mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47480 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1058 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1058 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the ImutAVLTree and ImmutableSet classes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ADT_IMSET_H
 | |
| #define LLVM_ADT_IMSET_H
 | |
| 
 | |
| #include "llvm/Support/Allocator.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/Support/DataTypes.h"
 | |
| #include <cassert>
 | |
| #include <functional>
 | |
| 
 | |
| namespace llvm {
 | |
|   
 | |
| //===----------------------------------------------------------------------===//    
 | |
| // Immutable AVL-Tree Definition.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| template <typename ImutInfo> class ImutAVLFactory;
 | |
| template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
 | |
| template <typename ImutInfo> class ImutAVLTreeGenericIterator;
 | |
|   
 | |
| template <typename ImutInfo >
 | |
| class ImutAVLTree : public FoldingSetNode {
 | |
| public:
 | |
|   typedef typename ImutInfo::key_type_ref   key_type_ref;
 | |
|   typedef typename ImutInfo::value_type     value_type;
 | |
|   typedef typename ImutInfo::value_type_ref value_type_ref;
 | |
| 
 | |
|   typedef ImutAVLFactory<ImutInfo>          Factory;
 | |
|   friend class ImutAVLFactory<ImutInfo>;
 | |
|   
 | |
|   friend class ImutAVLTreeGenericIterator<ImutInfo>;
 | |
|   friend class FoldingSet<ImutAVLTree>;
 | |
|   
 | |
|   typedef ImutAVLTreeInOrderIterator<ImutInfo>  iterator;
 | |
|   
 | |
|   //===----------------------------------------------------===//  
 | |
|   // Public Interface.
 | |
|   //===----------------------------------------------------===//  
 | |
|   
 | |
|   /// getLeft - Returns a pointer to the left subtree.  This value
 | |
|   ///  is NULL if there is no left subtree.
 | |
|   ImutAVLTree* getLeft() const { 
 | |
|     assert (!isMutable() && "Node is incorrectly marked mutable.");
 | |
|     
 | |
|     return reinterpret_cast<ImutAVLTree*>(Left);
 | |
|   }
 | |
|   
 | |
|   /// getRight - Returns a pointer to the right subtree.  This value is
 | |
|   ///  NULL if there is no right subtree.
 | |
|   ImutAVLTree* getRight() const { return Right; }  
 | |
|   
 | |
|   
 | |
|   /// getHeight - Returns the height of the tree.  A tree with no subtrees
 | |
|   ///  has a height of 1.
 | |
|   unsigned getHeight() const { return Height; }  
 | |
|   
 | |
|   /// getValue - Returns the data value associated with the tree node.
 | |
|   const value_type& getValue() const { return Value; }
 | |
|   
 | |
|   /// find - Finds the subtree associated with the specified key value.
 | |
|   ///  This method returns NULL if no matching subtree is found.
 | |
|   ImutAVLTree* find(key_type_ref K) {
 | |
|     ImutAVLTree *T = this;
 | |
|     
 | |
|     while (T) {
 | |
|       key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
 | |
|       
 | |
|       if (ImutInfo::isEqual(K,CurrentKey))
 | |
|         return T;
 | |
|       else if (ImutInfo::isLess(K,CurrentKey))
 | |
|         T = T->getLeft();
 | |
|       else
 | |
|         T = T->getRight();
 | |
|     }
 | |
|     
 | |
|     return NULL;
 | |
|   }
 | |
|   
 | |
|   /// size - Returns the number of nodes in the tree, which includes
 | |
|   ///  both leaves and non-leaf nodes.
 | |
|   unsigned size() const {
 | |
|     unsigned n = 1;
 | |
|     
 | |
|     if (const ImutAVLTree* L = getLeft())  n += L->size();
 | |
|     if (const ImutAVLTree* R = getRight()) n += R->size();
 | |
|     
 | |
|     return n;
 | |
|   }
 | |
|   
 | |
|   /// begin - Returns an iterator that iterates over the nodes of the tree
 | |
|   ///  in an inorder traversal.  The returned iterator thus refers to the
 | |
|   ///  the tree node with the minimum data element.
 | |
|   iterator begin() const { return iterator(this); }
 | |
|   
 | |
|   /// end - Returns an iterator for the tree that denotes the end of an
 | |
|   ///  inorder traversal.
 | |
|   iterator end() const { return iterator(); }
 | |
|     
 | |
|   bool ElementEqual(value_type_ref V) const {
 | |
|     // Compare the keys.
 | |
|     if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
 | |
|                            ImutInfo::KeyOfValue(V)))
 | |
|       return false;
 | |
|     
 | |
|     // Also compare the data values.
 | |
|     if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
 | |
|                                ImutInfo::DataOfValue(V)))
 | |
|       return false;
 | |
|     
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   bool ElementEqual(const ImutAVLTree* RHS) const {
 | |
|     return ElementEqual(RHS->getValue());
 | |
|   }
 | |
|   
 | |
|   /// isEqual - Compares two trees for structural equality and returns true
 | |
|   ///   if they are equal.  This worst case performance of this operation is
 | |
|   //    linear in the sizes of the trees.
 | |
|   bool isEqual(const ImutAVLTree& RHS) const {
 | |
|     if (&RHS == this)
 | |
|       return true;
 | |
|     
 | |
|     iterator LItr = begin(), LEnd = end();
 | |
|     iterator RItr = RHS.begin(), REnd = RHS.end();
 | |
|     
 | |
|     while (LItr != LEnd && RItr != REnd) {
 | |
|       if (*LItr == *RItr) {
 | |
|         LItr.SkipSubTree();
 | |
|         RItr.SkipSubTree();
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       if (!LItr->ElementEqual(*RItr))
 | |
|         return false;
 | |
|       
 | |
|       ++LItr;
 | |
|       ++RItr;
 | |
|     }
 | |
|     
 | |
|     return LItr == LEnd && RItr == REnd;
 | |
|   }
 | |
| 
 | |
|   /// isNotEqual - Compares two trees for structural inequality.  Performance
 | |
|   ///  is the same is isEqual.
 | |
|   bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
 | |
|   
 | |
|   /// contains - Returns true if this tree contains a subtree (node) that
 | |
|   ///  has an data element that matches the specified key.  Complexity
 | |
|   ///  is logarithmic in the size of the tree.
 | |
|   bool contains(const key_type_ref K) { return (bool) find(K); }
 | |
|   
 | |
|   /// foreach - A member template the accepts invokes operator() on a functor
 | |
|   ///  object (specifed by Callback) for every node/subtree in the tree.
 | |
|   ///  Nodes are visited using an inorder traversal.
 | |
|   template <typename Callback>
 | |
|   void foreach(Callback& C) {
 | |
|     if (ImutAVLTree* L = getLeft()) L->foreach(C);
 | |
|     
 | |
|     C(Value);    
 | |
|     
 | |
|     if (ImutAVLTree* R = getRight()) R->foreach(C);
 | |
|   }
 | |
|   
 | |
|   /// verify - A utility method that checks that the balancing and
 | |
|   ///  ordering invariants of the tree are satisifed.  It is a recursive
 | |
|   ///  method that returns the height of the tree, which is then consumed
 | |
|   ///  by the enclosing verify call.  External callers should ignore the
 | |
|   ///  return value.  An invalid tree will cause an assertion to fire in
 | |
|   ///  a debug build.
 | |
|   unsigned verify() const {
 | |
|     unsigned HL = getLeft() ? getLeft()->verify() : 0;
 | |
|     unsigned HR = getRight() ? getRight()->verify() : 0;
 | |
|     
 | |
|     assert (getHeight() == ( HL > HR ? HL : HR ) + 1 
 | |
|             && "Height calculation wrong.");
 | |
|     
 | |
|     assert ((HL > HR ? HL-HR : HR-HL) <= 2
 | |
|             && "Balancing invariant violated.");
 | |
|     
 | |
|     
 | |
|     assert (!getLeft()
 | |
|             || ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
 | |
|                                 ImutInfo::KeyOfValue(getValue()))
 | |
|             && "Value in left child is not less that current value.");
 | |
|     
 | |
|     
 | |
|     assert (!getRight()
 | |
|             || ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
 | |
|                                 ImutInfo::KeyOfValue(getRight()->getValue()))
 | |
|             && "Current value is not less that value of right child.");
 | |
|     
 | |
|     return getHeight();
 | |
|   }
 | |
|   
 | |
|   /// Profile - Profiling for ImutAVLTree.
 | |
|   void Profile(llvm::FoldingSetNodeID& ID) {
 | |
|     ID.AddInteger(ComputeDigest());
 | |
|   }
 | |
|   
 | |
|   //===----------------------------------------------------===//  
 | |
|   // Internal Values.
 | |
|   //===----------------------------------------------------===//
 | |
|   
 | |
| private:
 | |
|   uintptr_t        Left;
 | |
|   ImutAVLTree*     Right;
 | |
|   unsigned         Height;
 | |
|   value_type       Value;
 | |
|   unsigned         Digest;
 | |
|   
 | |
|   //===----------------------------------------------------===//    
 | |
|   // Internal methods (node manipulation; used by Factory).
 | |
|   //===----------------------------------------------------===//
 | |
| 
 | |
| private:
 | |
|   
 | |
|   enum { Mutable = 0x1 };
 | |
| 
 | |
|   /// ImutAVLTree - Internal constructor that is only called by
 | |
|   ///   ImutAVLFactory.
 | |
|   ImutAVLTree(ImutAVLTree* l, ImutAVLTree* r, value_type_ref v, unsigned height)
 | |
|   : Left(reinterpret_cast<uintptr_t>(l) | Mutable),
 | |
|     Right(r), Height(height), Value(v), Digest(0) {}
 | |
|   
 | |
|   
 | |
|   /// isMutable - Returns true if the left and right subtree references
 | |
|   ///  (as well as height) can be changed.  If this method returns false,
 | |
|   ///  the tree is truly immutable.  Trees returned from an ImutAVLFactory
 | |
|   ///  object should always have this method return true.  Further, if this
 | |
|   ///  method returns false for an instance of ImutAVLTree, all subtrees
 | |
|   ///  will also have this method return false.  The converse is not true.
 | |
|   bool isMutable() const { return Left & Mutable; }
 | |
|   
 | |
|   /// getSafeLeft - Returns the pointer to the left tree by always masking
 | |
|   ///  out the mutable bit.  This is used internally by ImutAVLFactory,
 | |
|   ///  as no trees returned to the client should have the mutable flag set.
 | |
|   ImutAVLTree* getSafeLeft() const { 
 | |
|     return reinterpret_cast<ImutAVLTree*>(Left & ~Mutable);
 | |
|   }
 | |
|   
 | |
|   //===----------------------------------------------------===//    
 | |
|   // Mutating operations.  A tree root can be manipulated as
 | |
|   // long as its reference has not "escaped" from internal 
 | |
|   // methods of a factory object (see below).  When a tree
 | |
|   // pointer is externally viewable by client code, the 
 | |
|   // internal "mutable bit" is cleared to mark the tree 
 | |
|   // immutable.  Note that a tree that still has its mutable
 | |
|   // bit set may have children (subtrees) that are themselves
 | |
|   // immutable.
 | |
|   //===----------------------------------------------------===//
 | |
|   
 | |
|   
 | |
|   /// MarkImmutable - Clears the mutable flag for a tree.  After this happens,
 | |
|   ///   it is an error to call setLeft(), setRight(), and setHeight().  It
 | |
|   ///   is also then safe to call getLeft() instead of getSafeLeft().  
 | |
|   void MarkImmutable() {
 | |
|     assert (isMutable() && "Mutable flag already removed.");
 | |
|     Left &= ~Mutable;
 | |
|   }
 | |
|   
 | |
|   /// setLeft - Changes the reference of the left subtree.  Used internally
 | |
|   ///   by ImutAVLFactory.
 | |
|   void setLeft(ImutAVLTree* NewLeft) {
 | |
|     assert (isMutable() && 
 | |
|             "Only a mutable tree can have its left subtree changed.");
 | |
|     
 | |
|     Left = reinterpret_cast<uintptr_t>(NewLeft) | Mutable;
 | |
|   }
 | |
|   
 | |
|   /// setRight - Changes the reference of the right subtree.  Used internally
 | |
|   ///  by ImutAVLFactory.
 | |
|   void setRight(ImutAVLTree* NewRight) {
 | |
|     assert (isMutable() &&
 | |
|             "Only a mutable tree can have its right subtree changed.");
 | |
|     
 | |
|     Right = NewRight;
 | |
|   }
 | |
|   
 | |
|   /// setHeight - Changes the height of the tree.  Used internally by
 | |
|   ///  ImutAVLFactory.
 | |
|   void setHeight(unsigned h) {
 | |
|     assert (isMutable() && "Only a mutable tree can have its height changed.");
 | |
|     Height = h;
 | |
|   }
 | |
|   
 | |
|   
 | |
|   static inline
 | |
|   unsigned ComputeDigest(ImutAVLTree* L, ImutAVLTree* R, value_type_ref V) {
 | |
|     unsigned digest = 0;
 | |
|     
 | |
|     if (L) digest += L->ComputeDigest();
 | |
|     
 | |
|     { // Compute digest of stored data.
 | |
|       FoldingSetNodeID ID;
 | |
|       ImutInfo::Profile(ID,V);
 | |
|       digest += ID.ComputeHash();
 | |
|     }
 | |
|     
 | |
|     if (R) digest += R->ComputeDigest();
 | |
|     
 | |
|     return digest;
 | |
|   }
 | |
|   
 | |
|   inline unsigned ComputeDigest() {
 | |
|     if (Digest) return Digest;
 | |
|     
 | |
|     unsigned X = ComputeDigest(getSafeLeft(), getRight(), getValue());
 | |
|     if (!isMutable()) Digest = X;
 | |
|     
 | |
|     return X;
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//    
 | |
| // Immutable AVL-Tree Factory class.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| template <typename ImutInfo >  
 | |
| class ImutAVLFactory {
 | |
|   typedef ImutAVLTree<ImutInfo> TreeTy;
 | |
|   typedef typename TreeTy::value_type_ref value_type_ref;
 | |
|   typedef typename TreeTy::key_type_ref   key_type_ref;
 | |
|   
 | |
|   typedef FoldingSet<TreeTy> CacheTy;
 | |
|   
 | |
|   CacheTy Cache;
 | |
|   uintptr_t Allocator;
 | |
|   
 | |
|   bool ownsAllocator() const {
 | |
|     return Allocator & 0x1 ? false : true;
 | |
|   }
 | |
| 
 | |
|   BumpPtrAllocator& getAllocator() const { 
 | |
|     return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
 | |
|   }
 | |
|   
 | |
|   //===--------------------------------------------------===//    
 | |
|   // Public interface.
 | |
|   //===--------------------------------------------------===//
 | |
|   
 | |
| public:
 | |
|   ImutAVLFactory()
 | |
|     : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
 | |
|   
 | |
|   ImutAVLFactory(BumpPtrAllocator& Alloc)
 | |
|     : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
 | |
|   
 | |
|   ~ImutAVLFactory() {
 | |
|     if (ownsAllocator()) delete &getAllocator();
 | |
|   }
 | |
|   
 | |
|   TreeTy* Add(TreeTy* T, value_type_ref V) {
 | |
|     T = Add_internal(V,T);
 | |
|     MarkImmutable(T);
 | |
|     return T;
 | |
|   }
 | |
|   
 | |
|   TreeTy* Remove(TreeTy* T, key_type_ref V) {
 | |
|     T = Remove_internal(V,T);
 | |
|     MarkImmutable(T);
 | |
|     return T;
 | |
|   }
 | |
|   
 | |
|   TreeTy* GetEmptyTree() const { return NULL; }
 | |
|   
 | |
|   //===--------------------------------------------------===//    
 | |
|   // A bunch of quick helper functions used for reasoning
 | |
|   // about the properties of trees and their children.
 | |
|   // These have succinct names so that the balancing code
 | |
|   // is as terse (and readable) as possible.
 | |
|   //===--------------------------------------------------===//
 | |
| private:
 | |
|   
 | |
|   bool           isEmpty(TreeTy* T) const { return !T; }
 | |
|   unsigned        Height(TreeTy* T) const { return T ? T->getHeight() : 0; }  
 | |
|   TreeTy*           Left(TreeTy* T) const { return T->getSafeLeft(); }
 | |
|   TreeTy*          Right(TreeTy* T) const { return T->getRight(); }  
 | |
|   value_type_ref   Value(TreeTy* T) const { return T->Value; }
 | |
|   
 | |
|   unsigned IncrementHeight(TreeTy* L, TreeTy* R) const {
 | |
|     unsigned hl = Height(L);
 | |
|     unsigned hr = Height(R);
 | |
|     return ( hl > hr ? hl : hr ) + 1;
 | |
|   }
 | |
|   
 | |
|   
 | |
|   static bool CompareTreeWithSection(TreeTy* T,
 | |
|                                      typename TreeTy::iterator& TI,
 | |
|                                      typename TreeTy::iterator& TE) {
 | |
|     
 | |
|     typename TreeTy::iterator I = T->begin(), E = T->end();
 | |
|     
 | |
|     for ( ; I!=E ; ++I, ++TI)
 | |
|       if (TI == TE || !I->ElementEqual(*TI))
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
|   }                     
 | |
|   
 | |
|   //===--------------------------------------------------===//    
 | |
|   // "CreateNode" is used to generate new tree roots that link
 | |
|   // to other trees.  The functon may also simply move links
 | |
|   // in an existing root if that root is still marked mutable.
 | |
|   // This is necessary because otherwise our balancing code
 | |
|   // would leak memory as it would create nodes that are
 | |
|   // then discarded later before the finished tree is
 | |
|   // returned to the caller.
 | |
|   //===--------------------------------------------------===//
 | |
|   
 | |
|   TreeTy* CreateNode(TreeTy* L, value_type_ref V, TreeTy* R) {
 | |
|     // Search the FoldingSet bucket for a Tree with the same digest.
 | |
|     FoldingSetNodeID ID;
 | |
|     unsigned digest = TreeTy::ComputeDigest(L, R, V);
 | |
|     ID.AddInteger(digest);
 | |
|     unsigned hash = ID.ComputeHash();
 | |
|     
 | |
|     typename CacheTy::bucket_iterator I = Cache.bucket_begin(hash);
 | |
|     typename CacheTy::bucket_iterator E = Cache.bucket_end(hash);
 | |
|     
 | |
|     for (; I != E; ++I) {
 | |
|       TreeTy* T = &*I;
 | |
| 
 | |
|       if (T->ComputeDigest() != digest)
 | |
|         continue;
 | |
|       
 | |
|       // We found a collision.  Perform a comparison of Contents('T')
 | |
|       // with Contents('L')+'V'+Contents('R').
 | |
|       
 | |
|       typename TreeTy::iterator TI = T->begin(), TE = T->end();
 | |
|       
 | |
|       // First compare Contents('L') with the (initial) contents of T.
 | |
|       if (!CompareTreeWithSection(L, TI, TE))
 | |
|         continue;
 | |
|       
 | |
|       // Now compare the new data element.
 | |
|       if (TI == TE || !TI->ElementEqual(V))
 | |
|         continue;
 | |
|       
 | |
|       ++TI;
 | |
| 
 | |
|       // Now compare the remainder of 'T' with 'R'.
 | |
|       if (!CompareTreeWithSection(R, TI, TE))
 | |
|         continue;
 | |
|       
 | |
|       if (TI != TE) // Contents('R') did not match suffix of 'T'.
 | |
|         continue;
 | |
|       
 | |
|       // Trees did match!  Return 'T'.
 | |
|       return T;
 | |
|     }
 | |
|     
 | |
|     // No tree with the contents: Contents('L')+'V'+Contents('R').
 | |
|     // Create it.
 | |
| 
 | |
|     // Allocate the new tree node and insert it into the cache.
 | |
|     BumpPtrAllocator& A = getAllocator();
 | |
|     TreeTy* T = (TreeTy*) A.Allocate<TreeTy>();
 | |
|     new (T) TreeTy(L,R,V,IncrementHeight(L,R));
 | |
| 
 | |
|     // We do not insert 'T' into the FoldingSet here.  This is because
 | |
|     // this tree is still mutable and things may get rebalanced.
 | |
|     // Because our digest is associative and based on the contents of
 | |
|     // the set, this should hopefully not cause any strange bugs.
 | |
|     // 'T' is inserted by 'MarkImmutable'.
 | |
| 
 | |
|     return T;
 | |
|   }
 | |
|   
 | |
|   TreeTy* CreateNode(TreeTy* L, TreeTy* OldTree, TreeTy* R) {      
 | |
|     assert (!isEmpty(OldTree));
 | |
|     
 | |
|     if (OldTree->isMutable()) {
 | |
|       OldTree->setLeft(L);
 | |
|       OldTree->setRight(R);
 | |
|       OldTree->setHeight(IncrementHeight(L,R));
 | |
|       return OldTree;
 | |
|     }
 | |
|     else return CreateNode(L, Value(OldTree), R);
 | |
|   }
 | |
|   
 | |
|   /// Balance - Used by Add_internal and Remove_internal to
 | |
|   ///  balance a newly created tree.
 | |
|   TreeTy* Balance(TreeTy* L, value_type_ref V, TreeTy* R) {
 | |
|     
 | |
|     unsigned hl = Height(L);
 | |
|     unsigned hr = Height(R);
 | |
|     
 | |
|     if (hl > hr + 2) {
 | |
|       assert (!isEmpty(L) &&
 | |
|               "Left tree cannot be empty to have a height >= 2.");
 | |
|       
 | |
|       TreeTy* LL = Left(L);
 | |
|       TreeTy* LR = Right(L);
 | |
|       
 | |
|       if (Height(LL) >= Height(LR))
 | |
|         return CreateNode(LL, L, CreateNode(LR,V,R));
 | |
|       
 | |
|       assert (!isEmpty(LR) &&
 | |
|               "LR cannot be empty because it has a height >= 1.");
 | |
|       
 | |
|       TreeTy* LRL = Left(LR);
 | |
|       TreeTy* LRR = Right(LR);
 | |
|       
 | |
|       return CreateNode(CreateNode(LL,L,LRL), LR, CreateNode(LRR,V,R));                              
 | |
|     }
 | |
|     else if (hr > hl + 2) {
 | |
|       assert (!isEmpty(R) &&
 | |
|               "Right tree cannot be empty to have a height >= 2.");
 | |
|       
 | |
|       TreeTy* RL = Left(R);
 | |
|       TreeTy* RR = Right(R);
 | |
|       
 | |
|       if (Height(RR) >= Height(RL))
 | |
|         return CreateNode(CreateNode(L,V,RL), R, RR);
 | |
|       
 | |
|       assert (!isEmpty(RL) &&
 | |
|               "RL cannot be empty because it has a height >= 1.");
 | |
|       
 | |
|       TreeTy* RLL = Left(RL);
 | |
|       TreeTy* RLR = Right(RL);
 | |
|       
 | |
|       return CreateNode(CreateNode(L,V,RLL), RL, CreateNode(RLR,R,RR));
 | |
|     }
 | |
|     else
 | |
|       return CreateNode(L,V,R);
 | |
|   }
 | |
|   
 | |
|   /// Add_internal - Creates a new tree that includes the specified
 | |
|   ///  data and the data from the original tree.  If the original tree
 | |
|   ///  already contained the data item, the original tree is returned.
 | |
|   TreeTy* Add_internal(value_type_ref V, TreeTy* T) {
 | |
|     if (isEmpty(T))
 | |
|       return CreateNode(T, V, T);
 | |
|     
 | |
|     assert (!T->isMutable());
 | |
|     
 | |
|     key_type_ref K = ImutInfo::KeyOfValue(V);
 | |
|     key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T));
 | |
|     
 | |
|     if (ImutInfo::isEqual(K,KCurrent))
 | |
|       return CreateNode(Left(T), V, Right(T));
 | |
|     else if (ImutInfo::isLess(K,KCurrent))
 | |
|       return Balance(Add_internal(V,Left(T)), Value(T), Right(T));
 | |
|     else
 | |
|       return Balance(Left(T), Value(T), Add_internal(V,Right(T)));
 | |
|   }
 | |
|   
 | |
|   /// Remove_interal - Creates a new tree that includes all the data
 | |
|   ///  from the original tree except the specified data.  If the
 | |
|   ///  specified data did not exist in the original tree, the original
 | |
|   ///  tree is returned.
 | |
|   TreeTy* Remove_internal(key_type_ref K, TreeTy* T) {
 | |
|     if (isEmpty(T))
 | |
|       return T;
 | |
|     
 | |
|     assert (!T->isMutable());
 | |
|     
 | |
|     key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T));
 | |
|     
 | |
|     if (ImutInfo::isEqual(K,KCurrent))
 | |
|       return CombineLeftRightTrees(Left(T),Right(T));
 | |
|     else if (ImutInfo::isLess(K,KCurrent))
 | |
|       return Balance(Remove_internal(K,Left(T)), Value(T), Right(T));
 | |
|     else
 | |
|       return Balance(Left(T), Value(T), Remove_internal(K,Right(T)));
 | |
|   }
 | |
|   
 | |
|   TreeTy* CombineLeftRightTrees(TreeTy* L, TreeTy* R) {
 | |
|     if (isEmpty(L)) return R;      
 | |
|     if (isEmpty(R)) return L;
 | |
|     
 | |
|     TreeTy* OldNode;          
 | |
|     TreeTy* NewRight = RemoveMinBinding(R,OldNode);
 | |
|     return Balance(L,Value(OldNode),NewRight);
 | |
|   }
 | |
|   
 | |
|   TreeTy* RemoveMinBinding(TreeTy* T, TreeTy*& NodeRemoved) {
 | |
|     assert (!isEmpty(T));
 | |
|     
 | |
|     if (isEmpty(Left(T))) {
 | |
|       NodeRemoved = T;
 | |
|       return Right(T);
 | |
|     }
 | |
|     
 | |
|     return Balance(RemoveMinBinding(Left(T),NodeRemoved),Value(T),Right(T));
 | |
|   }    
 | |
|   
 | |
|   /// MarkImmutable - Clears the mutable bits of a root and all of its
 | |
|   ///  descendants.
 | |
|   void MarkImmutable(TreeTy* T) {
 | |
|     if (!T || !T->isMutable())
 | |
|       return;
 | |
|     
 | |
|     T->MarkImmutable();
 | |
|     MarkImmutable(Left(T));
 | |
|     MarkImmutable(Right(T));
 | |
|         
 | |
|     // Now that the node is immutable it can safely be inserted
 | |
|     // into the node cache.
 | |
|     llvm::FoldingSetNodeID ID;
 | |
|     ID.AddInteger(T->ComputeDigest());
 | |
|     Cache.InsertNode(T, (void*) &*Cache.bucket_end(ID.ComputeHash()));
 | |
|   }
 | |
| };
 | |
|   
 | |
|   
 | |
| //===----------------------------------------------------------------------===//    
 | |
| // Immutable AVL-Tree Iterators.
 | |
| //===----------------------------------------------------------------------===//  
 | |
| 
 | |
| template <typename ImutInfo>
 | |
| class ImutAVLTreeGenericIterator {
 | |
|   SmallVector<uintptr_t,20> stack;
 | |
| public:
 | |
|   enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3, 
 | |
|                    Flags=0x3 };
 | |
|   
 | |
|   typedef ImutAVLTree<ImutInfo> TreeTy;      
 | |
|   typedef ImutAVLTreeGenericIterator<ImutInfo> _Self;
 | |
| 
 | |
|   inline ImutAVLTreeGenericIterator() {}
 | |
|   inline ImutAVLTreeGenericIterator(const TreeTy* Root) {
 | |
|     if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
 | |
|   }  
 | |
|   
 | |
|   TreeTy* operator*() const {
 | |
|     assert (!stack.empty());    
 | |
|     return reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
 | |
|   }
 | |
|   
 | |
|   uintptr_t getVisitState() {
 | |
|     assert (!stack.empty());
 | |
|     return stack.back() & Flags;
 | |
|   }
 | |
|   
 | |
|   
 | |
|   bool AtEnd() const { return stack.empty(); }
 | |
| 
 | |
|   bool AtBeginning() const { 
 | |
|     return stack.size() == 1 && getVisitState() == VisitedNone;
 | |
|   }
 | |
|   
 | |
|   void SkipToParent() {
 | |
|     assert (!stack.empty());
 | |
|     stack.pop_back();
 | |
|     
 | |
|     if (stack.empty())
 | |
|       return;
 | |
|     
 | |
|     switch (getVisitState()) {
 | |
|       case VisitedNone:
 | |
|         stack.back() |= VisitedLeft;
 | |
|         break;
 | |
|       case VisitedLeft:
 | |
|         stack.back() |= VisitedRight;
 | |
|         break;
 | |
|       default:
 | |
|         assert (false && "Unreachable.");            
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   inline bool operator==(const _Self& x) const {
 | |
|     if (stack.size() != x.stack.size())
 | |
|       return false;
 | |
|     
 | |
|     for (unsigned i = 0 ; i < stack.size(); i++)
 | |
|       if (stack[i] != x.stack[i])
 | |
|         return false;
 | |
|     
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   inline bool operator!=(const _Self& x) const { return !operator==(x); }  
 | |
|   
 | |
|   _Self& operator++() {
 | |
|     assert (!stack.empty());
 | |
|     
 | |
|     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
 | |
|     assert (Current);
 | |
|     
 | |
|     switch (getVisitState()) {
 | |
|       case VisitedNone:
 | |
|         if (TreeTy* L = Current->getSafeLeft())
 | |
|           stack.push_back(reinterpret_cast<uintptr_t>(L));
 | |
|         else
 | |
|           stack.back() |= VisitedLeft;
 | |
|         
 | |
|         break;
 | |
|         
 | |
|       case VisitedLeft:
 | |
|         if (TreeTy* R = Current->getRight())
 | |
|           stack.push_back(reinterpret_cast<uintptr_t>(R));
 | |
|         else
 | |
|           stack.back() |= VisitedRight;
 | |
|         
 | |
|         break;
 | |
|         
 | |
|       case VisitedRight:
 | |
|         SkipToParent();        
 | |
|         break;
 | |
|         
 | |
|       default:
 | |
|         assert (false && "Unreachable.");
 | |
|     }
 | |
|     
 | |
|     return *this;
 | |
|   }
 | |
|   
 | |
|   _Self& operator--() {
 | |
|     assert (!stack.empty());
 | |
|     
 | |
|     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
 | |
|     assert (Current);
 | |
|     
 | |
|     switch (getVisitState()) {
 | |
|       case VisitedNone:
 | |
|         stack.pop_back();
 | |
|         break;
 | |
|         
 | |
|       case VisitedLeft:                
 | |
|         stack.back() &= ~Flags; // Set state to "VisitedNone."
 | |
|         
 | |
|         if (TreeTy* L = Current->getLeft())
 | |
|           stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
 | |
|           
 | |
|         break;
 | |
|         
 | |
|       case VisitedRight:        
 | |
|         stack.back() &= ~Flags;
 | |
|         stack.back() |= VisitedLeft;
 | |
|         
 | |
|         if (TreeTy* R = Current->getRight())
 | |
|           stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
 | |
|           
 | |
|         break;
 | |
|         
 | |
|       default:
 | |
|         assert (false && "Unreachable.");
 | |
|     }
 | |
|     
 | |
|     return *this;
 | |
|   }
 | |
| };
 | |
|   
 | |
| template <typename ImutInfo>
 | |
| class ImutAVLTreeInOrderIterator {
 | |
|   typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy;
 | |
|   InternalIteratorTy InternalItr;
 | |
| 
 | |
| public:
 | |
|   typedef ImutAVLTree<ImutInfo> TreeTy;
 | |
|   typedef ImutAVLTreeInOrderIterator<ImutInfo> _Self;
 | |
| 
 | |
|   ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) { 
 | |
|     if (Root) operator++(); // Advance to first element.
 | |
|   }
 | |
|   
 | |
|   ImutAVLTreeInOrderIterator() : InternalItr() {}
 | |
| 
 | |
|   inline bool operator==(const _Self& x) const {
 | |
|     return InternalItr == x.InternalItr;
 | |
|   }
 | |
|   
 | |
|   inline bool operator!=(const _Self& x) const { return !operator==(x); }  
 | |
|   
 | |
|   inline TreeTy* operator*() const { return *InternalItr; }
 | |
|   inline TreeTy* operator->() const { return *InternalItr; }
 | |
|   
 | |
|   inline _Self& operator++() { 
 | |
|     do ++InternalItr;
 | |
|     while (!InternalItr.AtEnd() && 
 | |
|            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
 | |
| 
 | |
|     return *this;
 | |
|   }
 | |
|   
 | |
|   inline _Self& operator--() { 
 | |
|     do --InternalItr;
 | |
|     while (!InternalItr.AtBeginning() && 
 | |
|            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
 | |
|     
 | |
|     return *this;
 | |
|   }
 | |
|   
 | |
|   inline void SkipSubTree() {
 | |
|     InternalItr.SkipToParent();
 | |
|     
 | |
|     while (!InternalItr.AtEnd() &&
 | |
|            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
 | |
|       ++InternalItr;        
 | |
|   }
 | |
| };
 | |
|     
 | |
| //===----------------------------------------------------------------------===//    
 | |
| // Trait classes for Profile information.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Generic profile template.  The default behavior is to invoke the
 | |
| /// profile method of an object.  Specializations for primitive integers
 | |
| /// and generic handling of pointers is done below.
 | |
| template <typename T>
 | |
| struct ImutProfileInfo {
 | |
|   typedef const T  value_type;
 | |
|   typedef const T& value_type_ref;
 | |
|   
 | |
|   static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
 | |
|     FoldingSetTrait<T>::Profile(X,ID);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Profile traits for integers.
 | |
| template <typename T>
 | |
| struct ImutProfileInteger {    
 | |
|   typedef const T  value_type;
 | |
|   typedef const T& value_type_ref;
 | |
|   
 | |
|   static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
 | |
|     ID.AddInteger(X);
 | |
|   }  
 | |
| };
 | |
| 
 | |
| #define PROFILE_INTEGER_INFO(X)\
 | |
| template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
 | |
| 
 | |
| PROFILE_INTEGER_INFO(char)
 | |
| PROFILE_INTEGER_INFO(unsigned char)
 | |
| PROFILE_INTEGER_INFO(short)
 | |
| PROFILE_INTEGER_INFO(unsigned short)
 | |
| PROFILE_INTEGER_INFO(unsigned)
 | |
| PROFILE_INTEGER_INFO(signed)
 | |
| PROFILE_INTEGER_INFO(long)
 | |
| PROFILE_INTEGER_INFO(unsigned long)
 | |
| PROFILE_INTEGER_INFO(long long)
 | |
| PROFILE_INTEGER_INFO(unsigned long long)
 | |
| 
 | |
| #undef PROFILE_INTEGER_INFO
 | |
| 
 | |
| /// Generic profile trait for pointer types.  We treat pointers as
 | |
| /// references to unique objects.
 | |
| template <typename T>
 | |
| struct ImutProfileInfo<T*> {
 | |
|   typedef const T*   value_type;
 | |
|   typedef value_type value_type_ref;
 | |
|   
 | |
|   static inline void Profile(FoldingSetNodeID &ID, value_type_ref X) {
 | |
|     ID.AddPointer(X);
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//    
 | |
| // Trait classes that contain element comparison operators and type
 | |
| //  definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap.  These
 | |
| //  inherit from the profile traits (ImutProfileInfo) to include operations
 | |
| //  for element profiling.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| /// ImutContainerInfo - Generic definition of comparison operations for
 | |
| ///   elements of immutable containers that defaults to using
 | |
| ///   std::equal_to<> and std::less<> to perform comparison of elements.
 | |
| template <typename T>
 | |
| struct ImutContainerInfo : public ImutProfileInfo<T> {
 | |
|   typedef typename ImutProfileInfo<T>::value_type      value_type;
 | |
|   typedef typename ImutProfileInfo<T>::value_type_ref  value_type_ref;
 | |
|   typedef value_type      key_type;
 | |
|   typedef value_type_ref  key_type_ref;
 | |
|   typedef bool            data_type;
 | |
|   typedef bool            data_type_ref;
 | |
|   
 | |
|   static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
 | |
|   static inline data_type_ref DataOfValue(value_type_ref) { return true; }
 | |
|   
 | |
|   static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) { 
 | |
|     return std::equal_to<key_type>()(LHS,RHS);
 | |
|   }
 | |
|   
 | |
|   static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
 | |
|     return std::less<key_type>()(LHS,RHS);
 | |
|   }
 | |
|   
 | |
|   static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; }
 | |
| };
 | |
| 
 | |
| /// ImutContainerInfo - Specialization for pointer values to treat pointers
 | |
| ///  as references to unique objects.  Pointers are thus compared by
 | |
| ///  their addresses.
 | |
| template <typename T>
 | |
| struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
 | |
|   typedef typename ImutProfileInfo<T*>::value_type      value_type;
 | |
|   typedef typename ImutProfileInfo<T*>::value_type_ref  value_type_ref;
 | |
|   typedef value_type      key_type;
 | |
|   typedef value_type_ref  key_type_ref;
 | |
|   typedef bool            data_type;
 | |
|   typedef bool            data_type_ref;
 | |
|   
 | |
|   static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
 | |
|   static inline data_type_ref DataOfValue(value_type_ref) { return true; }
 | |
|   
 | |
|   static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
 | |
|     return LHS == RHS;
 | |
|   }
 | |
|   
 | |
|   static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
 | |
|     return LHS < RHS;
 | |
|   }
 | |
|   
 | |
|   static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//    
 | |
| // Immutable Set
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
 | |
| class ImmutableSet {
 | |
| public:
 | |
|   typedef typename ValInfo::value_type      value_type;
 | |
|   typedef typename ValInfo::value_type_ref  value_type_ref;
 | |
|   typedef ImutAVLTree<ValInfo> TreeTy;
 | |
| 
 | |
| private:  
 | |
|   TreeTy* Root;
 | |
| 
 | |
| public:
 | |
|   /// Constructs a set from a pointer to a tree root.  In general one
 | |
|   /// should use a Factory object to create sets instead of directly
 | |
|   /// invoking the constructor, but there are cases where make this
 | |
|   /// constructor public is useful.
 | |
|   explicit ImmutableSet(TreeTy* R) : Root(R) {}
 | |
|   
 | |
|   class Factory {
 | |
|     typename TreeTy::Factory F;
 | |
|     
 | |
|   public:
 | |
|     Factory() {}
 | |
|     
 | |
|     Factory(BumpPtrAllocator& Alloc)
 | |
|       : F(Alloc) {}
 | |
|     
 | |
|     /// GetEmptySet - Returns an immutable set that contains no elements.
 | |
|     ImmutableSet GetEmptySet() { return ImmutableSet(F.GetEmptyTree()); }
 | |
|     
 | |
|     /// Add - Creates a new immutable set that contains all of the values
 | |
|     ///  of the original set with the addition of the specified value.  If
 | |
|     ///  the original set already included the value, then the original set is
 | |
|     ///  returned and no memory is allocated.  The time and space complexity
 | |
|     ///  of this operation is logarithmic in the size of the original set.
 | |
|     ///  The memory allocated to represent the set is released when the
 | |
|     ///  factory object that created the set is destroyed.
 | |
|     ImmutableSet Add(ImmutableSet Old, value_type_ref V) {
 | |
|       return ImmutableSet(F.Add(Old.Root,V));
 | |
|     }
 | |
|     
 | |
|     /// Remove - Creates a new immutable set that contains all of the values
 | |
|     ///  of the original set with the exception of the specified value.  If
 | |
|     ///  the original set did not contain the value, the original set is
 | |
|     ///  returned and no memory is allocated.  The time and space complexity
 | |
|     ///  of this operation is logarithmic in the size of the original set.
 | |
|     ///  The memory allocated to represent the set is released when the
 | |
|     ///  factory object that created the set is destroyed.
 | |
|     ImmutableSet Remove(ImmutableSet Old, value_type_ref V) {
 | |
|       return ImmutableSet(F.Remove(Old.Root,V));
 | |
|     }
 | |
|     
 | |
|     BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
 | |
| 
 | |
|   private:
 | |
|     Factory(const Factory& RHS) {};
 | |
|     void operator=(const Factory& RHS) {};    
 | |
|   };
 | |
|   
 | |
|   friend class Factory;  
 | |
| 
 | |
|   /// contains - Returns true if the set contains the specified value.
 | |
|   bool contains(const value_type_ref V) const {
 | |
|     return Root ? Root->contains(V) : false;
 | |
|   }
 | |
|   
 | |
|   bool operator==(ImmutableSet RHS) const {
 | |
|     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
 | |
|   }
 | |
|   
 | |
|   bool operator!=(ImmutableSet RHS) const {
 | |
|     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
 | |
|   }
 | |
|   
 | |
|   TreeTy* getRoot() const { return Root; }
 | |
|   
 | |
|   /// isEmpty - Return true if the set contains no elements.
 | |
|   bool isEmpty() const { return !Root; }
 | |
|   
 | |
|   template <typename Callback>
 | |
|   void foreach(Callback& C) { if (Root) Root->foreach(C); }
 | |
|   
 | |
|   template <typename Callback>
 | |
|   void foreach() { if (Root) { Callback C; Root->foreach(C); } }
 | |
|     
 | |
|   //===--------------------------------------------------===//    
 | |
|   // Iterators.
 | |
|   //===--------------------------------------------------===//  
 | |
| 
 | |
|   class iterator {
 | |
|     typename TreeTy::iterator itr;
 | |
|     
 | |
|     iterator() {}
 | |
|     iterator(TreeTy* t) : itr(t) {}
 | |
|     friend class ImmutableSet<ValT,ValInfo>;
 | |
|   public:
 | |
|     inline value_type_ref operator*() const { return itr->getValue(); }
 | |
|     inline iterator& operator++() { ++itr; return *this; }
 | |
|     inline iterator  operator++(int) { iterator tmp(*this); ++itr; return tmp; }
 | |
|     inline iterator& operator--() { --itr; return *this; }
 | |
|     inline iterator  operator--(int) { iterator tmp(*this); --itr; return tmp; }
 | |
|     inline bool operator==(const iterator& RHS) const { return RHS.itr == itr; }
 | |
|     inline bool operator!=(const iterator& RHS) const { return RHS.itr != itr; }        
 | |
|   };
 | |
|   
 | |
|   iterator begin() const { return iterator(Root); }
 | |
|   iterator end() const { return iterator(); }  
 | |
|   
 | |
|   //===--------------------------------------------------===//    
 | |
|   // Utility methods.
 | |
|   //===--------------------------------------------------===//  
 | |
|   
 | |
|   inline unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
 | |
|   
 | |
|   static inline void Profile(FoldingSetNodeID& ID, const ImmutableSet& S) {
 | |
|     ID.AddPointer(S.Root);
 | |
|   }
 | |
|   
 | |
|   inline void Profile(FoldingSetNodeID& ID) const {
 | |
|     return Profile(ID,*this);
 | |
|   }
 | |
|   
 | |
|   //===--------------------------------------------------===//    
 | |
|   // For testing.
 | |
|   //===--------------------------------------------------===//  
 | |
|   
 | |
|   void verify() const { if (Root) Root->verify(); }
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| #endif
 |