is in registers to pass to the call, emit the
// call itself.
if (InFlag.Val)
CallOperands.push_back(InFlag); // Strong dep on register copies.
else
CallOperands.push_back(Chain); // Weak dep on whatever occurs before
Chain = CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
CallOperands);
std::vector<SDOperand> CallResults;
// If the call has results, copy the values out of the ret val registers.
switch (N->getValueType(0)) {
default: assert(0 && "Unexpected ret value!");
case MVT::Other: break;
case MVT::i32:
if (N->getValueType(1) == MVT::i32) {
Chain = CurDAG->getCopyFromReg(Chain, PPC::R4, MVT::i32,
Chain.getValue(1)).getValue(1);
CallResults.push_back(Chain.getValue(0));
Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
Chain.getValue(1)).getValue(1);
CallResults.push_back(Chain.getValue(0));
} else {
Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
Chain.getValue(1)).getValue(1);
CallResults.push_back(Chain.getValue(0));
}
break;
case MVT::f32:
case MVT::f64:
Chain = CurDAG->getCopyFromReg(Chain, PPC::F1, N->getValueType(0),
Chain.getValue(1)).getValue(1);
CallResults.push_back(Chain.getValue(0));
break;
}
CallResults.push_back(Chain);
CurDAG->ReplaceAllUsesWith(N, CallResults);
return CallResults[Op.ResNo];
}
case ISD::RET: {
SDOperand Chain = Select(N->getOperand(0)); // Token chain.
if (N->getNumOperands() == 2) {
SDOperand Val = Select(N->getOperand(1));
if (N->getOperand(1).getValueType() == MVT::i32) {
Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Val);
} else {
assert(MVT::isFloatingPoint(N->getOperand(1).getValueType()));
Chain = CurDAG->getCopyToReg(Chain, PPC::F1, Val);
}
} else if (N->getNumOperands() > 1) {
assert(N->getOperand(1).getValueType() == MVT::i32 &&
N->getOperand(2).getValueType() == MVT::i32 &&
N->getNumOperands() == 3 && "Unknown two-register ret value!");
Chain = CurDAG->getCopyToReg(Chain, PPC::R4, Select(N->getOperand(1)));
Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Select(N->getOperand(2)));
}
// Finally, select this to a blr (return) instruction.
CurDAG->SelectNodeTo(N, PPC::BLR, MVT::Other, Chain);
return SDOperand(N, 0);
}
case ISD::BR:
CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, N->getOperand(1),
Select(N->getOperand(0)));
return SDOperand(N, 0);
case ISD::BR_CC:
case ISD::BRTWOWAY_CC: {
SDOperand Chain = Select(N->getOperand(0));
MachineBasicBlock *Dest =
cast<BasicBlockSDNode>(N->getOperand(4))->getBasicBlock();
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
unsigned Opc = getBCCForSetCC(CC);
// If this is a two way branch, then grab the fallthrough basic block
// argument and build a PowerPC branch pseudo-op, suitable for long branch
// conversion if necessary by the branch selection pass. Otherwise, emit a
// standard conditional branch.
if (N->getOpcode() == ISD::BRTWOWAY_CC) {
MachineBasicBlock *Fallthrough =
cast<BasicBlockSDNode>(N->getOperand(5))->getBasicBlock();
SDOperand CB = CurDAG->getTargetNode(PPC::COND_BRANCH, MVT::Other,
CondCode, getI32Imm(Opc),
N->getOperand(4), N->getOperand(5),
Chain);
CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, N->getOperand(5), CB);
} else {
// Iterate to the next basic block
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// If the fallthrough path is off the end of the function, which would be
// undefined behavior, set it to be the same as the current block because
// we have nothing better to set it to, and leaving it alone will cause
// the PowerPC Branch Selection pass to crash.
if (It == BB->getParent()->end()) It = Dest;
CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other, CondCode,
getI32Imm(Opc), N->getOperand(4),
CurDAG->getBasicBlock(It), Chain);
}
return SDOperand(N, 0);
}
}
return SelectCode(Op);
}
/// createPPC32ISelDag - This pass converts a legalized DAG into a
/// PowerPC-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createPPC32ISelDag(TargetMachine &TM) {
return new PPC32DAGToDAGISel(TM);
}