mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92155 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2463 lines
		
	
	
		
			94 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2463 lines
		
	
	
		
			94 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the CodeGenDAGPatterns class, which is used to read and
 | |
| // represent the patterns present in a .td file for instructions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenDAGPatterns.h"
 | |
| #include "Record.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include <set>
 | |
| #include <algorithm>
 | |
| #include <iostream>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helpers for working with extended types.
 | |
| 
 | |
| /// FilterVTs - Filter a list of VT's according to a predicate.
 | |
| ///
 | |
| template<typename T>
 | |
| static std::vector<MVT::SimpleValueType>
 | |
| FilterVTs(const std::vector<MVT::SimpleValueType> &InVTs, T Filter) {
 | |
|   std::vector<MVT::SimpleValueType> Result;
 | |
|   for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
 | |
|     if (Filter(InVTs[i]))
 | |
|       Result.push_back(InVTs[i]);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static std::vector<unsigned char> 
 | |
| FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
 | |
|   std::vector<unsigned char> Result;
 | |
|   for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
 | |
|     if (Filter((MVT::SimpleValueType)InVTs[i]))
 | |
|       Result.push_back(InVTs[i]);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static std::vector<unsigned char>
 | |
| ConvertVTs(const std::vector<MVT::SimpleValueType> &InVTs) {
 | |
|   std::vector<unsigned char> Result;
 | |
|   for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
 | |
|     Result.push_back(InVTs[i]);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static inline bool isInteger(MVT::SimpleValueType VT) {
 | |
|   return EVT(VT).isInteger();
 | |
| }
 | |
| 
 | |
| static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
 | |
|   return EVT(VT).isFloatingPoint();
 | |
| }
 | |
| 
 | |
| static inline bool isVector(MVT::SimpleValueType VT) {
 | |
|   return EVT(VT).isVector();
 | |
| }
 | |
| 
 | |
| static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
 | |
|                              const std::vector<unsigned char> &RHS) {
 | |
|   if (LHS.size() > RHS.size()) return false;
 | |
|   for (unsigned i = 0, e = LHS.size(); i != e; ++i)
 | |
|     if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| namespace EEVT {
 | |
| /// isExtIntegerInVTs - Return true if the specified extended value type vector
 | |
| /// contains iAny or an integer value type.
 | |
| bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
 | |
|   assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
 | |
|   return EVTs[0] == MVT::iAny || !(FilterEVTs(EVTs, isInteger).empty());
 | |
| }
 | |
| 
 | |
| /// isExtFloatingPointInVTs - Return true if the specified extended value type
 | |
| /// vector contains fAny or a FP value type.
 | |
| bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
 | |
|   assert(!EVTs.empty() && "Cannot check for FP in empty ExtVT list!");
 | |
|   return EVTs[0] == MVT::fAny || !(FilterEVTs(EVTs, isFloatingPoint).empty());
 | |
| }
 | |
| 
 | |
| /// isExtVectorInVTs - Return true if the specified extended value type
 | |
| /// vector contains vAny or a vector value type.
 | |
| bool isExtVectorInVTs(const std::vector<unsigned char> &EVTs) {
 | |
|   assert(!EVTs.empty() && "Cannot check for vector in empty ExtVT list!");
 | |
|   return EVTs[0] == MVT::vAny || !(FilterEVTs(EVTs, isVector).empty());
 | |
| }
 | |
| } // end namespace EEVT.
 | |
| } // end namespace llvm.
 | |
| 
 | |
| bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const {
 | |
|   return LHS->getID() < RHS->getID();
 | |
| }
 | |
| 
 | |
| /// Dependent variable map for CodeGenDAGPattern variant generation
 | |
| typedef std::map<std::string, int> DepVarMap;
 | |
| 
 | |
| /// Const iterator shorthand for DepVarMap
 | |
| typedef DepVarMap::const_iterator DepVarMap_citer;
 | |
| 
 | |
| namespace {
 | |
| void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
 | |
|   if (N->isLeaf()) {
 | |
|     if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) {
 | |
|       DepMap[N->getName()]++;
 | |
|     }
 | |
|   } else {
 | |
|     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|       FindDepVarsOf(N->getChild(i), DepMap);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //! Find dependent variables within child patterns
 | |
| /*!
 | |
|  */
 | |
| void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
 | |
|   DepVarMap depcounts;
 | |
|   FindDepVarsOf(N, depcounts);
 | |
|   for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
 | |
|     if (i->second > 1) {            // std::pair<std::string, int>
 | |
|       DepVars.insert(i->first);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //! Dump the dependent variable set:
 | |
| void DumpDepVars(MultipleUseVarSet &DepVars) {
 | |
|   if (DepVars.empty()) {
 | |
|     DEBUG(errs() << "<empty set>");
 | |
|   } else {
 | |
|     DEBUG(errs() << "[ ");
 | |
|     for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end();
 | |
|          i != e; ++i) {
 | |
|       DEBUG(errs() << (*i) << " ");
 | |
|     }
 | |
|     DEBUG(errs() << "]");
 | |
|   }
 | |
| }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // PatternToMatch implementation
 | |
| //
 | |
| 
 | |
| /// getPredicateCheck - Return a single string containing all of this
 | |
| /// pattern's predicates concatenated with "&&" operators.
 | |
| ///
 | |
| std::string PatternToMatch::getPredicateCheck() const {
 | |
|   std::string PredicateCheck;
 | |
|   for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
 | |
|     if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
 | |
|       Record *Def = Pred->getDef();
 | |
|       if (!Def->isSubClassOf("Predicate")) {
 | |
| #ifndef NDEBUG
 | |
|         Def->dump();
 | |
| #endif
 | |
|         assert(0 && "Unknown predicate type!");
 | |
|       }
 | |
|       if (!PredicateCheck.empty())
 | |
|         PredicateCheck += " && ";
 | |
|       PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return PredicateCheck;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SDTypeConstraint implementation
 | |
| //
 | |
| 
 | |
| SDTypeConstraint::SDTypeConstraint(Record *R) {
 | |
|   OperandNo = R->getValueAsInt("OperandNum");
 | |
|   
 | |
|   if (R->isSubClassOf("SDTCisVT")) {
 | |
|     ConstraintType = SDTCisVT;
 | |
|     x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
 | |
|   } else if (R->isSubClassOf("SDTCisPtrTy")) {
 | |
|     ConstraintType = SDTCisPtrTy;
 | |
|   } else if (R->isSubClassOf("SDTCisInt")) {
 | |
|     ConstraintType = SDTCisInt;
 | |
|   } else if (R->isSubClassOf("SDTCisFP")) {
 | |
|     ConstraintType = SDTCisFP;
 | |
|   } else if (R->isSubClassOf("SDTCisVec")) {
 | |
|     ConstraintType = SDTCisVec;
 | |
|   } else if (R->isSubClassOf("SDTCisSameAs")) {
 | |
|     ConstraintType = SDTCisSameAs;
 | |
|     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
 | |
|   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
 | |
|     ConstraintType = SDTCisVTSmallerThanOp;
 | |
|     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 
 | |
|       R->getValueAsInt("OtherOperandNum");
 | |
|   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
 | |
|     ConstraintType = SDTCisOpSmallerThanOp;
 | |
|     x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 
 | |
|       R->getValueAsInt("BigOperandNum");
 | |
|   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
 | |
|     ConstraintType = SDTCisEltOfVec;
 | |
|     x.SDTCisEltOfVec_Info.OtherOperandNum =
 | |
|       R->getValueAsInt("OtherOpNum");
 | |
|   } else {
 | |
|     errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
 | |
|     exit(1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getOperandNum - Return the node corresponding to operand #OpNo in tree
 | |
| /// N, which has NumResults results.
 | |
| TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
 | |
|                                                  TreePatternNode *N,
 | |
|                                                  unsigned NumResults) const {
 | |
|   assert(NumResults <= 1 &&
 | |
|          "We only work with nodes with zero or one result so far!");
 | |
|   
 | |
|   if (OpNo >= (NumResults + N->getNumChildren())) {
 | |
|     errs() << "Invalid operand number " << OpNo << " ";
 | |
|     N->dump();
 | |
|     errs() << '\n';
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   if (OpNo < NumResults)
 | |
|     return N;  // FIXME: need value #
 | |
|   else
 | |
|     return N->getChild(OpNo-NumResults);
 | |
| }
 | |
| 
 | |
| /// ApplyTypeConstraint - Given a node in a pattern, apply this type
 | |
| /// constraint to the nodes operands.  This returns true if it makes a
 | |
| /// change, false otherwise.  If a type contradiction is found, throw an
 | |
| /// exception.
 | |
| bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
 | |
|                                            const SDNodeInfo &NodeInfo,
 | |
|                                            TreePattern &TP) const {
 | |
|   unsigned NumResults = NodeInfo.getNumResults();
 | |
|   assert(NumResults <= 1 &&
 | |
|          "We only work with nodes with zero or one result so far!");
 | |
|   
 | |
|   // Check that the number of operands is sane.  Negative operands -> varargs.
 | |
|   if (NodeInfo.getNumOperands() >= 0) {
 | |
|     if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
 | |
|       TP.error(N->getOperator()->getName() + " node requires exactly " +
 | |
|                itostr(NodeInfo.getNumOperands()) + " operands!");
 | |
|   }
 | |
| 
 | |
|   const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo();
 | |
|   
 | |
|   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
 | |
|   
 | |
|   switch (ConstraintType) {
 | |
|   default: assert(0 && "Unknown constraint type!");
 | |
|   case SDTCisVT:
 | |
|     // Operand must be a particular type.
 | |
|     return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
 | |
|   case SDTCisPtrTy: {
 | |
|     // Operand must be same as target pointer type.
 | |
|     return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
 | |
|   }
 | |
|   case SDTCisInt: {
 | |
|     // If there is only one integer type supported, this must be it.
 | |
|     std::vector<MVT::SimpleValueType> IntVTs =
 | |
|       FilterVTs(CGT.getLegalValueTypes(), isInteger);
 | |
| 
 | |
|     // If we found exactly one supported integer type, apply it.
 | |
|     if (IntVTs.size() == 1)
 | |
|       return NodeToApply->UpdateNodeType(IntVTs[0], TP);
 | |
|     return NodeToApply->UpdateNodeType(MVT::iAny, TP);
 | |
|   }
 | |
|   case SDTCisFP: {
 | |
|     // If there is only one FP type supported, this must be it.
 | |
|     std::vector<MVT::SimpleValueType> FPVTs =
 | |
|       FilterVTs(CGT.getLegalValueTypes(), isFloatingPoint);
 | |
|         
 | |
|     // If we found exactly one supported FP type, apply it.
 | |
|     if (FPVTs.size() == 1)
 | |
|       return NodeToApply->UpdateNodeType(FPVTs[0], TP);
 | |
|     return NodeToApply->UpdateNodeType(MVT::fAny, TP);
 | |
|   }
 | |
|   case SDTCisVec: {
 | |
|     // If there is only one vector type supported, this must be it.
 | |
|     std::vector<MVT::SimpleValueType> VecVTs =
 | |
|       FilterVTs(CGT.getLegalValueTypes(), isVector);
 | |
|         
 | |
|     // If we found exactly one supported vector type, apply it.
 | |
|     if (VecVTs.size() == 1)
 | |
|       return NodeToApply->UpdateNodeType(VecVTs[0], TP);
 | |
|     return NodeToApply->UpdateNodeType(MVT::vAny, TP);
 | |
|   }
 | |
|   case SDTCisSameAs: {
 | |
|     TreePatternNode *OtherNode =
 | |
|       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
 | |
|     return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
 | |
|            OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
 | |
|   }
 | |
|   case SDTCisVTSmallerThanOp: {
 | |
|     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
 | |
|     // have an integer type that is smaller than the VT.
 | |
|     if (!NodeToApply->isLeaf() ||
 | |
|         !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
 | |
|         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
 | |
|                ->isSubClassOf("ValueType"))
 | |
|       TP.error(N->getOperator()->getName() + " expects a VT operand!");
 | |
|     MVT::SimpleValueType VT =
 | |
|      getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
 | |
|     if (!isInteger(VT))
 | |
|       TP.error(N->getOperator()->getName() + " VT operand must be integer!");
 | |
|     
 | |
|     TreePatternNode *OtherNode =
 | |
|       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
 | |
|     
 | |
|     // It must be integer.
 | |
|     bool MadeChange = OtherNode->UpdateNodeType(MVT::iAny, TP);
 | |
|     
 | |
|     // This code only handles nodes that have one type set.  Assert here so
 | |
|     // that we can change this if we ever need to deal with multiple value
 | |
|     // types at this point.
 | |
|     assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
 | |
|     if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
 | |
|       OtherNode->UpdateNodeType(MVT::Other, TP);  // Throw an error.
 | |
|     return MadeChange;
 | |
|   }
 | |
|   case SDTCisOpSmallerThanOp: {
 | |
|     TreePatternNode *BigOperand =
 | |
|       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
 | |
| 
 | |
|     // Both operands must be integer or FP, but we don't care which.
 | |
|     bool MadeChange = false;
 | |
|     
 | |
|     // This code does not currently handle nodes which have multiple types,
 | |
|     // where some types are integer, and some are fp.  Assert that this is not
 | |
|     // the case.
 | |
|     assert(!(EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
 | |
|              EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
 | |
|            !(EEVT::isExtIntegerInVTs(BigOperand->getExtTypes()) &&
 | |
|              EEVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
 | |
|            "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
 | |
|     if (EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes()))
 | |
|       MadeChange |= BigOperand->UpdateNodeType(MVT::iAny, TP);
 | |
|     else if (EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
 | |
|       MadeChange |= BigOperand->UpdateNodeType(MVT::fAny, TP);
 | |
|     if (EEVT::isExtIntegerInVTs(BigOperand->getExtTypes()))
 | |
|       MadeChange |= NodeToApply->UpdateNodeType(MVT::iAny, TP);
 | |
|     else if (EEVT::isExtFloatingPointInVTs(BigOperand->getExtTypes()))
 | |
|       MadeChange |= NodeToApply->UpdateNodeType(MVT::fAny, TP);
 | |
| 
 | |
|     std::vector<MVT::SimpleValueType> VTs = CGT.getLegalValueTypes();
 | |
| 
 | |
|     if (EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) {
 | |
|       VTs = FilterVTs(VTs, isInteger);
 | |
|     } else if (EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
 | |
|       VTs = FilterVTs(VTs, isFloatingPoint);
 | |
|     } else {
 | |
|       VTs.clear();
 | |
|     }
 | |
| 
 | |
|     switch (VTs.size()) {
 | |
|     default:         // Too many VT's to pick from.
 | |
|     case 0: break;   // No info yet.
 | |
|     case 1: 
 | |
|       // Only one VT of this flavor.  Cannot ever satisfy the constraints.
 | |
|       return NodeToApply->UpdateNodeType(MVT::Other, TP);  // throw
 | |
|     case 2:
 | |
|       // If we have exactly two possible types, the little operand must be the
 | |
|       // small one, the big operand should be the big one.  Common with 
 | |
|       // float/double for example.
 | |
|       assert(VTs[0] < VTs[1] && "Should be sorted!");
 | |
|       MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
 | |
|       MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
 | |
|       break;
 | |
|     }    
 | |
|     return MadeChange;
 | |
|   }
 | |
|   case SDTCisEltOfVec: {
 | |
|     TreePatternNode *OtherOperand =
 | |
|       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum,
 | |
|                     N, NumResults);
 | |
|     if (OtherOperand->hasTypeSet()) {
 | |
|       if (!isVector(OtherOperand->getTypeNum(0)))
 | |
|         TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
 | |
|       EVT IVT = OtherOperand->getTypeNum(0);
 | |
|       IVT = IVT.getVectorElementType();
 | |
|       return NodeToApply->UpdateNodeType(IVT.getSimpleVT().SimpleTy, TP);
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   }  
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SDNodeInfo implementation
 | |
| //
 | |
| SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
 | |
|   EnumName    = R->getValueAsString("Opcode");
 | |
|   SDClassName = R->getValueAsString("SDClass");
 | |
|   Record *TypeProfile = R->getValueAsDef("TypeProfile");
 | |
|   NumResults = TypeProfile->getValueAsInt("NumResults");
 | |
|   NumOperands = TypeProfile->getValueAsInt("NumOperands");
 | |
|   
 | |
|   // Parse the properties.
 | |
|   Properties = 0;
 | |
|   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
 | |
|   for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
 | |
|     if (PropList[i]->getName() == "SDNPCommutative") {
 | |
|       Properties |= 1 << SDNPCommutative;
 | |
|     } else if (PropList[i]->getName() == "SDNPAssociative") {
 | |
|       Properties |= 1 << SDNPAssociative;
 | |
|     } else if (PropList[i]->getName() == "SDNPHasChain") {
 | |
|       Properties |= 1 << SDNPHasChain;
 | |
|     } else if (PropList[i]->getName() == "SDNPOutFlag") {
 | |
|       Properties |= 1 << SDNPOutFlag;
 | |
|     } else if (PropList[i]->getName() == "SDNPInFlag") {
 | |
|       Properties |= 1 << SDNPInFlag;
 | |
|     } else if (PropList[i]->getName() == "SDNPOptInFlag") {
 | |
|       Properties |= 1 << SDNPOptInFlag;
 | |
|     } else if (PropList[i]->getName() == "SDNPMayStore") {
 | |
|       Properties |= 1 << SDNPMayStore;
 | |
|     } else if (PropList[i]->getName() == "SDNPMayLoad") {
 | |
|       Properties |= 1 << SDNPMayLoad;
 | |
|     } else if (PropList[i]->getName() == "SDNPSideEffect") {
 | |
|       Properties |= 1 << SDNPSideEffect;
 | |
|     } else if (PropList[i]->getName() == "SDNPMemOperand") {
 | |
|       Properties |= 1 << SDNPMemOperand;
 | |
|     } else {
 | |
|       errs() << "Unknown SD Node property '" << PropList[i]->getName()
 | |
|              << "' on node '" << R->getName() << "'!\n";
 | |
|       exit(1);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   
 | |
|   // Parse the type constraints.
 | |
|   std::vector<Record*> ConstraintList =
 | |
|     TypeProfile->getValueAsListOfDefs("Constraints");
 | |
|   TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TreePatternNode implementation
 | |
| //
 | |
| 
 | |
| TreePatternNode::~TreePatternNode() {
 | |
| #if 0 // FIXME: implement refcounted tree nodes!
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     delete getChild(i);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// UpdateNodeType - Set the node type of N to VT if VT contains
 | |
| /// information.  If N already contains a conflicting type, then throw an
 | |
| /// exception.  This returns true if any information was updated.
 | |
| ///
 | |
| bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
 | |
|                                      TreePattern &TP) {
 | |
|   assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
 | |
|   
 | |
|   if (ExtVTs[0] == EEVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
 | |
|     return false;
 | |
|   if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
 | |
|     setTypes(ExtVTs);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (getExtTypeNum(0) == MVT::iPTR || getExtTypeNum(0) == MVT::iPTRAny) {
 | |
|     if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny ||
 | |
|         ExtVTs[0] == MVT::iAny)
 | |
|       return false;
 | |
|     if (EEVT::isExtIntegerInVTs(ExtVTs)) {
 | |
|       std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, isInteger);
 | |
|       if (FVTs.size()) {
 | |
|         setTypes(ExtVTs);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Merge vAny with iAny/fAny.  The latter include vector types so keep them
 | |
|   // as the more specific information.
 | |
|   if (ExtVTs[0] == MVT::vAny && 
 | |
|       (getExtTypeNum(0) == MVT::iAny || getExtTypeNum(0) == MVT::fAny))
 | |
|     return false;
 | |
|   if (getExtTypeNum(0) == MVT::vAny &&
 | |
|       (ExtVTs[0] == MVT::iAny || ExtVTs[0] == MVT::fAny)) {
 | |
|     setTypes(ExtVTs);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (ExtVTs[0] == MVT::iAny &&
 | |
|       EEVT::isExtIntegerInVTs(getExtTypes())) {
 | |
|     assert(hasTypeSet() && "should be handled above!");
 | |
|     std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
 | |
|     if (getExtTypes() == FVTs)
 | |
|       return false;
 | |
|     setTypes(FVTs);
 | |
|     return true;
 | |
|   }
 | |
|   if ((ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny) &&
 | |
|       EEVT::isExtIntegerInVTs(getExtTypes())) {
 | |
|     //assert(hasTypeSet() && "should be handled above!");
 | |
|     std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
 | |
|     if (getExtTypes() == FVTs)
 | |
|       return false;
 | |
|     if (FVTs.size()) {
 | |
|       setTypes(FVTs);
 | |
|       return true;
 | |
|     }
 | |
|   }      
 | |
|   if (ExtVTs[0] == MVT::fAny &&
 | |
|       EEVT::isExtFloatingPointInVTs(getExtTypes())) {
 | |
|     assert(hasTypeSet() && "should be handled above!");
 | |
|     std::vector<unsigned char> FVTs =
 | |
|       FilterEVTs(getExtTypes(), isFloatingPoint);
 | |
|     if (getExtTypes() == FVTs)
 | |
|       return false;
 | |
|     setTypes(FVTs);
 | |
|     return true;
 | |
|   }
 | |
|   if (ExtVTs[0] == MVT::vAny &&
 | |
|       EEVT::isExtVectorInVTs(getExtTypes())) {
 | |
|     assert(hasTypeSet() && "should be handled above!");
 | |
|     std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isVector);
 | |
|     if (getExtTypes() == FVTs)
 | |
|       return false;
 | |
|     setTypes(FVTs);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If we know this is an int, FP, or vector type, and we are told it is a
 | |
|   // specific one, take the advice.
 | |
|   //
 | |
|   // Similarly, we should probably set the type here to the intersection of
 | |
|   // {iAny|fAny|vAny} and ExtVTs
 | |
|   if ((getExtTypeNum(0) == MVT::iAny &&
 | |
|        EEVT::isExtIntegerInVTs(ExtVTs)) ||
 | |
|       (getExtTypeNum(0) == MVT::fAny &&
 | |
|        EEVT::isExtFloatingPointInVTs(ExtVTs)) ||
 | |
|       (getExtTypeNum(0) == MVT::vAny &&
 | |
|        EEVT::isExtVectorInVTs(ExtVTs))) {
 | |
|     setTypes(ExtVTs);
 | |
|     return true;
 | |
|   }
 | |
|   if (getExtTypeNum(0) == MVT::iAny &&
 | |
|       (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny)) {
 | |
|     setTypes(ExtVTs);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (isLeaf()) {
 | |
|     dump();
 | |
|     errs() << " ";
 | |
|     TP.error("Type inference contradiction found in node!");
 | |
|   } else {
 | |
|     TP.error("Type inference contradiction found in node " + 
 | |
|              getOperator()->getName() + "!");
 | |
|   }
 | |
|   return true; // unreachable
 | |
| }
 | |
| 
 | |
| 
 | |
| void TreePatternNode::print(raw_ostream &OS) const {
 | |
|   if (isLeaf()) {
 | |
|     OS << *getLeafValue();
 | |
|   } else {
 | |
|     OS << "(" << getOperator()->getName();
 | |
|   }
 | |
|   
 | |
|   // FIXME: At some point we should handle printing all the value types for 
 | |
|   // nodes that are multiply typed.
 | |
|   switch (getExtTypeNum(0)) {
 | |
|   case MVT::Other: OS << ":Other"; break;
 | |
|   case MVT::iAny: OS << ":iAny"; break;
 | |
|   case MVT::fAny : OS << ":fAny"; break;
 | |
|   case MVT::vAny: OS << ":vAny"; break;
 | |
|   case EEVT::isUnknown: ; /*OS << ":?";*/ break;
 | |
|   case MVT::iPTR:  OS << ":iPTR"; break;
 | |
|   case MVT::iPTRAny:  OS << ":iPTRAny"; break;
 | |
|   default: {
 | |
|     std::string VTName = llvm::getName(getTypeNum(0));
 | |
|     // Strip off EVT:: prefix if present.
 | |
|     if (VTName.substr(0,5) == "MVT::")
 | |
|       VTName = VTName.substr(5);
 | |
|     OS << ":" << VTName;
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (!isLeaf()) {
 | |
|     if (getNumChildren() != 0) {
 | |
|       OS << " ";
 | |
|       getChild(0)->print(OS);
 | |
|       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
 | |
|         OS << ", ";
 | |
|         getChild(i)->print(OS);
 | |
|       }
 | |
|     }
 | |
|     OS << ")";
 | |
|   }
 | |
|   
 | |
|   for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
 | |
|     OS << "<<P:" << PredicateFns[i] << ">>";
 | |
|   if (TransformFn)
 | |
|     OS << "<<X:" << TransformFn->getName() << ">>";
 | |
|   if (!getName().empty())
 | |
|     OS << ":$" << getName();
 | |
| 
 | |
| }
 | |
| void TreePatternNode::dump() const {
 | |
|   print(errs());
 | |
| }
 | |
| 
 | |
| /// isIsomorphicTo - Return true if this node is recursively
 | |
| /// isomorphic to the specified node.  For this comparison, the node's
 | |
| /// entire state is considered. The assigned name is ignored, since
 | |
| /// nodes with differing names are considered isomorphic. However, if
 | |
| /// the assigned name is present in the dependent variable set, then
 | |
| /// the assigned name is considered significant and the node is
 | |
| /// isomorphic if the names match.
 | |
| bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
 | |
|                                      const MultipleUseVarSet &DepVars) const {
 | |
|   if (N == this) return true;
 | |
|   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
 | |
|       getPredicateFns() != N->getPredicateFns() ||
 | |
|       getTransformFn() != N->getTransformFn())
 | |
|     return false;
 | |
| 
 | |
|   if (isLeaf()) {
 | |
|     if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
 | |
|       if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
 | |
|         return ((DI->getDef() == NDI->getDef())
 | |
|                 && (DepVars.find(getName()) == DepVars.end()
 | |
|                     || getName() == N->getName()));
 | |
|       }
 | |
|     }
 | |
|     return getLeafValue() == N->getLeafValue();
 | |
|   }
 | |
|   
 | |
|   if (N->getOperator() != getOperator() ||
 | |
|       N->getNumChildren() != getNumChildren()) return false;
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// clone - Make a copy of this tree and all of its children.
 | |
| ///
 | |
| TreePatternNode *TreePatternNode::clone() const {
 | |
|   TreePatternNode *New;
 | |
|   if (isLeaf()) {
 | |
|     New = new TreePatternNode(getLeafValue());
 | |
|   } else {
 | |
|     std::vector<TreePatternNode*> CChildren;
 | |
|     CChildren.reserve(Children.size());
 | |
|     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|       CChildren.push_back(getChild(i)->clone());
 | |
|     New = new TreePatternNode(getOperator(), CChildren);
 | |
|   }
 | |
|   New->setName(getName());
 | |
|   New->setTypes(getExtTypes());
 | |
|   New->setPredicateFns(getPredicateFns());
 | |
|   New->setTransformFn(getTransformFn());
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// SubstituteFormalArguments - Replace the formal arguments in this tree
 | |
| /// with actual values specified by ArgMap.
 | |
| void TreePatternNode::
 | |
| SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
 | |
|   if (isLeaf()) return;
 | |
|   
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
 | |
|     TreePatternNode *Child = getChild(i);
 | |
|     if (Child->isLeaf()) {
 | |
|       Init *Val = Child->getLeafValue();
 | |
|       if (dynamic_cast<DefInit*>(Val) &&
 | |
|           static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
 | |
|         // We found a use of a formal argument, replace it with its value.
 | |
|         TreePatternNode *NewChild = ArgMap[Child->getName()];
 | |
|         assert(NewChild && "Couldn't find formal argument!");
 | |
|         assert((Child->getPredicateFns().empty() ||
 | |
|                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
 | |
|                "Non-empty child predicate clobbered!");
 | |
|         setChild(i, NewChild);
 | |
|       }
 | |
|     } else {
 | |
|       getChild(i)->SubstituteFormalArguments(ArgMap);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// InlinePatternFragments - If this pattern refers to any pattern
 | |
| /// fragments, inline them into place, giving us a pattern without any
 | |
| /// PatFrag references.
 | |
| TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
 | |
|   if (isLeaf()) return this;  // nothing to do.
 | |
|   Record *Op = getOperator();
 | |
|   
 | |
|   if (!Op->isSubClassOf("PatFrag")) {
 | |
|     // Just recursively inline children nodes.
 | |
|     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
 | |
|       TreePatternNode *Child = getChild(i);
 | |
|       TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
 | |
| 
 | |
|       assert((Child->getPredicateFns().empty() ||
 | |
|               NewChild->getPredicateFns() == Child->getPredicateFns()) &&
 | |
|              "Non-empty child predicate clobbered!");
 | |
| 
 | |
|       setChild(i, NewChild);
 | |
|     }
 | |
|     return this;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we found a reference to a fragment.  First, look up its
 | |
|   // TreePattern record.
 | |
|   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
 | |
|   
 | |
|   // Verify that we are passing the right number of operands.
 | |
|   if (Frag->getNumArgs() != Children.size())
 | |
|     TP.error("'" + Op->getName() + "' fragment requires " +
 | |
|              utostr(Frag->getNumArgs()) + " operands!");
 | |
| 
 | |
|   TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
 | |
| 
 | |
|   std::string Code = Op->getValueAsCode("Predicate");
 | |
|   if (!Code.empty())
 | |
|     FragTree->addPredicateFn("Predicate_"+Op->getName());
 | |
| 
 | |
|   // Resolve formal arguments to their actual value.
 | |
|   if (Frag->getNumArgs()) {
 | |
|     // Compute the map of formal to actual arguments.
 | |
|     std::map<std::string, TreePatternNode*> ArgMap;
 | |
|     for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
 | |
|       ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
 | |
|   
 | |
|     FragTree->SubstituteFormalArguments(ArgMap);
 | |
|   }
 | |
|   
 | |
|   FragTree->setName(getName());
 | |
|   FragTree->UpdateNodeType(getExtTypes(), TP);
 | |
| 
 | |
|   // Transfer in the old predicates.
 | |
|   for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
 | |
|     FragTree->addPredicateFn(getPredicateFns()[i]);
 | |
| 
 | |
|   // Get a new copy of this fragment to stitch into here.
 | |
|   //delete this;    // FIXME: implement refcounting!
 | |
|   
 | |
|   // The fragment we inlined could have recursive inlining that is needed.  See
 | |
|   // if there are any pattern fragments in it and inline them as needed.
 | |
|   return FragTree->InlinePatternFragments(TP);
 | |
| }
 | |
| 
 | |
| /// getImplicitType - Check to see if the specified record has an implicit
 | |
| /// type which should be applied to it.  This will infer the type of register
 | |
| /// references from the register file information, for example.
 | |
| ///
 | |
| static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
 | |
|                                       TreePattern &TP) {
 | |
|   // Some common return values
 | |
|   std::vector<unsigned char> Unknown(1, EEVT::isUnknown);
 | |
|   std::vector<unsigned char> Other(1, MVT::Other);
 | |
| 
 | |
|   // Check to see if this is a register or a register class...
 | |
|   if (R->isSubClassOf("RegisterClass")) {
 | |
|     if (NotRegisters) 
 | |
|       return Unknown;
 | |
|     const CodeGenRegisterClass &RC = 
 | |
|       TP.getDAGPatterns().getTargetInfo().getRegisterClass(R);
 | |
|     return ConvertVTs(RC.getValueTypes());
 | |
|   } else if (R->isSubClassOf("PatFrag")) {
 | |
|     // Pattern fragment types will be resolved when they are inlined.
 | |
|     return Unknown;
 | |
|   } else if (R->isSubClassOf("Register")) {
 | |
|     if (NotRegisters) 
 | |
|       return Unknown;
 | |
|     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
 | |
|     return T.getRegisterVTs(R);
 | |
|   } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
 | |
|     // Using a VTSDNode or CondCodeSDNode.
 | |
|     return Other;
 | |
|   } else if (R->isSubClassOf("ComplexPattern")) {
 | |
|     if (NotRegisters) 
 | |
|       return Unknown;
 | |
|     std::vector<unsigned char>
 | |
|     ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType());
 | |
|     return ComplexPat;
 | |
|   } else if (R->isSubClassOf("PointerLikeRegClass")) {
 | |
|     Other[0] = MVT::iPTR;
 | |
|     return Other;
 | |
|   } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
 | |
|              R->getName() == "zero_reg") {
 | |
|     // Placeholder.
 | |
|     return Unknown;
 | |
|   }
 | |
|   
 | |
|   TP.error("Unknown node flavor used in pattern: " + R->getName());
 | |
|   return Other;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
 | |
| /// CodeGenIntrinsic information for it, otherwise return a null pointer.
 | |
| const CodeGenIntrinsic *TreePatternNode::
 | |
| getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
 | |
|   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
 | |
|       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
 | |
|       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
 | |
|     return 0;
 | |
|     
 | |
|   unsigned IID = 
 | |
|     dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
 | |
|   return &CDP.getIntrinsicInfo(IID);
 | |
| }
 | |
| 
 | |
| /// isCommutativeIntrinsic - Return true if the node corresponds to a
 | |
| /// commutative intrinsic.
 | |
| bool
 | |
| TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
 | |
|   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
 | |
|     return Int->isCommutative;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ApplyTypeConstraints - Apply all of the type constraints relevant to
 | |
| /// this node and its children in the tree.  This returns true if it makes a
 | |
| /// change, false otherwise.  If a type contradiction is found, throw an
 | |
| /// exception.
 | |
| bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
 | |
|   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
 | |
|   if (isLeaf()) {
 | |
|     if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
 | |
|       // If it's a regclass or something else known, include the type.
 | |
|       return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
 | |
|     } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
 | |
|       // Int inits are always integers. :)
 | |
|       bool MadeChange = UpdateNodeType(MVT::iAny, TP);
 | |
|       
 | |
|       if (hasTypeSet()) {
 | |
|         // At some point, it may make sense for this tree pattern to have
 | |
|         // multiple types.  Assert here that it does not, so we revisit this
 | |
|         // code when appropriate.
 | |
|         assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
 | |
|         MVT::SimpleValueType VT = getTypeNum(0);
 | |
|         for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
 | |
|           assert(getTypeNum(i) == VT && "TreePattern has too many types!");
 | |
|         
 | |
|         VT = getTypeNum(0);
 | |
|         if (VT != MVT::iPTR && VT != MVT::iPTRAny) {
 | |
|           unsigned Size = EVT(VT).getSizeInBits();
 | |
|           // Make sure that the value is representable for this type.
 | |
|           if (Size < 32) {
 | |
|             int Val = (II->getValue() << (32-Size)) >> (32-Size);
 | |
|             if (Val != II->getValue()) {
 | |
|               // If sign-extended doesn't fit, does it fit as unsigned?
 | |
|               unsigned ValueMask;
 | |
|               unsigned UnsignedVal;
 | |
|               ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
 | |
|               UnsignedVal = unsigned(II->getValue());
 | |
| 
 | |
|               if ((ValueMask & UnsignedVal) != UnsignedVal) {
 | |
|                 TP.error("Integer value '" + itostr(II->getValue())+
 | |
|                          "' is out of range for type '" + 
 | |
|                          getEnumName(getTypeNum(0)) + "'!");
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       return MadeChange;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // special handling for set, which isn't really an SDNode.
 | |
|   if (getOperator()->getName() == "set") {
 | |
|     assert (getNumChildren() >= 2 && "Missing RHS of a set?");
 | |
|     unsigned NC = getNumChildren();
 | |
|     bool MadeChange = false;
 | |
|     for (unsigned i = 0; i < NC-1; ++i) {
 | |
|       MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|       MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     
 | |
|       // Types of operands must match.
 | |
|       MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(),
 | |
|                                                 TP);
 | |
|       MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(),
 | |
|                                                    TP);
 | |
|       MadeChange |= UpdateNodeType(MVT::isVoid, TP);
 | |
|     }
 | |
|     return MadeChange;
 | |
|   } else if (getOperator()->getName() == "implicit" ||
 | |
|              getOperator()->getName() == "parallel") {
 | |
|     bool MadeChange = false;
 | |
|     for (unsigned i = 0; i < getNumChildren(); ++i)
 | |
|       MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     MadeChange |= UpdateNodeType(MVT::isVoid, TP);
 | |
|     return MadeChange;
 | |
|   } else if (getOperator()->getName() == "COPY_TO_REGCLASS") {
 | |
|     bool MadeChange = false;
 | |
|     MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     return MadeChange;
 | |
|   } else if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
 | |
|     bool MadeChange = false;
 | |
| 
 | |
|     // Apply the result type to the node.
 | |
|     unsigned NumRetVTs = Int->IS.RetVTs.size();
 | |
|     unsigned NumParamVTs = Int->IS.ParamVTs.size();
 | |
| 
 | |
|     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
 | |
|       MadeChange |= UpdateNodeType(Int->IS.RetVTs[i], TP);
 | |
| 
 | |
|     if (getNumChildren() != NumParamVTs + NumRetVTs)
 | |
|       TP.error("Intrinsic '" + Int->Name + "' expects " +
 | |
|                utostr(NumParamVTs + NumRetVTs - 1) + " operands, not " +
 | |
|                utostr(getNumChildren() - 1) + " operands!");
 | |
| 
 | |
|     // Apply type info to the intrinsic ID.
 | |
|     MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
 | |
|     
 | |
|     for (unsigned i = NumRetVTs, e = getNumChildren(); i != e; ++i) {
 | |
|       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i - NumRetVTs];
 | |
|       MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
 | |
|       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     }
 | |
|     return MadeChange;
 | |
|   } else if (getOperator()->isSubClassOf("SDNode")) {
 | |
|     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
 | |
|     
 | |
|     bool MadeChange = NI.ApplyTypeConstraints(this, TP);
 | |
|     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     // Branch, etc. do not produce results and top-level forms in instr pattern
 | |
|     // must have void types.
 | |
|     if (NI.getNumResults() == 0)
 | |
|       MadeChange |= UpdateNodeType(MVT::isVoid, TP);
 | |
|     
 | |
|     return MadeChange;  
 | |
|   } else if (getOperator()->isSubClassOf("Instruction")) {
 | |
|     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
 | |
|     bool MadeChange = false;
 | |
|     unsigned NumResults = Inst.getNumResults();
 | |
|     
 | |
|     assert(NumResults <= 1 &&
 | |
|            "Only supports zero or one result instrs!");
 | |
| 
 | |
|     CodeGenInstruction &InstInfo =
 | |
|       CDP.getTargetInfo().getInstruction(getOperator()->getName());
 | |
|     // Apply the result type to the node
 | |
|     if (NumResults == 0 || InstInfo.NumDefs == 0) {
 | |
|       MadeChange = UpdateNodeType(MVT::isVoid, TP);
 | |
|     } else {
 | |
|       Record *ResultNode = Inst.getResult(0);
 | |
|       
 | |
|       if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
 | |
|         std::vector<unsigned char> VT;
 | |
|         VT.push_back(MVT::iPTR);
 | |
|         MadeChange = UpdateNodeType(VT, TP);
 | |
|       } else if (ResultNode->getName() == "unknown") {
 | |
|         std::vector<unsigned char> VT;
 | |
|         VT.push_back(EEVT::isUnknown);
 | |
|         MadeChange = UpdateNodeType(VT, TP);
 | |
|       } else {
 | |
|         assert(ResultNode->isSubClassOf("RegisterClass") &&
 | |
|                "Operands should be register classes!");
 | |
| 
 | |
|         const CodeGenRegisterClass &RC = 
 | |
|           CDP.getTargetInfo().getRegisterClass(ResultNode);
 | |
|         MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned ChildNo = 0;
 | |
|     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
 | |
|       Record *OperandNode = Inst.getOperand(i);
 | |
|       
 | |
|       // If the instruction expects a predicate or optional def operand, we
 | |
|       // codegen this by setting the operand to it's default value if it has a
 | |
|       // non-empty DefaultOps field.
 | |
|       if ((OperandNode->isSubClassOf("PredicateOperand") ||
 | |
|            OperandNode->isSubClassOf("OptionalDefOperand")) &&
 | |
|           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
 | |
|         continue;
 | |
|        
 | |
|       // Verify that we didn't run out of provided operands.
 | |
|       if (ChildNo >= getNumChildren())
 | |
|         TP.error("Instruction '" + getOperator()->getName() +
 | |
|                  "' expects more operands than were provided.");
 | |
|       
 | |
|       MVT::SimpleValueType VT;
 | |
|       TreePatternNode *Child = getChild(ChildNo++);
 | |
|       if (OperandNode->isSubClassOf("RegisterClass")) {
 | |
|         const CodeGenRegisterClass &RC = 
 | |
|           CDP.getTargetInfo().getRegisterClass(OperandNode);
 | |
|         MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
 | |
|       } else if (OperandNode->isSubClassOf("Operand")) {
 | |
|         VT = getValueType(OperandNode->getValueAsDef("Type"));
 | |
|         MadeChange |= Child->UpdateNodeType(VT, TP);
 | |
|       } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
 | |
|         MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
 | |
|       } else if (OperandNode->getName() == "unknown") {
 | |
|         MadeChange |= Child->UpdateNodeType(EEVT::isUnknown, TP);
 | |
|       } else {
 | |
|         assert(0 && "Unknown operand type!");
 | |
|         abort();
 | |
|       }
 | |
|       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     }
 | |
| 
 | |
|     if (ChildNo != getNumChildren())
 | |
|       TP.error("Instruction '" + getOperator()->getName() +
 | |
|                "' was provided too many operands!");
 | |
|     
 | |
|     return MadeChange;
 | |
|   } else {
 | |
|     assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
 | |
|     
 | |
|     // Node transforms always take one operand.
 | |
|     if (getNumChildren() != 1)
 | |
|       TP.error("Node transform '" + getOperator()->getName() +
 | |
|                "' requires one operand!");
 | |
| 
 | |
|     // If either the output or input of the xform does not have exact
 | |
|     // type info. We assume they must be the same. Otherwise, it is perfectly
 | |
|     // legal to transform from one type to a completely different type.
 | |
|     if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
 | |
|       bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
 | |
|       MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
 | |
|       return MadeChange;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
 | |
| /// RHS of a commutative operation, not the on LHS.
 | |
| static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
 | |
|   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
 | |
|     return true;
 | |
|   if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// canPatternMatch - If it is impossible for this pattern to match on this
 | |
| /// target, fill in Reason and return false.  Otherwise, return true.  This is
 | |
| /// used as a sanity check for .td files (to prevent people from writing stuff
 | |
| /// that can never possibly work), and to prevent the pattern permuter from
 | |
| /// generating stuff that is useless.
 | |
| bool TreePatternNode::canPatternMatch(std::string &Reason, 
 | |
|                                       const CodeGenDAGPatterns &CDP) {
 | |
|   if (isLeaf()) return true;
 | |
| 
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     if (!getChild(i)->canPatternMatch(Reason, CDP))
 | |
|       return false;
 | |
| 
 | |
|   // If this is an intrinsic, handle cases that would make it not match.  For
 | |
|   // example, if an operand is required to be an immediate.
 | |
|   if (getOperator()->isSubClassOf("Intrinsic")) {
 | |
|     // TODO:
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // If this node is a commutative operator, check that the LHS isn't an
 | |
|   // immediate.
 | |
|   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
 | |
|   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
 | |
|   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
 | |
|     // Scan all of the operands of the node and make sure that only the last one
 | |
|     // is a constant node, unless the RHS also is.
 | |
|     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
 | |
|       bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
 | |
|       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
 | |
|         if (OnlyOnRHSOfCommutative(getChild(i))) {
 | |
|           Reason="Immediate value must be on the RHS of commutative operators!";
 | |
|           return false;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TreePattern implementation
 | |
| //
 | |
| 
 | |
| TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
 | |
|                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
 | |
|    isInputPattern = isInput;
 | |
|    for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
 | |
|      Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
 | |
| }
 | |
| 
 | |
| TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
 | |
|                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
 | |
|   isInputPattern = isInput;
 | |
|   Trees.push_back(ParseTreePattern(Pat));
 | |
| }
 | |
| 
 | |
| TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
 | |
|                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
 | |
|   isInputPattern = isInput;
 | |
|   Trees.push_back(Pat);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void TreePattern::error(const std::string &Msg) const {
 | |
|   dump();
 | |
|   throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
 | |
| }
 | |
| 
 | |
| TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
 | |
|   DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
 | |
|   if (!OpDef) error("Pattern has unexpected operator type!");
 | |
|   Record *Operator = OpDef->getDef();
 | |
|   
 | |
|   if (Operator->isSubClassOf("ValueType")) {
 | |
|     // If the operator is a ValueType, then this must be "type cast" of a leaf
 | |
|     // node.
 | |
|     if (Dag->getNumArgs() != 1)
 | |
|       error("Type cast only takes one operand!");
 | |
|     
 | |
|     Init *Arg = Dag->getArg(0);
 | |
|     TreePatternNode *New;
 | |
|     if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
 | |
|       Record *R = DI->getDef();
 | |
|       if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
 | |
|         Dag->setArg(0, new DagInit(DI, "",
 | |
|                                 std::vector<std::pair<Init*, std::string> >()));
 | |
|         return ParseTreePattern(Dag);
 | |
|       }
 | |
|       New = new TreePatternNode(DI);
 | |
|     } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
 | |
|       New = ParseTreePattern(DI);
 | |
|     } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
 | |
|       New = new TreePatternNode(II);
 | |
|       if (!Dag->getArgName(0).empty())
 | |
|         error("Constant int argument should not have a name!");
 | |
|     } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
 | |
|       // Turn this into an IntInit.
 | |
|       Init *II = BI->convertInitializerTo(new IntRecTy());
 | |
|       if (II == 0 || !dynamic_cast<IntInit*>(II))
 | |
|         error("Bits value must be constants!");
 | |
|       
 | |
|       New = new TreePatternNode(dynamic_cast<IntInit*>(II));
 | |
|       if (!Dag->getArgName(0).empty())
 | |
|         error("Constant int argument should not have a name!");
 | |
|     } else {
 | |
|       Arg->dump();
 | |
|       error("Unknown leaf value for tree pattern!");
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     // Apply the type cast.
 | |
|     New->UpdateNodeType(getValueType(Operator), *this);
 | |
|     if (New->getNumChildren() == 0)
 | |
|       New->setName(Dag->getArgName(0));
 | |
|     return New;
 | |
|   }
 | |
|   
 | |
|   // Verify that this is something that makes sense for an operator.
 | |
|   if (!Operator->isSubClassOf("PatFrag") && 
 | |
|       !Operator->isSubClassOf("SDNode") &&
 | |
|       !Operator->isSubClassOf("Instruction") && 
 | |
|       !Operator->isSubClassOf("SDNodeXForm") &&
 | |
|       !Operator->isSubClassOf("Intrinsic") &&
 | |
|       Operator->getName() != "set" &&
 | |
|       Operator->getName() != "implicit" &&
 | |
|       Operator->getName() != "parallel")
 | |
|     error("Unrecognized node '" + Operator->getName() + "'!");
 | |
|   
 | |
|   //  Check to see if this is something that is illegal in an input pattern.
 | |
|   if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
 | |
|                          Operator->isSubClassOf("SDNodeXForm")))
 | |
|     error("Cannot use '" + Operator->getName() + "' in an input pattern!");
 | |
|   
 | |
|   std::vector<TreePatternNode*> Children;
 | |
|   
 | |
|   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
 | |
|     Init *Arg = Dag->getArg(i);
 | |
|     if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
 | |
|       Children.push_back(ParseTreePattern(DI));
 | |
|       if (Children.back()->getName().empty())
 | |
|         Children.back()->setName(Dag->getArgName(i));
 | |
|     } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
 | |
|       Record *R = DefI->getDef();
 | |
|       // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
 | |
|       // TreePatternNode if its own.
 | |
|       if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
 | |
|         Dag->setArg(i, new DagInit(DefI, "",
 | |
|                               std::vector<std::pair<Init*, std::string> >()));
 | |
|         --i;  // Revisit this node...
 | |
|       } else {
 | |
|         TreePatternNode *Node = new TreePatternNode(DefI);
 | |
|         Node->setName(Dag->getArgName(i));
 | |
|         Children.push_back(Node);
 | |
|         
 | |
|         // Input argument?
 | |
|         if (R->getName() == "node") {
 | |
|           if (Dag->getArgName(i).empty())
 | |
|             error("'node' argument requires a name to match with operand list");
 | |
|           Args.push_back(Dag->getArgName(i));
 | |
|         }
 | |
|       }
 | |
|     } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
 | |
|       TreePatternNode *Node = new TreePatternNode(II);
 | |
|       if (!Dag->getArgName(i).empty())
 | |
|         error("Constant int argument should not have a name!");
 | |
|       Children.push_back(Node);
 | |
|     } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
 | |
|       // Turn this into an IntInit.
 | |
|       Init *II = BI->convertInitializerTo(new IntRecTy());
 | |
|       if (II == 0 || !dynamic_cast<IntInit*>(II))
 | |
|         error("Bits value must be constants!");
 | |
|       
 | |
|       TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
 | |
|       if (!Dag->getArgName(i).empty())
 | |
|         error("Constant int argument should not have a name!");
 | |
|       Children.push_back(Node);
 | |
|     } else {
 | |
|       errs() << '"';
 | |
|       Arg->dump();
 | |
|       errs() << "\": ";
 | |
|       error("Unknown leaf value for tree pattern!");
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If the operator is an intrinsic, then this is just syntactic sugar for for
 | |
|   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and 
 | |
|   // convert the intrinsic name to a number.
 | |
|   if (Operator->isSubClassOf("Intrinsic")) {
 | |
|     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
 | |
|     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
 | |
| 
 | |
|     // If this intrinsic returns void, it must have side-effects and thus a
 | |
|     // chain.
 | |
|     if (Int.IS.RetVTs[0] == MVT::isVoid) {
 | |
|       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
 | |
|     } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
 | |
|       // Has side-effects, requires chain.
 | |
|       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
 | |
|     } else {
 | |
|       // Otherwise, no chain.
 | |
|       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
 | |
|     }
 | |
|     
 | |
|     TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
 | |
|     Children.insert(Children.begin(), IIDNode);
 | |
|   }
 | |
|   
 | |
|   TreePatternNode *Result = new TreePatternNode(Operator, Children);
 | |
|   Result->setName(Dag->getName());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// InferAllTypes - Infer/propagate as many types throughout the expression
 | |
| /// patterns as possible.  Return true if all types are inferred, false
 | |
| /// otherwise.  Throw an exception if a type contradiction is found.
 | |
| bool TreePattern::InferAllTypes() {
 | |
|   bool MadeChange = true;
 | |
|   while (MadeChange) {
 | |
|     MadeChange = false;
 | |
|     for (unsigned i = 0, e = Trees.size(); i != e; ++i)
 | |
|       MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
 | |
|   }
 | |
|   
 | |
|   bool HasUnresolvedTypes = false;
 | |
|   for (unsigned i = 0, e = Trees.size(); i != e; ++i)
 | |
|     HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
 | |
|   return !HasUnresolvedTypes;
 | |
| }
 | |
| 
 | |
| void TreePattern::print(raw_ostream &OS) const {
 | |
|   OS << getRecord()->getName();
 | |
|   if (!Args.empty()) {
 | |
|     OS << "(" << Args[0];
 | |
|     for (unsigned i = 1, e = Args.size(); i != e; ++i)
 | |
|       OS << ", " << Args[i];
 | |
|     OS << ")";
 | |
|   }
 | |
|   OS << ": ";
 | |
|   
 | |
|   if (Trees.size() > 1)
 | |
|     OS << "[\n";
 | |
|   for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
 | |
|     OS << "\t";
 | |
|     Trees[i]->print(OS);
 | |
|     OS << "\n";
 | |
|   }
 | |
| 
 | |
|   if (Trees.size() > 1)
 | |
|     OS << "]\n";
 | |
| }
 | |
| 
 | |
| void TreePattern::dump() const { print(errs()); }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // CodeGenDAGPatterns implementation
 | |
| //
 | |
| 
 | |
| // FIXME: REMOVE OSTREAM ARGUMENT
 | |
| CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) {
 | |
|   Intrinsics = LoadIntrinsics(Records, false);
 | |
|   TgtIntrinsics = LoadIntrinsics(Records, true);
 | |
|   ParseNodeInfo();
 | |
|   ParseNodeTransforms();
 | |
|   ParseComplexPatterns();
 | |
|   ParsePatternFragments();
 | |
|   ParseDefaultOperands();
 | |
|   ParseInstructions();
 | |
|   ParsePatterns();
 | |
|   
 | |
|   // Generate variants.  For example, commutative patterns can match
 | |
|   // multiple ways.  Add them to PatternsToMatch as well.
 | |
|   GenerateVariants();
 | |
| 
 | |
|   // Infer instruction flags.  For example, we can detect loads,
 | |
|   // stores, and side effects in many cases by examining an
 | |
|   // instruction's pattern.
 | |
|   InferInstructionFlags();
 | |
| }
 | |
| 
 | |
| CodeGenDAGPatterns::~CodeGenDAGPatterns() {
 | |
|   for (pf_iterator I = PatternFragments.begin(),
 | |
|        E = PatternFragments.end(); I != E; ++I)
 | |
|     delete I->second;
 | |
| }
 | |
| 
 | |
| 
 | |
| Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
 | |
|   Record *N = Records.getDef(Name);
 | |
|   if (!N || !N->isSubClassOf("SDNode")) {
 | |
|     errs() << "Error getting SDNode '" << Name << "'!\n";
 | |
|     exit(1);
 | |
|   }
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| // Parse all of the SDNode definitions for the target, populating SDNodes.
 | |
| void CodeGenDAGPatterns::ParseNodeInfo() {
 | |
|   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
 | |
|   while (!Nodes.empty()) {
 | |
|     SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
 | |
|     Nodes.pop_back();
 | |
|   }
 | |
| 
 | |
|   // Get the builtin intrinsic nodes.
 | |
|   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
 | |
|   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
 | |
|   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
 | |
| }
 | |
| 
 | |
| /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
 | |
| /// map, and emit them to the file as functions.
 | |
| void CodeGenDAGPatterns::ParseNodeTransforms() {
 | |
|   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
 | |
|   while (!Xforms.empty()) {
 | |
|     Record *XFormNode = Xforms.back();
 | |
|     Record *SDNode = XFormNode->getValueAsDef("Opcode");
 | |
|     std::string Code = XFormNode->getValueAsCode("XFormFunction");
 | |
|     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
 | |
| 
 | |
|     Xforms.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenDAGPatterns::ParseComplexPatterns() {
 | |
|   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
 | |
|   while (!AMs.empty()) {
 | |
|     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
 | |
|     AMs.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
 | |
| /// file, building up the PatternFragments map.  After we've collected them all,
 | |
| /// inline fragments together as necessary, so that there are no references left
 | |
| /// inside a pattern fragment to a pattern fragment.
 | |
| ///
 | |
| void CodeGenDAGPatterns::ParsePatternFragments() {
 | |
|   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
 | |
|   
 | |
|   // First step, parse all of the fragments.
 | |
|   for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
 | |
|     DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
 | |
|     TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
 | |
|     PatternFragments[Fragments[i]] = P;
 | |
|     
 | |
|     // Validate the argument list, converting it to set, to discard duplicates.
 | |
|     std::vector<std::string> &Args = P->getArgList();
 | |
|     std::set<std::string> OperandsSet(Args.begin(), Args.end());
 | |
|     
 | |
|     if (OperandsSet.count(""))
 | |
|       P->error("Cannot have unnamed 'node' values in pattern fragment!");
 | |
|     
 | |
|     // Parse the operands list.
 | |
|     DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
 | |
|     DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
 | |
|     // Special cases: ops == outs == ins. Different names are used to
 | |
|     // improve readability.
 | |
|     if (!OpsOp ||
 | |
|         (OpsOp->getDef()->getName() != "ops" &&
 | |
|          OpsOp->getDef()->getName() != "outs" &&
 | |
|          OpsOp->getDef()->getName() != "ins"))
 | |
|       P->error("Operands list should start with '(ops ... '!");
 | |
|     
 | |
|     // Copy over the arguments.       
 | |
|     Args.clear();
 | |
|     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
 | |
|       if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
 | |
|           static_cast<DefInit*>(OpsList->getArg(j))->
 | |
|           getDef()->getName() != "node")
 | |
|         P->error("Operands list should all be 'node' values.");
 | |
|       if (OpsList->getArgName(j).empty())
 | |
|         P->error("Operands list should have names for each operand!");
 | |
|       if (!OperandsSet.count(OpsList->getArgName(j)))
 | |
|         P->error("'" + OpsList->getArgName(j) +
 | |
|                  "' does not occur in pattern or was multiply specified!");
 | |
|       OperandsSet.erase(OpsList->getArgName(j));
 | |
|       Args.push_back(OpsList->getArgName(j));
 | |
|     }
 | |
|     
 | |
|     if (!OperandsSet.empty())
 | |
|       P->error("Operands list does not contain an entry for operand '" +
 | |
|                *OperandsSet.begin() + "'!");
 | |
| 
 | |
|     // If there is a code init for this fragment, keep track of the fact that
 | |
|     // this fragment uses it.
 | |
|     std::string Code = Fragments[i]->getValueAsCode("Predicate");
 | |
|     if (!Code.empty())
 | |
|       P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName());
 | |
|     
 | |
|     // If there is a node transformation corresponding to this, keep track of
 | |
|     // it.
 | |
|     Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
 | |
|     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
 | |
|       P->getOnlyTree()->setTransformFn(Transform);
 | |
|   }
 | |
|   
 | |
|   // Now that we've parsed all of the tree fragments, do a closure on them so
 | |
|   // that there are not references to PatFrags left inside of them.
 | |
|   for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
 | |
|     TreePattern *ThePat = PatternFragments[Fragments[i]];
 | |
|     ThePat->InlinePatternFragments();
 | |
|         
 | |
|     // Infer as many types as possible.  Don't worry about it if we don't infer
 | |
|     // all of them, some may depend on the inputs of the pattern.
 | |
|     try {
 | |
|       ThePat->InferAllTypes();
 | |
|     } catch (...) {
 | |
|       // If this pattern fragment is not supported by this target (no types can
 | |
|       // satisfy its constraints), just ignore it.  If the bogus pattern is
 | |
|       // actually used by instructions, the type consistency error will be
 | |
|       // reported there.
 | |
|     }
 | |
|     
 | |
|     // If debugging, print out the pattern fragment result.
 | |
|     DEBUG(ThePat->dump());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenDAGPatterns::ParseDefaultOperands() {
 | |
|   std::vector<Record*> DefaultOps[2];
 | |
|   DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
 | |
|   DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
 | |
| 
 | |
|   // Find some SDNode.
 | |
|   assert(!SDNodes.empty() && "No SDNodes parsed?");
 | |
|   Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
 | |
|   
 | |
|   for (unsigned iter = 0; iter != 2; ++iter) {
 | |
|     for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
 | |
|       DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
 | |
|     
 | |
|       // Clone the DefaultInfo dag node, changing the operator from 'ops' to
 | |
|       // SomeSDnode so that we can parse this.
 | |
|       std::vector<std::pair<Init*, std::string> > Ops;
 | |
|       for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
 | |
|         Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
 | |
|                                      DefaultInfo->getArgName(op)));
 | |
|       DagInit *DI = new DagInit(SomeSDNode, "", Ops);
 | |
|     
 | |
|       // Create a TreePattern to parse this.
 | |
|       TreePattern P(DefaultOps[iter][i], DI, false, *this);
 | |
|       assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
 | |
| 
 | |
|       // Copy the operands over into a DAGDefaultOperand.
 | |
|       DAGDefaultOperand DefaultOpInfo;
 | |
|     
 | |
|       TreePatternNode *T = P.getTree(0);
 | |
|       for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
 | |
|         TreePatternNode *TPN = T->getChild(op);
 | |
|         while (TPN->ApplyTypeConstraints(P, false))
 | |
|           /* Resolve all types */;
 | |
|       
 | |
|         if (TPN->ContainsUnresolvedType()) {
 | |
|           if (iter == 0)
 | |
|             throw "Value #" + utostr(i) + " of PredicateOperand '" +
 | |
|               DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
 | |
|           else
 | |
|             throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
 | |
|               DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
 | |
|         }
 | |
|         DefaultOpInfo.DefaultOps.push_back(TPN);
 | |
|       }
 | |
| 
 | |
|       // Insert it into the DefaultOperands map so we can find it later.
 | |
|       DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
 | |
| /// instruction input.  Return true if this is a real use.
 | |
| static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
 | |
|                       std::map<std::string, TreePatternNode*> &InstInputs,
 | |
|                       std::vector<Record*> &InstImpInputs) {
 | |
|   // No name -> not interesting.
 | |
|   if (Pat->getName().empty()) {
 | |
|     if (Pat->isLeaf()) {
 | |
|       DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
 | |
|       if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
 | |
|         I->error("Input " + DI->getDef()->getName() + " must be named!");
 | |
|       else if (DI && DI->getDef()->isSubClassOf("Register")) 
 | |
|         InstImpInputs.push_back(DI->getDef());
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Record *Rec;
 | |
|   if (Pat->isLeaf()) {
 | |
|     DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
 | |
|     if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
 | |
|     Rec = DI->getDef();
 | |
|   } else {
 | |
|     Rec = Pat->getOperator();
 | |
|   }
 | |
| 
 | |
|   // SRCVALUE nodes are ignored.
 | |
|   if (Rec->getName() == "srcvalue")
 | |
|     return false;
 | |
| 
 | |
|   TreePatternNode *&Slot = InstInputs[Pat->getName()];
 | |
|   if (!Slot) {
 | |
|     Slot = Pat;
 | |
|   } else {
 | |
|     Record *SlotRec;
 | |
|     if (Slot->isLeaf()) {
 | |
|       SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
 | |
|     } else {
 | |
|       assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
 | |
|       SlotRec = Slot->getOperator();
 | |
|     }
 | |
|     
 | |
|     // Ensure that the inputs agree if we've already seen this input.
 | |
|     if (Rec != SlotRec)
 | |
|       I->error("All $" + Pat->getName() + " inputs must agree with each other");
 | |
|     if (Slot->getExtTypes() != Pat->getExtTypes())
 | |
|       I->error("All $" + Pat->getName() + " inputs must agree with each other");
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
 | |
| /// part of "I", the instruction), computing the set of inputs and outputs of
 | |
| /// the pattern.  Report errors if we see anything naughty.
 | |
| void CodeGenDAGPatterns::
 | |
| FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
 | |
|                             std::map<std::string, TreePatternNode*> &InstInputs,
 | |
|                             std::map<std::string, TreePatternNode*>&InstResults,
 | |
|                             std::vector<Record*> &InstImpInputs,
 | |
|                             std::vector<Record*> &InstImpResults) {
 | |
|   if (Pat->isLeaf()) {
 | |
|     bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
 | |
|     if (!isUse && Pat->getTransformFn())
 | |
|       I->error("Cannot specify a transform function for a non-input value!");
 | |
|     return;
 | |
|   } else if (Pat->getOperator()->getName() == "implicit") {
 | |
|     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
 | |
|       TreePatternNode *Dest = Pat->getChild(i);
 | |
|       if (!Dest->isLeaf())
 | |
|         I->error("implicitly defined value should be a register!");
 | |
|     
 | |
|       DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
 | |
|       if (!Val || !Val->getDef()->isSubClassOf("Register"))
 | |
|         I->error("implicitly defined value should be a register!");
 | |
|       InstImpResults.push_back(Val->getDef());
 | |
|     }
 | |
|     return;
 | |
|   } else if (Pat->getOperator()->getName() != "set") {
 | |
|     // If this is not a set, verify that the children nodes are not void typed,
 | |
|     // and recurse.
 | |
|     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
 | |
|       if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
 | |
|         I->error("Cannot have void nodes inside of patterns!");
 | |
|       FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
 | |
|                                   InstImpInputs, InstImpResults);
 | |
|     }
 | |
|     
 | |
|     // If this is a non-leaf node with no children, treat it basically as if
 | |
|     // it were a leaf.  This handles nodes like (imm).
 | |
|     bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
 | |
|     
 | |
|     if (!isUse && Pat->getTransformFn())
 | |
|       I->error("Cannot specify a transform function for a non-input value!");
 | |
|     return;
 | |
|   } 
 | |
|   
 | |
|   // Otherwise, this is a set, validate and collect instruction results.
 | |
|   if (Pat->getNumChildren() == 0)
 | |
|     I->error("set requires operands!");
 | |
|   
 | |
|   if (Pat->getTransformFn())
 | |
|     I->error("Cannot specify a transform function on a set node!");
 | |
|   
 | |
|   // Check the set destinations.
 | |
|   unsigned NumDests = Pat->getNumChildren()-1;
 | |
|   for (unsigned i = 0; i != NumDests; ++i) {
 | |
|     TreePatternNode *Dest = Pat->getChild(i);
 | |
|     if (!Dest->isLeaf())
 | |
|       I->error("set destination should be a register!");
 | |
|     
 | |
|     DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
 | |
|     if (!Val)
 | |
|       I->error("set destination should be a register!");
 | |
| 
 | |
|     if (Val->getDef()->isSubClassOf("RegisterClass") ||
 | |
|         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
 | |
|       if (Dest->getName().empty())
 | |
|         I->error("set destination must have a name!");
 | |
|       if (InstResults.count(Dest->getName()))
 | |
|         I->error("cannot set '" + Dest->getName() +"' multiple times");
 | |
|       InstResults[Dest->getName()] = Dest;
 | |
|     } else if (Val->getDef()->isSubClassOf("Register")) {
 | |
|       InstImpResults.push_back(Val->getDef());
 | |
|     } else {
 | |
|       I->error("set destination should be a register!");
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   // Verify and collect info from the computation.
 | |
|   FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
 | |
|                               InstInputs, InstResults,
 | |
|                               InstImpInputs, InstImpResults);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Instruction Analysis
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| class InstAnalyzer {
 | |
|   const CodeGenDAGPatterns &CDP;
 | |
|   bool &mayStore;
 | |
|   bool &mayLoad;
 | |
|   bool &HasSideEffects;
 | |
| public:
 | |
|   InstAnalyzer(const CodeGenDAGPatterns &cdp,
 | |
|                bool &maystore, bool &mayload, bool &hse)
 | |
|     : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse){
 | |
|   }
 | |
| 
 | |
|   /// Analyze - Analyze the specified instruction, returning true if the
 | |
|   /// instruction had a pattern.
 | |
|   bool Analyze(Record *InstRecord) {
 | |
|     const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern();
 | |
|     if (Pattern == 0) {
 | |
|       HasSideEffects = 1;
 | |
|       return false;  // No pattern.
 | |
|     }
 | |
| 
 | |
|     // FIXME: Assume only the first tree is the pattern. The others are clobber
 | |
|     // nodes.
 | |
|     AnalyzeNode(Pattern->getTree(0));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void AnalyzeNode(const TreePatternNode *N) {
 | |
|     if (N->isLeaf()) {
 | |
|       if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
 | |
|         Record *LeafRec = DI->getDef();
 | |
|         // Handle ComplexPattern leaves.
 | |
|         if (LeafRec->isSubClassOf("ComplexPattern")) {
 | |
|           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
 | |
|           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
 | |
|           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
 | |
|           if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true;
 | |
|         }
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Analyze children.
 | |
|     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|       AnalyzeNode(N->getChild(i));
 | |
| 
 | |
|     // Ignore set nodes, which are not SDNodes.
 | |
|     if (N->getOperator()->getName() == "set")
 | |
|       return;
 | |
| 
 | |
|     // Get information about the SDNode for the operator.
 | |
|     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
 | |
| 
 | |
|     // Notice properties of the node.
 | |
|     if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
 | |
|     if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
 | |
|     if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true;
 | |
| 
 | |
|     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
 | |
|       // If this is an intrinsic, analyze it.
 | |
|       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
 | |
|         mayLoad = true;// These may load memory.
 | |
| 
 | |
|       if (IntInfo->ModRef >= CodeGenIntrinsic::WriteArgMem)
 | |
|         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
 | |
| 
 | |
|       if (IntInfo->ModRef >= CodeGenIntrinsic::WriteMem)
 | |
|         // WriteMem intrinsics can have other strange effects.
 | |
|         HasSideEffects = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| static void InferFromPattern(const CodeGenInstruction &Inst,
 | |
|                              bool &MayStore, bool &MayLoad,
 | |
|                              bool &HasSideEffects,
 | |
|                              const CodeGenDAGPatterns &CDP) {
 | |
|   MayStore = MayLoad = HasSideEffects = false;
 | |
| 
 | |
|   bool HadPattern =
 | |
|     InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects).Analyze(Inst.TheDef);
 | |
| 
 | |
|   // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
 | |
|   if (Inst.mayStore) {  // If the .td file explicitly sets mayStore, use it.
 | |
|     // If we decided that this is a store from the pattern, then the .td file
 | |
|     // entry is redundant.
 | |
|     if (MayStore)
 | |
|       fprintf(stderr,
 | |
|               "Warning: mayStore flag explicitly set on instruction '%s'"
 | |
|               " but flag already inferred from pattern.\n",
 | |
|               Inst.TheDef->getName().c_str());
 | |
|     MayStore = true;
 | |
|   }
 | |
| 
 | |
|   if (Inst.mayLoad) {  // If the .td file explicitly sets mayLoad, use it.
 | |
|     // If we decided that this is a load from the pattern, then the .td file
 | |
|     // entry is redundant.
 | |
|     if (MayLoad)
 | |
|       fprintf(stderr,
 | |
|               "Warning: mayLoad flag explicitly set on instruction '%s'"
 | |
|               " but flag already inferred from pattern.\n",
 | |
|               Inst.TheDef->getName().c_str());
 | |
|     MayLoad = true;
 | |
|   }
 | |
| 
 | |
|   if (Inst.neverHasSideEffects) {
 | |
|     if (HadPattern)
 | |
|       fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' "
 | |
|               "which already has a pattern\n", Inst.TheDef->getName().c_str());
 | |
|     HasSideEffects = false;
 | |
|   }
 | |
| 
 | |
|   if (Inst.hasSideEffects) {
 | |
|     if (HasSideEffects)
 | |
|       fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' "
 | |
|               "which already inferred this.\n", Inst.TheDef->getName().c_str());
 | |
|     HasSideEffects = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ParseInstructions - Parse all of the instructions, inlining and resolving
 | |
| /// any fragments involved.  This populates the Instructions list with fully
 | |
| /// resolved instructions.
 | |
| void CodeGenDAGPatterns::ParseInstructions() {
 | |
|   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
 | |
|   
 | |
|   for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
 | |
|     ListInit *LI = 0;
 | |
|     
 | |
|     if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
 | |
|       LI = Instrs[i]->getValueAsListInit("Pattern");
 | |
|     
 | |
|     // If there is no pattern, only collect minimal information about the
 | |
|     // instruction for its operand list.  We have to assume that there is one
 | |
|     // result, as we have no detailed info.
 | |
|     if (!LI || LI->getSize() == 0) {
 | |
|       std::vector<Record*> Results;
 | |
|       std::vector<Record*> Operands;
 | |
|       
 | |
|       CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
 | |
| 
 | |
|       if (InstInfo.OperandList.size() != 0) {
 | |
|         if (InstInfo.NumDefs == 0) {
 | |
|           // These produce no results
 | |
|           for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
 | |
|             Operands.push_back(InstInfo.OperandList[j].Rec);
 | |
|         } else {
 | |
|           // Assume the first operand is the result.
 | |
|           Results.push_back(InstInfo.OperandList[0].Rec);
 | |
|       
 | |
|           // The rest are inputs.
 | |
|           for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
 | |
|             Operands.push_back(InstInfo.OperandList[j].Rec);
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Create and insert the instruction.
 | |
|       std::vector<Record*> ImpResults;
 | |
|       std::vector<Record*> ImpOperands;
 | |
|       Instructions.insert(std::make_pair(Instrs[i], 
 | |
|                           DAGInstruction(0, Results, Operands, ImpResults,
 | |
|                                          ImpOperands)));
 | |
|       continue;  // no pattern.
 | |
|     }
 | |
|     
 | |
|     // Parse the instruction.
 | |
|     TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
 | |
|     // Inline pattern fragments into it.
 | |
|     I->InlinePatternFragments();
 | |
|     
 | |
|     // Infer as many types as possible.  If we cannot infer all of them, we can
 | |
|     // never do anything with this instruction pattern: report it to the user.
 | |
|     if (!I->InferAllTypes())
 | |
|       I->error("Could not infer all types in pattern!");
 | |
|     
 | |
|     // InstInputs - Keep track of all of the inputs of the instruction, along 
 | |
|     // with the record they are declared as.
 | |
|     std::map<std::string, TreePatternNode*> InstInputs;
 | |
|     
 | |
|     // InstResults - Keep track of all the virtual registers that are 'set'
 | |
|     // in the instruction, including what reg class they are.
 | |
|     std::map<std::string, TreePatternNode*> InstResults;
 | |
| 
 | |
|     std::vector<Record*> InstImpInputs;
 | |
|     std::vector<Record*> InstImpResults;
 | |
|     
 | |
|     // Verify that the top-level forms in the instruction are of void type, and
 | |
|     // fill in the InstResults map.
 | |
|     for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
 | |
|       TreePatternNode *Pat = I->getTree(j);
 | |
|       if (Pat->getExtTypeNum(0) != MVT::isVoid)
 | |
|         I->error("Top-level forms in instruction pattern should have"
 | |
|                  " void types");
 | |
| 
 | |
|       // Find inputs and outputs, and verify the structure of the uses/defs.
 | |
|       FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
 | |
|                                   InstImpInputs, InstImpResults);
 | |
|     }
 | |
| 
 | |
|     // Now that we have inputs and outputs of the pattern, inspect the operands
 | |
|     // list for the instruction.  This determines the order that operands are
 | |
|     // added to the machine instruction the node corresponds to.
 | |
|     unsigned NumResults = InstResults.size();
 | |
| 
 | |
|     // Parse the operands list from the (ops) list, validating it.
 | |
|     assert(I->getArgList().empty() && "Args list should still be empty here!");
 | |
|     CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
 | |
| 
 | |
|     // Check that all of the results occur first in the list.
 | |
|     std::vector<Record*> Results;
 | |
|     TreePatternNode *Res0Node = NULL;
 | |
|     for (unsigned i = 0; i != NumResults; ++i) {
 | |
|       if (i == CGI.OperandList.size())
 | |
|         I->error("'" + InstResults.begin()->first +
 | |
|                  "' set but does not appear in operand list!");
 | |
|       const std::string &OpName = CGI.OperandList[i].Name;
 | |
|       
 | |
|       // Check that it exists in InstResults.
 | |
|       TreePatternNode *RNode = InstResults[OpName];
 | |
|       if (RNode == 0)
 | |
|         I->error("Operand $" + OpName + " does not exist in operand list!");
 | |
|         
 | |
|       if (i == 0)
 | |
|         Res0Node = RNode;
 | |
|       Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
 | |
|       if (R == 0)
 | |
|         I->error("Operand $" + OpName + " should be a set destination: all "
 | |
|                  "outputs must occur before inputs in operand list!");
 | |
|       
 | |
|       if (CGI.OperandList[i].Rec != R)
 | |
|         I->error("Operand $" + OpName + " class mismatch!");
 | |
|       
 | |
|       // Remember the return type.
 | |
|       Results.push_back(CGI.OperandList[i].Rec);
 | |
|       
 | |
|       // Okay, this one checks out.
 | |
|       InstResults.erase(OpName);
 | |
|     }
 | |
| 
 | |
|     // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
 | |
|     // the copy while we're checking the inputs.
 | |
|     std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
 | |
| 
 | |
|     std::vector<TreePatternNode*> ResultNodeOperands;
 | |
|     std::vector<Record*> Operands;
 | |
|     for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
 | |
|       CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
 | |
|       const std::string &OpName = Op.Name;
 | |
|       if (OpName.empty())
 | |
|         I->error("Operand #" + utostr(i) + " in operands list has no name!");
 | |
| 
 | |
|       if (!InstInputsCheck.count(OpName)) {
 | |
|         // If this is an predicate operand or optional def operand with an
 | |
|         // DefaultOps set filled in, we can ignore this.  When we codegen it,
 | |
|         // we will do so as always executed.
 | |
|         if (Op.Rec->isSubClassOf("PredicateOperand") ||
 | |
|             Op.Rec->isSubClassOf("OptionalDefOperand")) {
 | |
|           // Does it have a non-empty DefaultOps field?  If so, ignore this
 | |
|           // operand.
 | |
|           if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
 | |
|             continue;
 | |
|         }
 | |
|         I->error("Operand $" + OpName +
 | |
|                  " does not appear in the instruction pattern");
 | |
|       }
 | |
|       TreePatternNode *InVal = InstInputsCheck[OpName];
 | |
|       InstInputsCheck.erase(OpName);   // It occurred, remove from map.
 | |
|       
 | |
|       if (InVal->isLeaf() &&
 | |
|           dynamic_cast<DefInit*>(InVal->getLeafValue())) {
 | |
|         Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
 | |
|         if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
 | |
|           I->error("Operand $" + OpName + "'s register class disagrees"
 | |
|                    " between the operand and pattern");
 | |
|       }
 | |
|       Operands.push_back(Op.Rec);
 | |
|       
 | |
|       // Construct the result for the dest-pattern operand list.
 | |
|       TreePatternNode *OpNode = InVal->clone();
 | |
|       
 | |
|       // No predicate is useful on the result.
 | |
|       OpNode->clearPredicateFns();
 | |
|       
 | |
|       // Promote the xform function to be an explicit node if set.
 | |
|       if (Record *Xform = OpNode->getTransformFn()) {
 | |
|         OpNode->setTransformFn(0);
 | |
|         std::vector<TreePatternNode*> Children;
 | |
|         Children.push_back(OpNode);
 | |
|         OpNode = new TreePatternNode(Xform, Children);
 | |
|       }
 | |
|       
 | |
|       ResultNodeOperands.push_back(OpNode);
 | |
|     }
 | |
|     
 | |
|     if (!InstInputsCheck.empty())
 | |
|       I->error("Input operand $" + InstInputsCheck.begin()->first +
 | |
|                " occurs in pattern but not in operands list!");
 | |
| 
 | |
|     TreePatternNode *ResultPattern =
 | |
|       new TreePatternNode(I->getRecord(), ResultNodeOperands);
 | |
|     // Copy fully inferred output node type to instruction result pattern.
 | |
|     if (NumResults > 0)
 | |
|       ResultPattern->setTypes(Res0Node->getExtTypes());
 | |
| 
 | |
|     // Create and insert the instruction.
 | |
|     // FIXME: InstImpResults and InstImpInputs should not be part of
 | |
|     // DAGInstruction.
 | |
|     DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
 | |
|     Instructions.insert(std::make_pair(I->getRecord(), TheInst));
 | |
| 
 | |
|     // Use a temporary tree pattern to infer all types and make sure that the
 | |
|     // constructed result is correct.  This depends on the instruction already
 | |
|     // being inserted into the Instructions map.
 | |
|     TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
 | |
|     Temp.InferAllTypes();
 | |
| 
 | |
|     DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
 | |
|     TheInsertedInst.setResultPattern(Temp.getOnlyTree());
 | |
|     
 | |
|     DEBUG(I->dump());
 | |
|   }
 | |
|    
 | |
|   // If we can, convert the instructions to be patterns that are matched!
 | |
|   for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II =
 | |
|         Instructions.begin(),
 | |
|        E = Instructions.end(); II != E; ++II) {
 | |
|     DAGInstruction &TheInst = II->second;
 | |
|     const TreePattern *I = TheInst.getPattern();
 | |
|     if (I == 0) continue;  // No pattern.
 | |
| 
 | |
|     // FIXME: Assume only the first tree is the pattern. The others are clobber
 | |
|     // nodes.
 | |
|     TreePatternNode *Pattern = I->getTree(0);
 | |
|     TreePatternNode *SrcPattern;
 | |
|     if (Pattern->getOperator()->getName() == "set") {
 | |
|       SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
 | |
|     } else{
 | |
|       // Not a set (store or something?)
 | |
|       SrcPattern = Pattern;
 | |
|     }
 | |
|     
 | |
|     std::string Reason;
 | |
|     if (!SrcPattern->canPatternMatch(Reason, *this))
 | |
|       I->error("Instruction can never match: " + Reason);
 | |
|     
 | |
|     Record *Instr = II->first;
 | |
|     TreePatternNode *DstPattern = TheInst.getResultPattern();
 | |
|     PatternsToMatch.
 | |
|       push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
 | |
|                                SrcPattern, DstPattern, TheInst.getImpResults(),
 | |
|                                Instr->getValueAsInt("AddedComplexity")));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void CodeGenDAGPatterns::InferInstructionFlags() {
 | |
|   std::map<std::string, CodeGenInstruction> &InstrDescs =
 | |
|     Target.getInstructions();
 | |
|   for (std::map<std::string, CodeGenInstruction>::iterator
 | |
|          II = InstrDescs.begin(), E = InstrDescs.end(); II != E; ++II) {
 | |
|     CodeGenInstruction &InstInfo = II->second;
 | |
|     // Determine properties of the instruction from its pattern.
 | |
|     bool MayStore, MayLoad, HasSideEffects;
 | |
|     InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, *this);
 | |
|     InstInfo.mayStore = MayStore;
 | |
|     InstInfo.mayLoad = MayLoad;
 | |
|     InstInfo.hasSideEffects = HasSideEffects;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenDAGPatterns::ParsePatterns() {
 | |
|   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
 | |
| 
 | |
|   for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
 | |
|     DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
 | |
|     DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator());
 | |
|     Record *Operator = OpDef->getDef();
 | |
|     TreePattern *Pattern;
 | |
|     if (Operator->getName() != "parallel")
 | |
|       Pattern = new TreePattern(Patterns[i], Tree, true, *this);
 | |
|     else {
 | |
|       std::vector<Init*> Values;
 | |
|       RecTy *ListTy = 0;
 | |
|       for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j) {
 | |
|         Values.push_back(Tree->getArg(j));
 | |
|         TypedInit *TArg = dynamic_cast<TypedInit*>(Tree->getArg(j));
 | |
|         if (TArg == 0) {
 | |
|           errs() << "In dag: " << Tree->getAsString();
 | |
|           errs() << " --  Untyped argument in pattern\n";
 | |
|           assert(0 && "Untyped argument in pattern");
 | |
|         }
 | |
|         if (ListTy != 0) {
 | |
|           ListTy = resolveTypes(ListTy, TArg->getType());
 | |
|           if (ListTy == 0) {
 | |
|             errs() << "In dag: " << Tree->getAsString();
 | |
|             errs() << " --  Incompatible types in pattern arguments\n";
 | |
|             assert(0 && "Incompatible types in pattern arguments");
 | |
|           }
 | |
|         }
 | |
|         else {
 | |
|           ListTy = TArg->getType();
 | |
|         }
 | |
|       }
 | |
|       ListInit *LI = new ListInit(Values, new ListRecTy(ListTy));
 | |
|       Pattern = new TreePattern(Patterns[i], LI, true, *this);
 | |
|     }
 | |
| 
 | |
|     // Inline pattern fragments into it.
 | |
|     Pattern->InlinePatternFragments();
 | |
|     
 | |
|     ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
 | |
|     if (LI->getSize() == 0) continue;  // no pattern.
 | |
|     
 | |
|     // Parse the instruction.
 | |
|     TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
 | |
|     
 | |
|     // Inline pattern fragments into it.
 | |
|     Result->InlinePatternFragments();
 | |
| 
 | |
|     if (Result->getNumTrees() != 1)
 | |
|       Result->error("Cannot handle instructions producing instructions "
 | |
|                     "with temporaries yet!");
 | |
|     
 | |
|     bool IterateInference;
 | |
|     bool InferredAllPatternTypes, InferredAllResultTypes;
 | |
|     do {
 | |
|       // Infer as many types as possible.  If we cannot infer all of them, we
 | |
|       // can never do anything with this pattern: report it to the user.
 | |
|       InferredAllPatternTypes = Pattern->InferAllTypes();
 | |
|       
 | |
|       // Infer as many types as possible.  If we cannot infer all of them, we
 | |
|       // can never do anything with this pattern: report it to the user.
 | |
|       InferredAllResultTypes = Result->InferAllTypes();
 | |
| 
 | |
|       // Apply the type of the result to the source pattern.  This helps us
 | |
|       // resolve cases where the input type is known to be a pointer type (which
 | |
|       // is considered resolved), but the result knows it needs to be 32- or
 | |
|       // 64-bits.  Infer the other way for good measure.
 | |
|       IterateInference = Pattern->getTree(0)->
 | |
|         UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result);
 | |
|       IterateInference |= Result->getTree(0)->
 | |
|         UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result);
 | |
|     } while (IterateInference);
 | |
|     
 | |
|     // Verify that we inferred enough types that we can do something with the
 | |
|     // pattern and result.  If these fire the user has to add type casts.
 | |
|     if (!InferredAllPatternTypes)
 | |
|       Pattern->error("Could not infer all types in pattern!");
 | |
|     if (!InferredAllResultTypes)
 | |
|       Result->error("Could not infer all types in pattern result!");
 | |
|     
 | |
|     // Validate that the input pattern is correct.
 | |
|     std::map<std::string, TreePatternNode*> InstInputs;
 | |
|     std::map<std::string, TreePatternNode*> InstResults;
 | |
|     std::vector<Record*> InstImpInputs;
 | |
|     std::vector<Record*> InstImpResults;
 | |
|     for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
 | |
|       FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
 | |
|                                   InstInputs, InstResults,
 | |
|                                   InstImpInputs, InstImpResults);
 | |
| 
 | |
|     // Promote the xform function to be an explicit node if set.
 | |
|     TreePatternNode *DstPattern = Result->getOnlyTree();
 | |
|     std::vector<TreePatternNode*> ResultNodeOperands;
 | |
|     for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
 | |
|       TreePatternNode *OpNode = DstPattern->getChild(ii);
 | |
|       if (Record *Xform = OpNode->getTransformFn()) {
 | |
|         OpNode->setTransformFn(0);
 | |
|         std::vector<TreePatternNode*> Children;
 | |
|         Children.push_back(OpNode);
 | |
|         OpNode = new TreePatternNode(Xform, Children);
 | |
|       }
 | |
|       ResultNodeOperands.push_back(OpNode);
 | |
|     }
 | |
|     DstPattern = Result->getOnlyTree();
 | |
|     if (!DstPattern->isLeaf())
 | |
|       DstPattern = new TreePatternNode(DstPattern->getOperator(),
 | |
|                                        ResultNodeOperands);
 | |
|     DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
 | |
|     TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
 | |
|     Temp.InferAllTypes();
 | |
| 
 | |
|     std::string Reason;
 | |
|     if (!Pattern->getTree(0)->canPatternMatch(Reason, *this))
 | |
|       Pattern->error("Pattern can never match: " + Reason);
 | |
|     
 | |
|     PatternsToMatch.
 | |
|       push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
 | |
|                                Pattern->getTree(0),
 | |
|                                Temp.getOnlyTree(), InstImpResults,
 | |
|                                Patterns[i]->getValueAsInt("AddedComplexity")));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CombineChildVariants - Given a bunch of permutations of each child of the
 | |
| /// 'operator' node, put them together in all possible ways.
 | |
| static void CombineChildVariants(TreePatternNode *Orig, 
 | |
|                const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
 | |
|                                  std::vector<TreePatternNode*> &OutVariants,
 | |
|                                  CodeGenDAGPatterns &CDP,
 | |
|                                  const MultipleUseVarSet &DepVars) {
 | |
|   // Make sure that each operand has at least one variant to choose from.
 | |
|   for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
 | |
|     if (ChildVariants[i].empty())
 | |
|       return;
 | |
|         
 | |
|   // The end result is an all-pairs construction of the resultant pattern.
 | |
|   std::vector<unsigned> Idxs;
 | |
|   Idxs.resize(ChildVariants.size());
 | |
|   bool NotDone;
 | |
|   do {
 | |
| #ifndef NDEBUG
 | |
|     if (DebugFlag && !Idxs.empty()) {
 | |
|       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
 | |
|         for (unsigned i = 0; i < Idxs.size(); ++i) {
 | |
|           errs() << Idxs[i] << " ";
 | |
|       }
 | |
|       errs() << "]\n";
 | |
|     }
 | |
| #endif
 | |
|     // Create the variant and add it to the output list.
 | |
|     std::vector<TreePatternNode*> NewChildren;
 | |
|     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
 | |
|       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
 | |
|     TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
 | |
|     
 | |
|     // Copy over properties.
 | |
|     R->setName(Orig->getName());
 | |
|     R->setPredicateFns(Orig->getPredicateFns());
 | |
|     R->setTransformFn(Orig->getTransformFn());
 | |
|     R->setTypes(Orig->getExtTypes());
 | |
|     
 | |
|     // If this pattern cannot match, do not include it as a variant.
 | |
|     std::string ErrString;
 | |
|     if (!R->canPatternMatch(ErrString, CDP)) {
 | |
|       delete R;
 | |
|     } else {
 | |
|       bool AlreadyExists = false;
 | |
|       
 | |
|       // Scan to see if this pattern has already been emitted.  We can get
 | |
|       // duplication due to things like commuting:
 | |
|       //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
 | |
|       // which are the same pattern.  Ignore the dups.
 | |
|       for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
 | |
|         if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
 | |
|           AlreadyExists = true;
 | |
|           break;
 | |
|         }
 | |
|       
 | |
|       if (AlreadyExists)
 | |
|         delete R;
 | |
|       else
 | |
|         OutVariants.push_back(R);
 | |
|     }
 | |
|     
 | |
|     // Increment indices to the next permutation by incrementing the
 | |
|     // indicies from last index backward, e.g., generate the sequence
 | |
|     // [0, 0], [0, 1], [1, 0], [1, 1].
 | |
|     int IdxsIdx;
 | |
|     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
 | |
|       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
 | |
|         Idxs[IdxsIdx] = 0;
 | |
|       else
 | |
|         break;
 | |
|     }
 | |
|     NotDone = (IdxsIdx >= 0);
 | |
|   } while (NotDone);
 | |
| }
 | |
| 
 | |
| /// CombineChildVariants - A helper function for binary operators.
 | |
| ///
 | |
| static void CombineChildVariants(TreePatternNode *Orig, 
 | |
|                                  const std::vector<TreePatternNode*> &LHS,
 | |
|                                  const std::vector<TreePatternNode*> &RHS,
 | |
|                                  std::vector<TreePatternNode*> &OutVariants,
 | |
|                                  CodeGenDAGPatterns &CDP,
 | |
|                                  const MultipleUseVarSet &DepVars) {
 | |
|   std::vector<std::vector<TreePatternNode*> > ChildVariants;
 | |
|   ChildVariants.push_back(LHS);
 | |
|   ChildVariants.push_back(RHS);
 | |
|   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
 | |
| }  
 | |
| 
 | |
| 
 | |
| static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
 | |
|                                      std::vector<TreePatternNode *> &Children) {
 | |
|   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
 | |
|   Record *Operator = N->getOperator();
 | |
|   
 | |
|   // Only permit raw nodes.
 | |
|   if (!N->getName().empty() || !N->getPredicateFns().empty() ||
 | |
|       N->getTransformFn()) {
 | |
|     Children.push_back(N);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
 | |
|     Children.push_back(N->getChild(0));
 | |
|   else
 | |
|     GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
 | |
| 
 | |
|   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
 | |
|     Children.push_back(N->getChild(1));
 | |
|   else
 | |
|     GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
 | |
| }
 | |
| 
 | |
| /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
 | |
| /// the (potentially recursive) pattern by using algebraic laws.
 | |
| ///
 | |
| static void GenerateVariantsOf(TreePatternNode *N,
 | |
|                                std::vector<TreePatternNode*> &OutVariants,
 | |
|                                CodeGenDAGPatterns &CDP,
 | |
|                                const MultipleUseVarSet &DepVars) {
 | |
|   // We cannot permute leaves.
 | |
|   if (N->isLeaf()) {
 | |
|     OutVariants.push_back(N);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Look up interesting info about the node.
 | |
|   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
 | |
| 
 | |
|   // If this node is associative, re-associate.
 | |
|   if (NodeInfo.hasProperty(SDNPAssociative)) {
 | |
|     // Re-associate by pulling together all of the linked operators 
 | |
|     std::vector<TreePatternNode*> MaximalChildren;
 | |
|     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
 | |
| 
 | |
|     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
 | |
|     // permutations.
 | |
|     if (MaximalChildren.size() == 3) {
 | |
|       // Find the variants of all of our maximal children.
 | |
|       std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
 | |
|       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
 | |
|       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
 | |
|       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
 | |
|       
 | |
|       // There are only two ways we can permute the tree:
 | |
|       //   (A op B) op C    and    A op (B op C)
 | |
|       // Within these forms, we can also permute A/B/C.
 | |
|       
 | |
|       // Generate legal pair permutations of A/B/C.
 | |
|       std::vector<TreePatternNode*> ABVariants;
 | |
|       std::vector<TreePatternNode*> BAVariants;
 | |
|       std::vector<TreePatternNode*> ACVariants;
 | |
|       std::vector<TreePatternNode*> CAVariants;
 | |
|       std::vector<TreePatternNode*> BCVariants;
 | |
|       std::vector<TreePatternNode*> CBVariants;
 | |
|       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
 | |
| 
 | |
|       // Combine those into the result: (x op x) op x
 | |
|       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
 | |
| 
 | |
|       // Combine those into the result: x op (x op x)
 | |
|       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Compute permutations of all children.
 | |
|   std::vector<std::vector<TreePatternNode*> > ChildVariants;
 | |
|   ChildVariants.resize(N->getNumChildren());
 | |
|   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|     GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
 | |
| 
 | |
|   // Build all permutations based on how the children were formed.
 | |
|   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
 | |
| 
 | |
|   // If this node is commutative, consider the commuted order.
 | |
|   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
 | |
|   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
 | |
|     assert((N->getNumChildren()==2 || isCommIntrinsic) &&
 | |
|            "Commutative but doesn't have 2 children!");
 | |
|     // Don't count children which are actually register references.
 | |
|     unsigned NC = 0;
 | |
|     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
 | |
|       TreePatternNode *Child = N->getChild(i);
 | |
|       if (Child->isLeaf())
 | |
|         if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
 | |
|           Record *RR = DI->getDef();
 | |
|           if (RR->isSubClassOf("Register"))
 | |
|             continue;
 | |
|         }
 | |
|       NC++;
 | |
|     }
 | |
|     // Consider the commuted order.
 | |
|     if (isCommIntrinsic) {
 | |
|       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
 | |
|       // operands are the commutative operands, and there might be more operands
 | |
|       // after those.
 | |
|       assert(NC >= 3 &&
 | |
|              "Commutative intrinsic should have at least 3 childrean!");
 | |
|       std::vector<std::vector<TreePatternNode*> > Variants;
 | |
|       Variants.push_back(ChildVariants[0]); // Intrinsic id.
 | |
|       Variants.push_back(ChildVariants[2]);
 | |
|       Variants.push_back(ChildVariants[1]);
 | |
|       for (unsigned i = 3; i != NC; ++i)
 | |
|         Variants.push_back(ChildVariants[i]);
 | |
|       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
 | |
|     } else if (NC == 2)
 | |
|       CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
 | |
|                            OutVariants, CDP, DepVars);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // GenerateVariants - Generate variants.  For example, commutative patterns can
 | |
| // match multiple ways.  Add them to PatternsToMatch as well.
 | |
| void CodeGenDAGPatterns::GenerateVariants() {
 | |
|   DEBUG(errs() << "Generating instruction variants.\n");
 | |
|   
 | |
|   // Loop over all of the patterns we've collected, checking to see if we can
 | |
|   // generate variants of the instruction, through the exploitation of
 | |
|   // identities.  This permits the target to provide aggressive matching without
 | |
|   // the .td file having to contain tons of variants of instructions.
 | |
|   //
 | |
|   // Note that this loop adds new patterns to the PatternsToMatch list, but we
 | |
|   // intentionally do not reconsider these.  Any variants of added patterns have
 | |
|   // already been added.
 | |
|   //
 | |
|   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
 | |
|     MultipleUseVarSet             DepVars;
 | |
|     std::vector<TreePatternNode*> Variants;
 | |
|     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
 | |
|     DEBUG(errs() << "Dependent/multiply used variables: ");
 | |
|     DEBUG(DumpDepVars(DepVars));
 | |
|     DEBUG(errs() << "\n");
 | |
|     GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars);
 | |
| 
 | |
|     assert(!Variants.empty() && "Must create at least original variant!");
 | |
|     Variants.erase(Variants.begin());  // Remove the original pattern.
 | |
| 
 | |
|     if (Variants.empty())  // No variants for this pattern.
 | |
|       continue;
 | |
| 
 | |
|     DEBUG(errs() << "FOUND VARIANTS OF: ";
 | |
|           PatternsToMatch[i].getSrcPattern()->dump();
 | |
|           errs() << "\n");
 | |
| 
 | |
|     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
 | |
|       TreePatternNode *Variant = Variants[v];
 | |
| 
 | |
|       DEBUG(errs() << "  VAR#" << v <<  ": ";
 | |
|             Variant->dump();
 | |
|             errs() << "\n");
 | |
|       
 | |
|       // Scan to see if an instruction or explicit pattern already matches this.
 | |
|       bool AlreadyExists = false;
 | |
|       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
 | |
|         // Skip if the top level predicates do not match.
 | |
|         if (PatternsToMatch[i].getPredicates() !=
 | |
|             PatternsToMatch[p].getPredicates())
 | |
|           continue;
 | |
|         // Check to see if this variant already exists.
 | |
|         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) {
 | |
|           DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
 | |
|           AlreadyExists = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       // If we already have it, ignore the variant.
 | |
|       if (AlreadyExists) continue;
 | |
| 
 | |
|       // Otherwise, add it to the list of patterns we have.
 | |
|       PatternsToMatch.
 | |
|         push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
 | |
|                                  Variant, PatternsToMatch[i].getDstPattern(),
 | |
|                                  PatternsToMatch[i].getDstRegs(),
 | |
|                                  PatternsToMatch[i].getAddedComplexity()));
 | |
|     }
 | |
| 
 | |
|     DEBUG(errs() << "\n");
 | |
|   }
 | |
| }
 | |
| 
 |