mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	work and how to replace them into individual values. Also, when trying to replace an aggregrate that is used by load or store with a single (large) integer, don't crash (but don't replace the aggregrate either). Also adds a testcase for both structs and arrays. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51997 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1463 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1463 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This transformation implements the well known scalar replacement of
 | |
| // aggregates transformation.  This xform breaks up alloca instructions of
 | |
| // aggregate type (structure or array) into individual alloca instructions for
 | |
| // each member (if possible).  Then, if possible, it transforms the individual
 | |
| // alloca instructions into nice clean scalar SSA form.
 | |
| //
 | |
| // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
 | |
| // often interact, especially for C++ programs.  As such, iterating between
 | |
| // SRoA, then Mem2Reg until we run out of things to promote works well.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "scalarrepl"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumReplaced,  "Number of allocas broken up");
 | |
| STATISTIC(NumPromoted,  "Number of allocas promoted");
 | |
| STATISTIC(NumConverted, "Number of aggregates converted to scalar");
 | |
| STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
 | |
| 
 | |
| namespace {
 | |
|   struct VISIBILITY_HIDDEN SROA : public FunctionPass {
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     explicit SROA(signed T = -1) : FunctionPass((intptr_t)&ID) {
 | |
|       if (T == -1)
 | |
|         SRThreshold = 128;
 | |
|       else
 | |
|         SRThreshold = T;
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F);
 | |
| 
 | |
|     bool performScalarRepl(Function &F);
 | |
|     bool performPromotion(Function &F);
 | |
| 
 | |
|     // getAnalysisUsage - This pass does not require any passes, but we know it
 | |
|     // will not alter the CFG, so say so.
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<DominanceFrontier>();
 | |
|       AU.addRequired<TargetData>();
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
 | |
|     /// information about the uses.  All these fields are initialized to false
 | |
|     /// and set to true when something is learned.
 | |
|     struct AllocaInfo {
 | |
|       /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
 | |
|       bool isUnsafe : 1;
 | |
|       
 | |
|       /// needsCanon - This is set to true if there is some use of the alloca
 | |
|       /// that requires canonicalization.
 | |
|       bool needsCanon : 1;
 | |
|       
 | |
|       /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
 | |
|       bool isMemCpySrc : 1;
 | |
| 
 | |
|       /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
 | |
|       bool isMemCpyDst : 1;
 | |
| 
 | |
|       AllocaInfo()
 | |
|         : isUnsafe(false), needsCanon(false), 
 | |
|           isMemCpySrc(false), isMemCpyDst(false) {}
 | |
|     };
 | |
|     
 | |
|     unsigned SRThreshold;
 | |
| 
 | |
|     void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
 | |
| 
 | |
|     int isSafeAllocaToScalarRepl(AllocationInst *AI);
 | |
| 
 | |
|     void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
 | |
|                                AllocaInfo &Info);
 | |
|     void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
 | |
|                          AllocaInfo &Info);
 | |
|     void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
 | |
|                                         unsigned OpNo, AllocaInfo &Info);
 | |
|     void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
 | |
|                                         AllocaInfo &Info);
 | |
|     
 | |
|     void DoScalarReplacement(AllocationInst *AI, 
 | |
|                              std::vector<AllocationInst*> &WorkList);
 | |
|     void CanonicalizeAllocaUsers(AllocationInst *AI);
 | |
|     AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
 | |
|     
 | |
|     void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
 | |
|                                     SmallVector<AllocaInst*, 32> &NewElts);
 | |
|     
 | |
|     const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
 | |
|     void ConvertToScalar(AllocationInst *AI, const Type *Ty);
 | |
|     void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
 | |
|     Value *ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI, 
 | |
|                                      unsigned Offset);
 | |
|     Value *ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI, 
 | |
|                                       unsigned Offset);
 | |
|     static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char SROA::ID = 0;
 | |
| static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
 | |
| 
 | |
| // Public interface to the ScalarReplAggregates pass
 | |
| FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) { 
 | |
|   return new SROA(Threshold);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool SROA::runOnFunction(Function &F) {
 | |
|   bool Changed = performPromotion(F);
 | |
|   while (1) {
 | |
|     bool LocalChange = performScalarRepl(F);
 | |
|     if (!LocalChange) break;   // No need to repromote if no scalarrepl
 | |
|     Changed = true;
 | |
|     LocalChange = performPromotion(F);
 | |
|     if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool SROA::performPromotion(Function &F) {
 | |
|   std::vector<AllocaInst*> Allocas;
 | |
|   DominatorTree         &DT = getAnalysis<DominatorTree>();
 | |
|   DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
 | |
| 
 | |
|   BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   while (1) {
 | |
|     Allocas.clear();
 | |
| 
 | |
|     // Find allocas that are safe to promote, by looking at all instructions in
 | |
|     // the entry node
 | |
|     for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
 | |
|       if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
 | |
|         if (isAllocaPromotable(AI))
 | |
|           Allocas.push_back(AI);
 | |
| 
 | |
|     if (Allocas.empty()) break;
 | |
| 
 | |
|     PromoteMemToReg(Allocas, DT, DF);
 | |
|     NumPromoted += Allocas.size();
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // performScalarRepl - This algorithm is a simple worklist driven algorithm,
 | |
| // which runs on all of the malloc/alloca instructions in the function, removing
 | |
| // them if they are only used by getelementptr instructions.
 | |
| //
 | |
| bool SROA::performScalarRepl(Function &F) {
 | |
|   std::vector<AllocationInst*> WorkList;
 | |
| 
 | |
|   // Scan the entry basic block, adding any alloca's and mallocs to the worklist
 | |
|   BasicBlock &BB = F.getEntryBlock();
 | |
|   for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
 | |
|     if (AllocationInst *A = dyn_cast<AllocationInst>(I))
 | |
|       WorkList.push_back(A);
 | |
| 
 | |
|   const TargetData &TD = getAnalysis<TargetData>();
 | |
|   
 | |
|   // Process the worklist
 | |
|   bool Changed = false;
 | |
|   while (!WorkList.empty()) {
 | |
|     AllocationInst *AI = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     
 | |
|     // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
 | |
|     // with unused elements.
 | |
|     if (AI->use_empty()) {
 | |
|       AI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // If we can turn this aggregate value (potentially with casts) into a
 | |
|     // simple scalar value that can be mem2reg'd into a register value.
 | |
|     bool IsNotTrivial = false;
 | |
|     if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
 | |
|       if (IsNotTrivial && ActualType != Type::VoidTy) {
 | |
|         ConvertToScalar(AI, ActualType);
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|     // Check to see if we can perform the core SROA transformation.  We cannot
 | |
|     // transform the allocation instruction if it is an array allocation
 | |
|     // (allocations OF arrays are ok though), and an allocation of a scalar
 | |
|     // value cannot be decomposed at all.
 | |
|     if (!AI->isArrayAllocation() &&
 | |
|         (isa<StructType>(AI->getAllocatedType()) ||
 | |
|          isa<ArrayType>(AI->getAllocatedType())) &&
 | |
|         AI->getAllocatedType()->isSized() &&
 | |
|         TD.getABITypeSize(AI->getAllocatedType()) < SRThreshold) {
 | |
|       // Check that all of the users of the allocation are capable of being
 | |
|       // transformed.
 | |
|       switch (isSafeAllocaToScalarRepl(AI)) {
 | |
|       default: assert(0 && "Unexpected value!");
 | |
|       case 0:  // Not safe to scalar replace.
 | |
|         break;
 | |
|       case 1:  // Safe, but requires cleanup/canonicalizations first
 | |
|         CanonicalizeAllocaUsers(AI);
 | |
|         // FALL THROUGH.
 | |
|       case 3:  // Safe to scalar replace.
 | |
|         DoScalarReplacement(AI, WorkList);
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Check to see if this allocation is only modified by a memcpy/memmove from
 | |
|     // a constant global.  If this is the case, we can change all users to use
 | |
|     // the constant global instead.  This is commonly produced by the CFE by
 | |
|     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
 | |
|     // is only subsequently read.
 | |
|     if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
 | |
|       DOUT << "Found alloca equal to global: " << *AI;
 | |
|       DOUT << "  memcpy = " << *TheCopy;
 | |
|       Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
 | |
|       AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
 | |
|       TheCopy->eraseFromParent();  // Don't mutate the global.
 | |
|       AI->eraseFromParent();
 | |
|       ++NumGlobals;
 | |
|       Changed = true;
 | |
|       continue;
 | |
|     }
 | |
|         
 | |
|     // Otherwise, couldn't process this.
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
 | |
| /// predicate, do SROA now.
 | |
| void SROA::DoScalarReplacement(AllocationInst *AI, 
 | |
|                                std::vector<AllocationInst*> &WorkList) {
 | |
|   DOUT << "Found inst to SROA: " << *AI;
 | |
|   SmallVector<AllocaInst*, 32> ElementAllocas;
 | |
|   if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
 | |
|     ElementAllocas.reserve(ST->getNumContainedTypes());
 | |
|     for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
 | |
|       AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0, 
 | |
|                                       AI->getAlignment(),
 | |
|                                       AI->getName() + "." + utostr(i), AI);
 | |
|       ElementAllocas.push_back(NA);
 | |
|       WorkList.push_back(NA);  // Add to worklist for recursive processing
 | |
|     }
 | |
|   } else {
 | |
|     const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
 | |
|     ElementAllocas.reserve(AT->getNumElements());
 | |
|     const Type *ElTy = AT->getElementType();
 | |
|     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | |
|       AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
 | |
|                                       AI->getName() + "." + utostr(i), AI);
 | |
|       ElementAllocas.push_back(NA);
 | |
|       WorkList.push_back(NA);  // Add to worklist for recursive processing
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that we have created the alloca instructions that we want to use,
 | |
|   // expand the getelementptr instructions to use them.
 | |
|   //
 | |
|   while (!AI->use_empty()) {
 | |
|     Instruction *User = cast<Instruction>(AI->use_back());
 | |
|     if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
 | |
|       RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
 | |
|       BCInst->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Replace %res = load { i32, i32 }* %alloc
 | |
|     // by
 | |
|     // %load.0 = load i32* %alloc.0
 | |
|     // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0 
 | |
|     // %load.1 = load i32* %alloc.1
 | |
|     // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1 
 | |
|     // (Also works for arrays instead of structs)
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | |
|       Value *Insert = UndefValue::get(LI->getType());
 | |
|       for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
 | |
|         Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
 | |
|         Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
 | |
|       }
 | |
|       LI->replaceAllUsesWith(Insert);
 | |
|       LI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Replace store { i32, i32 } %val, { i32, i32 }* %alloc
 | |
|     // by
 | |
|     // %val.0 = extractvalue { i32, i32 } %val, 0 
 | |
|     // store i32 %val.0, i32* %alloc.0
 | |
|     // %val.1 = extractvalue { i32, i32 } %val, 1 
 | |
|     // store i32 %val.1, i32* %alloc.1
 | |
|     // (Also works for arrays instead of structs)
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | |
|       Value *Val = SI->getOperand(0);
 | |
|       for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
 | |
|         Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
 | |
|         new StoreInst(Extract, ElementAllocas[i], SI);
 | |
|       }
 | |
|       SI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
 | |
|     // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
 | |
|     unsigned Idx =
 | |
|        (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
 | |
| 
 | |
|     assert(Idx < ElementAllocas.size() && "Index out of range?");
 | |
|     AllocaInst *AllocaToUse = ElementAllocas[Idx];
 | |
| 
 | |
|     Value *RepValue;
 | |
|     if (GEPI->getNumOperands() == 3) {
 | |
|       // Do not insert a new getelementptr instruction with zero indices, only
 | |
|       // to have it optimized out later.
 | |
|       RepValue = AllocaToUse;
 | |
|     } else {
 | |
|       // We are indexing deeply into the structure, so we still need a
 | |
|       // getelement ptr instruction to finish the indexing.  This may be
 | |
|       // expanded itself once the worklist is rerun.
 | |
|       //
 | |
|       SmallVector<Value*, 8> NewArgs;
 | |
|       NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
 | |
|       NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
 | |
|       RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
 | |
|                                            NewArgs.end(), "", GEPI);
 | |
|       RepValue->takeName(GEPI);
 | |
|     }
 | |
|     
 | |
|     // If this GEP is to the start of the aggregate, check for memcpys.
 | |
|     if (Idx == 0) {
 | |
|       bool IsStartOfAggregateGEP = true;
 | |
|       for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) {
 | |
|         if (!isa<ConstantInt>(GEPI->getOperand(i))) {
 | |
|           IsStartOfAggregateGEP = false;
 | |
|           break;
 | |
|         }
 | |
|         if (!cast<ConstantInt>(GEPI->getOperand(i))->isZero()) {
 | |
|           IsStartOfAggregateGEP = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       if (IsStartOfAggregateGEP)
 | |
|         RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
 | |
|     }
 | |
|     
 | |
| 
 | |
|     // Move all of the users over to the new GEP.
 | |
|     GEPI->replaceAllUsesWith(RepValue);
 | |
|     // Delete the old GEP
 | |
|     GEPI->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Finally, delete the Alloca instruction
 | |
|   AI->eraseFromParent();
 | |
|   NumReplaced++;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isSafeElementUse - Check to see if this use is an allowed use for a
 | |
| /// getelementptr instruction of an array aggregate allocation.  isFirstElt
 | |
| /// indicates whether Ptr is known to the start of the aggregate.
 | |
| ///
 | |
| void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
 | |
|                             AllocaInfo &Info) {
 | |
|   for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
 | |
|        I != E; ++I) {
 | |
|     Instruction *User = cast<Instruction>(*I);
 | |
|     switch (User->getOpcode()) {
 | |
|     case Instruction::Load:  break;
 | |
|     case Instruction::Store:
 | |
|       // Store is ok if storing INTO the pointer, not storing the pointer
 | |
|       if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
 | |
|       break;
 | |
|     case Instruction::GetElementPtr: {
 | |
|       GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
 | |
|       bool AreAllZeroIndices = isFirstElt;
 | |
|       if (GEP->getNumOperands() > 1) {
 | |
|         if (!isa<ConstantInt>(GEP->getOperand(1)) ||
 | |
|             !cast<ConstantInt>(GEP->getOperand(1))->isZero())
 | |
|           // Using pointer arithmetic to navigate the array.
 | |
|           return MarkUnsafe(Info);
 | |
|        
 | |
|         if (AreAllZeroIndices) {
 | |
|           for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) {
 | |
|             if (!isa<ConstantInt>(GEP->getOperand(i)) ||    
 | |
|                 !cast<ConstantInt>(GEP->getOperand(i))->isZero()) {
 | |
|               AreAllZeroIndices = false;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
 | |
|       if (Info.isUnsafe) return;
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::BitCast:
 | |
|       if (isFirstElt) {
 | |
|         isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
 | |
|         if (Info.isUnsafe) return;
 | |
|         break;
 | |
|       }
 | |
|       DOUT << "  Transformation preventing inst: " << *User;
 | |
|       return MarkUnsafe(Info);
 | |
|     case Instruction::Call:
 | |
|       if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
 | |
|         if (isFirstElt) {
 | |
|           isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
 | |
|           if (Info.isUnsafe) return;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       DOUT << "  Transformation preventing inst: " << *User;
 | |
|       return MarkUnsafe(Info);
 | |
|     default:
 | |
|       DOUT << "  Transformation preventing inst: " << *User;
 | |
|       return MarkUnsafe(Info);
 | |
|     }
 | |
|   }
 | |
|   return;  // All users look ok :)
 | |
| }
 | |
| 
 | |
| /// AllUsersAreLoads - Return true if all users of this value are loads.
 | |
| static bool AllUsersAreLoads(Value *Ptr) {
 | |
|   for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
 | |
|        I != E; ++I)
 | |
|     if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
 | |
| /// aggregate allocation.
 | |
| ///
 | |
| void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
 | |
|                                  AllocaInfo &Info) {
 | |
|   if (BitCastInst *C = dyn_cast<BitCastInst>(User))
 | |
|     return isSafeUseOfBitCastedAllocation(C, AI, Info);
 | |
| 
 | |
|   if (isa<LoadInst>(User))
 | |
|     return; // Loads (returning a first class aggregrate) are always rewritable
 | |
| 
 | |
|   if (isa<StoreInst>(User) && User->getOperand(0) != AI)
 | |
|     return; // Store is ok if storing INTO the pointer, not storing the pointer
 | |
|  
 | |
|   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
 | |
|   if (GEPI == 0)
 | |
|     return MarkUnsafe(Info);
 | |
| 
 | |
|   gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
 | |
| 
 | |
|   // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
 | |
|   if (I == E ||
 | |
|       I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
 | |
|     return MarkUnsafe(Info);
 | |
|   }
 | |
| 
 | |
|   ++I;
 | |
|   if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
 | |
| 
 | |
|   bool IsAllZeroIndices = true;
 | |
|   
 | |
|   // If this is a use of an array allocation, do a bit more checking for sanity.
 | |
|   if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
 | |
|     uint64_t NumElements = AT->getNumElements();
 | |
| 
 | |
|     if (ConstantInt *Idx = dyn_cast<ConstantInt>(I.getOperand())) {
 | |
|       IsAllZeroIndices &= Idx->isZero();
 | |
|       
 | |
|       // Check to make sure that index falls within the array.  If not,
 | |
|       // something funny is going on, so we won't do the optimization.
 | |
|       //
 | |
|       if (Idx->getZExtValue() >= NumElements)
 | |
|         return MarkUnsafe(Info);
 | |
| 
 | |
|       // We cannot scalar repl this level of the array unless any array
 | |
|       // sub-indices are in-range constants.  In particular, consider:
 | |
|       // A[0][i].  We cannot know that the user isn't doing invalid things like
 | |
|       // allowing i to index an out-of-range subscript that accesses A[1].
 | |
|       //
 | |
|       // Scalar replacing *just* the outer index of the array is probably not
 | |
|       // going to be a win anyway, so just give up.
 | |
|       for (++I; I != E && (isa<ArrayType>(*I) || isa<VectorType>(*I)); ++I) {
 | |
|         uint64_t NumElements;
 | |
|         if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*I))
 | |
|           NumElements = SubArrayTy->getNumElements();
 | |
|         else
 | |
|           NumElements = cast<VectorType>(*I)->getNumElements();
 | |
|         
 | |
|         ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
 | |
|         if (!IdxVal) return MarkUnsafe(Info);
 | |
|         if (IdxVal->getZExtValue() >= NumElements)
 | |
|           return MarkUnsafe(Info);
 | |
|         IsAllZeroIndices &= IdxVal->isZero();
 | |
|       }
 | |
|       
 | |
|     } else {
 | |
|       IsAllZeroIndices = 0;
 | |
|       
 | |
|       // If this is an array index and the index is not constant, we cannot
 | |
|       // promote... that is unless the array has exactly one or two elements in
 | |
|       // it, in which case we CAN promote it, but we have to canonicalize this
 | |
|       // out if this is the only problem.
 | |
|       if ((NumElements == 1 || NumElements == 2) &&
 | |
|           AllUsersAreLoads(GEPI)) {
 | |
|         Info.needsCanon = true;
 | |
|         return;  // Canonicalization required!
 | |
|       }
 | |
|       return MarkUnsafe(Info);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are any non-simple uses of this getelementptr, make sure to reject
 | |
|   // them.
 | |
|   return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
 | |
| }
 | |
| 
 | |
| /// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
 | |
| /// intrinsic can be promoted by SROA.  At this point, we know that the operand
 | |
| /// of the memintrinsic is a pointer to the beginning of the allocation.
 | |
| void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
 | |
|                                           unsigned OpNo, AllocaInfo &Info) {
 | |
|   // If not constant length, give up.
 | |
|   ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
 | |
|   if (!Length) return MarkUnsafe(Info);
 | |
|   
 | |
|   // If not the whole aggregate, give up.
 | |
|   const TargetData &TD = getAnalysis<TargetData>();
 | |
|   if (Length->getZExtValue() !=
 | |
|       TD.getABITypeSize(AI->getType()->getElementType()))
 | |
|     return MarkUnsafe(Info);
 | |
|   
 | |
|   // We only know about memcpy/memset/memmove.
 | |
|   if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
 | |
|     return MarkUnsafe(Info);
 | |
|   
 | |
|   // Otherwise, we can transform it.  Determine whether this is a memcpy/set
 | |
|   // into or out of the aggregate.
 | |
|   if (OpNo == 1)
 | |
|     Info.isMemCpyDst = true;
 | |
|   else {
 | |
|     assert(OpNo == 2);
 | |
|     Info.isMemCpySrc = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
 | |
| /// are 
 | |
| void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
 | |
|                                           AllocaInfo &Info) {
 | |
|   for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
 | |
|       isSafeUseOfBitCastedAllocation(BCU, AI, Info);
 | |
|     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
 | |
|       isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
 | |
|     } else {
 | |
|       return MarkUnsafe(Info);
 | |
|     }
 | |
|     if (Info.isUnsafe) return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
 | |
| /// to its first element.  Transform users of the cast to use the new values
 | |
| /// instead.
 | |
| void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
 | |
|                                       SmallVector<AllocaInst*, 32> &NewElts) {
 | |
|   Constant *Zero = Constant::getNullValue(Type::Int32Ty);
 | |
|   const TargetData &TD = getAnalysis<TargetData>();
 | |
|   
 | |
|   Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
 | |
|   while (UI != UE) {
 | |
|     if (BitCastInst *BCU = dyn_cast<BitCastInst>(*UI)) {
 | |
|       RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
 | |
|       ++UI;
 | |
|       BCU->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, must be memcpy/memmove/memset of the entire aggregate.  Split
 | |
|     // into one per element.
 | |
|     MemIntrinsic *MI = dyn_cast<MemIntrinsic>(*UI);
 | |
|     
 | |
|     // If it's not a mem intrinsic, it must be some other user of a gep of the
 | |
|     // first pointer.  Just leave these alone.
 | |
|     if (!MI) {
 | |
|       ++UI;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // If this is a memcpy/memmove, construct the other pointer as the
 | |
|     // appropriate type.
 | |
|     Value *OtherPtr = 0;
 | |
|     if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
 | |
|       if (BCInst == MCI->getRawDest())
 | |
|         OtherPtr = MCI->getRawSource();
 | |
|       else {
 | |
|         assert(BCInst == MCI->getRawSource());
 | |
|         OtherPtr = MCI->getRawDest();
 | |
|       }
 | |
|     } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
 | |
|       if (BCInst == MMI->getRawDest())
 | |
|         OtherPtr = MMI->getRawSource();
 | |
|       else {
 | |
|         assert(BCInst == MMI->getRawSource());
 | |
|         OtherPtr = MMI->getRawDest();
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If there is an other pointer, we want to convert it to the same pointer
 | |
|     // type as AI has, so we can GEP through it.
 | |
|     if (OtherPtr) {
 | |
|       // It is likely that OtherPtr is a bitcast, if so, remove it.
 | |
|       if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
 | |
|         OtherPtr = BC->getOperand(0);
 | |
|       if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
 | |
|         if (BCE->getOpcode() == Instruction::BitCast)
 | |
|           OtherPtr = BCE->getOperand(0);
 | |
|       
 | |
|       // If the pointer is not the right type, insert a bitcast to the right
 | |
|       // type.
 | |
|       if (OtherPtr->getType() != AI->getType())
 | |
|         OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
 | |
|                                    MI);
 | |
|     }
 | |
| 
 | |
|     // Process each element of the aggregate.
 | |
|     Value *TheFn = MI->getOperand(0);
 | |
|     const Type *BytePtrTy = MI->getRawDest()->getType();
 | |
|     bool SROADest = MI->getRawDest() == BCInst;
 | |
| 
 | |
|     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | |
|       // If this is a memcpy/memmove, emit a GEP of the other element address.
 | |
|       Value *OtherElt = 0;
 | |
|       if (OtherPtr) {
 | |
|         Value *Idx[2];
 | |
|         Idx[0] = Zero;
 | |
|         Idx[1] = ConstantInt::get(Type::Int32Ty, i);
 | |
|         OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
 | |
|                                              OtherPtr->getNameStr()+"."+utostr(i),
 | |
|                                              MI);
 | |
|       }
 | |
| 
 | |
|       Value *EltPtr = NewElts[i];
 | |
|       const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
 | |
|       
 | |
|       // If we got down to a scalar, insert a load or store as appropriate.
 | |
|       if (EltTy->isSingleValueType()) {
 | |
|         if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
 | |
|           Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
 | |
|                                     MI);
 | |
|           new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
 | |
|           continue;
 | |
|         } else {
 | |
|           assert(isa<MemSetInst>(MI));
 | |
| 
 | |
|           // If the stored element is zero (common case), just store a null
 | |
|           // constant.
 | |
|           Constant *StoreVal;
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
 | |
|             if (CI->isZero()) {
 | |
|               StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
 | |
|             } else {
 | |
|               // If EltTy is a vector type, get the element type.
 | |
|               const Type *ValTy = EltTy;
 | |
|               if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
 | |
|                 ValTy = VTy->getElementType();
 | |
| 
 | |
|               // Construct an integer with the right value.
 | |
|               unsigned EltSize = TD.getTypeSizeInBits(ValTy);
 | |
|               APInt OneVal(EltSize, CI->getZExtValue());
 | |
|               APInt TotalVal(OneVal);
 | |
|               // Set each byte.
 | |
|               for (unsigned i = 0; 8*i < EltSize; ++i) {
 | |
|                 TotalVal = TotalVal.shl(8);
 | |
|                 TotalVal |= OneVal;
 | |
|               }
 | |
| 
 | |
|               // Convert the integer value to the appropriate type.
 | |
|               StoreVal = ConstantInt::get(TotalVal);
 | |
|               if (isa<PointerType>(ValTy))
 | |
|                 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
 | |
|               else if (ValTy->isFloatingPoint())
 | |
|                 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
 | |
|               assert(StoreVal->getType() == ValTy && "Type mismatch!");
 | |
|               
 | |
|               // If the requested value was a vector constant, create it.
 | |
|               if (EltTy != ValTy) {
 | |
|                 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
 | |
|                 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
 | |
|                 StoreVal = ConstantVector::get(&Elts[0], NumElts);
 | |
|               }
 | |
|             }
 | |
|             new StoreInst(StoreVal, EltPtr, MI);
 | |
|             continue;
 | |
|           }
 | |
|           // Otherwise, if we're storing a byte variable, use a memset call for
 | |
|           // this element.
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Cast the element pointer to BytePtrTy.
 | |
|       if (EltPtr->getType() != BytePtrTy)
 | |
|         EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
 | |
|     
 | |
|       // Cast the other pointer (if we have one) to BytePtrTy. 
 | |
|       if (OtherElt && OtherElt->getType() != BytePtrTy)
 | |
|         OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
 | |
|                                    MI);
 | |
|     
 | |
|       unsigned EltSize = TD.getABITypeSize(EltTy);
 | |
| 
 | |
|       // Finally, insert the meminst for this element.
 | |
|       if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
 | |
|         Value *Ops[] = {
 | |
|           SROADest ? EltPtr : OtherElt,  // Dest ptr
 | |
|           SROADest ? OtherElt : EltPtr,  // Src ptr
 | |
|           ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
 | |
|           Zero  // Align
 | |
|         };
 | |
|         CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
 | |
|       } else {
 | |
|         assert(isa<MemSetInst>(MI));
 | |
|         Value *Ops[] = {
 | |
|           EltPtr, MI->getOperand(2),  // Dest, Value,
 | |
|           ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
 | |
|           Zero  // Align
 | |
|         };
 | |
|         CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Finally, MI is now dead, as we've modified its actions to occur on all of
 | |
|     // the elements of the aggregate.
 | |
|     ++UI;
 | |
|     MI->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HasPadding - Return true if the specified type has any structure or
 | |
| /// alignment padding, false otherwise.
 | |
| static bool HasPadding(const Type *Ty, const TargetData &TD) {
 | |
|   if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     const StructLayout *SL = TD.getStructLayout(STy);
 | |
|     unsigned PrevFieldBitOffset = 0;
 | |
|     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|       unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
 | |
| 
 | |
|       // Padding in sub-elements?
 | |
|       if (HasPadding(STy->getElementType(i), TD))
 | |
|         return true;
 | |
| 
 | |
|       // Check to see if there is any padding between this element and the
 | |
|       // previous one.
 | |
|       if (i) {
 | |
|         unsigned PrevFieldEnd =
 | |
|         PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
 | |
|         if (PrevFieldEnd < FieldBitOffset)
 | |
|           return true;
 | |
|       }
 | |
| 
 | |
|       PrevFieldBitOffset = FieldBitOffset;
 | |
|     }
 | |
| 
 | |
|     //  Check for tail padding.
 | |
|     if (unsigned EltCount = STy->getNumElements()) {
 | |
|       unsigned PrevFieldEnd = PrevFieldBitOffset +
 | |
|                    TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
 | |
|       if (PrevFieldEnd < SL->getSizeInBits())
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|   } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     return HasPadding(ATy->getElementType(), TD);
 | |
|   } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
 | |
|     return HasPadding(VTy->getElementType(), TD);
 | |
|   }
 | |
|   return TD.getTypeSizeInBits(Ty) != TD.getABITypeSizeInBits(Ty);
 | |
| }
 | |
| 
 | |
| /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
 | |
| /// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
 | |
| /// or 1 if safe after canonicalization has been performed.
 | |
| ///
 | |
| int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
 | |
|   // Loop over the use list of the alloca.  We can only transform it if all of
 | |
|   // the users are safe to transform.
 | |
|   AllocaInfo Info;
 | |
|   
 | |
|   for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
 | |
|        I != E; ++I) {
 | |
|     isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
 | |
|     if (Info.isUnsafe) {
 | |
|       DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Okay, we know all the users are promotable.  If the aggregate is a memcpy
 | |
|   // source and destination, we have to be careful.  In particular, the memcpy
 | |
|   // could be moving around elements that live in structure padding of the LLVM
 | |
|   // types, but may actually be used.  In these cases, we refuse to promote the
 | |
|   // struct.
 | |
|   if (Info.isMemCpySrc && Info.isMemCpyDst &&
 | |
|       HasPadding(AI->getType()->getElementType(), getAnalysis<TargetData>()))
 | |
|     return 0;
 | |
| 
 | |
|   // If we require cleanup, return 1, otherwise return 3.
 | |
|   return Info.needsCanon ? 1 : 3;
 | |
| }
 | |
| 
 | |
| /// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
 | |
| /// allocation, but only if cleaned up, perform the cleanups required.
 | |
| void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
 | |
|   // At this point, we know that the end result will be SROA'd and promoted, so
 | |
|   // we can insert ugly code if required so long as sroa+mem2reg will clean it
 | |
|   // up.
 | |
|   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
 | |
|        UI != E; ) {
 | |
|     GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
 | |
|     if (!GEPI) continue;
 | |
|     gep_type_iterator I = gep_type_begin(GEPI);
 | |
|     ++I;
 | |
| 
 | |
|     if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
 | |
|       uint64_t NumElements = AT->getNumElements();
 | |
| 
 | |
|       if (!isa<ConstantInt>(I.getOperand())) {
 | |
|         if (NumElements == 1) {
 | |
|           GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
 | |
|         } else {
 | |
|           assert(NumElements == 2 && "Unhandled case!");
 | |
|           // All users of the GEP must be loads.  At each use of the GEP, insert
 | |
|           // two loads of the appropriate indexed GEP and select between them.
 | |
|           Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(), 
 | |
|                               Constant::getNullValue(I.getOperand()->getType()),
 | |
|              "isone", GEPI);
 | |
|           // Insert the new GEP instructions, which are properly indexed.
 | |
|           SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
 | |
|           Indices[1] = Constant::getNullValue(Type::Int32Ty);
 | |
|           Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
 | |
|                                                      Indices.begin(),
 | |
|                                                      Indices.end(),
 | |
|                                                      GEPI->getName()+".0", GEPI);
 | |
|           Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
 | |
|           Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
 | |
|                                                     Indices.begin(),
 | |
|                                                     Indices.end(),
 | |
|                                                     GEPI->getName()+".1", GEPI);
 | |
|           // Replace all loads of the variable index GEP with loads from both
 | |
|           // indexes and a select.
 | |
|           while (!GEPI->use_empty()) {
 | |
|             LoadInst *LI = cast<LoadInst>(GEPI->use_back());
 | |
|             Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
 | |
|             Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
 | |
|             Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
 | |
|             LI->replaceAllUsesWith(R);
 | |
|             LI->eraseFromParent();
 | |
|           }
 | |
|           GEPI->eraseFromParent();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// MergeInType - Add the 'In' type to the accumulated type so far.  If the
 | |
| /// types are incompatible, return true, otherwise update Accum and return
 | |
| /// false.
 | |
| ///
 | |
| /// There are three cases we handle here:
 | |
| ///   1) An effectively-integer union, where the pieces are stored into as
 | |
| ///      smaller integers (common with byte swap and other idioms).
 | |
| ///   2) A union of vector types of the same size and potentially its elements.
 | |
| ///      Here we turn element accesses into insert/extract element operations.
 | |
| ///   3) A union of scalar types, such as int/float or int/pointer.  Here we
 | |
| ///      merge together into integers, allowing the xform to work with #1 as
 | |
| ///      well.
 | |
| static bool MergeInType(const Type *In, const Type *&Accum,
 | |
|                         const TargetData &TD) {
 | |
|   // If this is our first type, just use it.
 | |
|   const VectorType *PTy;
 | |
|   if (Accum == Type::VoidTy || In == Accum) {
 | |
|     Accum = In;
 | |
|   } else if (In == Type::VoidTy) {
 | |
|     // Noop.
 | |
|   } else if (In->isInteger() && Accum->isInteger()) {   // integer union.
 | |
|     // Otherwise pick whichever type is larger.
 | |
|     if (cast<IntegerType>(In)->getBitWidth() > 
 | |
|         cast<IntegerType>(Accum)->getBitWidth())
 | |
|       Accum = In;
 | |
|   } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
 | |
|     // Pointer unions just stay as one of the pointers.
 | |
|   } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
 | |
|     if ((PTy = dyn_cast<VectorType>(Accum)) && 
 | |
|         PTy->getElementType() == In) {
 | |
|       // Accum is a vector, and we are accessing an element: ok.
 | |
|     } else if ((PTy = dyn_cast<VectorType>(In)) && 
 | |
|                PTy->getElementType() == Accum) {
 | |
|       // In is a vector, and accum is an element: ok, remember In.
 | |
|       Accum = In;
 | |
|     } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
 | |
|                PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
 | |
|       // Two vectors of the same size: keep Accum.
 | |
|     } else {
 | |
|       // Cannot insert an short into a <4 x int> or handle
 | |
|       // <2 x int> -> <4 x int>
 | |
|       return true;
 | |
|     }
 | |
|   } else {
 | |
|     // Pointer/FP/Integer unions merge together as integers.
 | |
|     switch (Accum->getTypeID()) {
 | |
|     case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
 | |
|     case Type::FloatTyID:   Accum = Type::Int32Ty; break;
 | |
|     case Type::DoubleTyID:  Accum = Type::Int64Ty; break;
 | |
|     case Type::X86_FP80TyID:  return true;
 | |
|     case Type::FP128TyID: return true;
 | |
|     case Type::PPC_FP128TyID: return true;
 | |
|     default:
 | |
|       assert(Accum->isInteger() && "Unknown FP type!");
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     switch (In->getTypeID()) {
 | |
|     case Type::PointerTyID: In = TD.getIntPtrType(); break;
 | |
|     case Type::FloatTyID:   In = Type::Int32Ty; break;
 | |
|     case Type::DoubleTyID:  In = Type::Int64Ty; break;
 | |
|     case Type::X86_FP80TyID:  return true;
 | |
|     case Type::FP128TyID: return true;
 | |
|     case Type::PPC_FP128TyID: return true;
 | |
|     default:
 | |
|       assert(In->isInteger() && "Unknown FP type!");
 | |
|       break;
 | |
|     }
 | |
|     return MergeInType(In, Accum, TD);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getUIntAtLeastAsBigAs - Return an unsigned integer type that is at least
 | |
| /// as big as the specified type.  If there is no suitable type, this returns
 | |
| /// null.
 | |
| const Type *getUIntAtLeastAsBigAs(unsigned NumBits) {
 | |
|   if (NumBits > 64) return 0;
 | |
|   if (NumBits > 32) return Type::Int64Ty;
 | |
|   if (NumBits > 16) return Type::Int32Ty;
 | |
|   if (NumBits > 8) return Type::Int16Ty;
 | |
|   return Type::Int8Ty;    
 | |
| }
 | |
| 
 | |
| /// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
 | |
| /// single scalar integer type, return that type.  Further, if the use is not
 | |
| /// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
 | |
| /// there are no uses of this pointer, return Type::VoidTy to differentiate from
 | |
| /// failure.
 | |
| ///
 | |
| const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
 | |
|   const Type *UsedType = Type::VoidTy; // No uses, no forced type.
 | |
|   const TargetData &TD = getAnalysis<TargetData>();
 | |
|   const PointerType *PTy = cast<PointerType>(V->getType());
 | |
| 
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
|     
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | |
|       // FIXME: Loads of a first class aggregrate value could be converted to a
 | |
|       // series of loads and insertvalues
 | |
|       if (!LI->getType()->isSingleValueType())
 | |
|         return 0;
 | |
| 
 | |
|       if (MergeInType(LI->getType(), UsedType, TD))
 | |
|         return 0;
 | |
|       
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | |
|       // Storing the pointer, not into the value?
 | |
|       if (SI->getOperand(0) == V) return 0;
 | |
| 
 | |
|       // FIXME: Stores of a first class aggregrate value could be converted to a
 | |
|       // series of extractvalues and stores
 | |
|       if (!SI->getOperand(0)->getType()->isSingleValueType())
 | |
|         return 0;
 | |
|       
 | |
|       // NOTE: We could handle storing of FP imms into integers here!
 | |
|       
 | |
|       if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
 | |
|         return 0;
 | |
|     } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
 | |
|       IsNotTrivial = true;
 | |
|       const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
 | |
|       if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
 | |
|     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
 | |
|       // Check to see if this is stepping over an element: GEP Ptr, int C
 | |
|       if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
 | |
|         unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
 | |
|         unsigned ElSize = TD.getABITypeSize(PTy->getElementType());
 | |
|         unsigned BitOffset = Idx*ElSize*8;
 | |
|         if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
 | |
|         
 | |
|         IsNotTrivial = true;
 | |
|         const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
 | |
|         if (SubElt == 0) return 0;
 | |
|         if (SubElt != Type::VoidTy && SubElt->isInteger()) {
 | |
|           const Type *NewTy = 
 | |
|             getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(SubElt)+BitOffset);
 | |
|           if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
 | |
|           continue;
 | |
|         }
 | |
|       } else if (GEP->getNumOperands() == 3 && 
 | |
|                  isa<ConstantInt>(GEP->getOperand(1)) &&
 | |
|                  isa<ConstantInt>(GEP->getOperand(2)) &&
 | |
|                  cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
 | |
|         // We are stepping into an element, e.g. a structure or an array:
 | |
|         // GEP Ptr, int 0, uint C
 | |
|         const Type *AggTy = PTy->getElementType();
 | |
|         unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
 | |
|         
 | |
|         if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
 | |
|           if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
 | |
|         } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
 | |
|           // Getting an element of the vector.
 | |
|           if (Idx >= VectorTy->getNumElements()) return 0;  // Out of range.
 | |
| 
 | |
|           // Merge in the vector type.
 | |
|           if (MergeInType(VectorTy, UsedType, TD)) return 0;
 | |
|           
 | |
|           const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
 | |
|           if (SubTy == 0) return 0;
 | |
|           
 | |
|           if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
 | |
|             return 0;
 | |
| 
 | |
|           // We'll need to change this to an insert/extract element operation.
 | |
|           IsNotTrivial = true;
 | |
|           continue;    // Everything looks ok
 | |
|           
 | |
|         } else if (isa<StructType>(AggTy)) {
 | |
|           // Structs are always ok.
 | |
|         } else {
 | |
|           return 0;
 | |
|         }
 | |
|         const Type *NTy = getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(AggTy));
 | |
|         if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
 | |
|         const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
 | |
|         if (SubTy == 0) return 0;
 | |
|         if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
 | |
|           return 0;
 | |
|         continue;    // Everything looks ok
 | |
|       }
 | |
|       return 0;
 | |
|     } else {
 | |
|       // Cannot handle this!
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return UsedType;
 | |
| }
 | |
| 
 | |
| /// ConvertToScalar - The specified alloca passes the CanConvertToScalar
 | |
| /// predicate and is non-trivial.  Convert it to something that can be trivially
 | |
| /// promoted into a register by mem2reg.
 | |
| void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
 | |
|   DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
 | |
|        << *ActualTy << "\n";
 | |
|   ++NumConverted;
 | |
|   
 | |
|   BasicBlock *EntryBlock = AI->getParent();
 | |
|   assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
 | |
|          "Not in the entry block!");
 | |
|   EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
 | |
|   
 | |
|   // Create and insert the alloca.
 | |
|   AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
 | |
|                                      EntryBlock->begin());
 | |
|   ConvertUsesToScalar(AI, NewAI, 0);
 | |
|   delete AI;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
 | |
| /// directly.  This happens when we are converting an "integer union" to a
 | |
| /// single integer scalar, or when we are converting a "vector union" to a
 | |
| /// vector with insert/extractelement instructions.
 | |
| ///
 | |
| /// Offset is an offset from the original alloca, in bits that need to be
 | |
| /// shifted to the right.  By the end of this, there should be no uses of Ptr.
 | |
| void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
 | |
|   while (!Ptr->use_empty()) {
 | |
|     Instruction *User = cast<Instruction>(Ptr->use_back());
 | |
|     
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | |
|       Value *NV = ConvertUsesOfLoadToScalar(LI, NewAI, Offset);
 | |
|       LI->replaceAllUsesWith(NV);
 | |
|       LI->eraseFromParent();
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | |
|       assert(SI->getOperand(0) != Ptr && "Consistency error!");
 | |
| 
 | |
|       Value *SV = ConvertUsesOfStoreToScalar(SI, NewAI, Offset);
 | |
|       new StoreInst(SV, NewAI, SI);
 | |
|       SI->eraseFromParent();
 | |
|       
 | |
|     } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
 | |
|       ConvertUsesToScalar(CI, NewAI, Offset);
 | |
|       CI->eraseFromParent();
 | |
|     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
 | |
|       const PointerType *AggPtrTy = 
 | |
|         cast<PointerType>(GEP->getOperand(0)->getType());
 | |
|       const TargetData &TD = getAnalysis<TargetData>();
 | |
|       unsigned AggSizeInBits =
 | |
|         TD.getABITypeSizeInBits(AggPtrTy->getElementType());
 | |
| 
 | |
|       // Check to see if this is stepping over an element: GEP Ptr, int C
 | |
|       unsigned NewOffset = Offset;
 | |
|       if (GEP->getNumOperands() == 2) {
 | |
|         unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
 | |
|         unsigned BitOffset = Idx*AggSizeInBits;
 | |
|         
 | |
|         NewOffset += BitOffset;
 | |
|       } else if (GEP->getNumOperands() == 3) {
 | |
|         // We know that operand #2 is zero.
 | |
|         unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
 | |
|         const Type *AggTy = AggPtrTy->getElementType();
 | |
|         if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
 | |
|           unsigned ElSizeBits =
 | |
|             TD.getABITypeSizeInBits(SeqTy->getElementType());
 | |
| 
 | |
|           NewOffset += ElSizeBits*Idx;
 | |
|         } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
 | |
|           unsigned EltBitOffset =
 | |
|             TD.getStructLayout(STy)->getElementOffsetInBits(Idx);
 | |
|           
 | |
|           NewOffset += EltBitOffset;
 | |
|         } else {
 | |
|           assert(0 && "Unsupported operation!");
 | |
|           abort();
 | |
|         }
 | |
|       } else {
 | |
|         assert(0 && "Unsupported operation!");
 | |
|         abort();
 | |
|       }
 | |
|       ConvertUsesToScalar(GEP, NewAI, NewOffset);
 | |
|       GEP->eraseFromParent();
 | |
|     } else {
 | |
|       assert(0 && "Unsupported operation!");
 | |
|       abort();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ConvertUsesOfLoadToScalar - Convert all of the users the specified load to
 | |
| /// use the new alloca directly, returning the value that should replace the
 | |
| /// load.  This happens when we are converting an "integer union" to a
 | |
| /// single integer scalar, or when we are converting a "vector union" to a
 | |
| /// vector with insert/extractelement instructions.
 | |
| ///
 | |
| /// Offset is an offset from the original alloca, in bits that need to be
 | |
| /// shifted to the right.  By the end of this, there should be no uses of Ptr.
 | |
| Value *SROA::ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI, 
 | |
|                                        unsigned Offset) {
 | |
|   // The load is a bit extract from NewAI shifted right by Offset bits.
 | |
|   Value *NV = new LoadInst(NewAI, LI->getName(), LI);
 | |
|   
 | |
|   if (NV->getType() == LI->getType() && Offset == 0) {
 | |
|     // We win, no conversion needed.
 | |
|     return NV;
 | |
|   } 
 | |
| 
 | |
|   // If the result type of the 'union' is a pointer, then this must be ptr->ptr
 | |
|   // cast.  Anything else would result in NV being an integer.
 | |
|   if (isa<PointerType>(NV->getType())) {
 | |
|     assert(isa<PointerType>(LI->getType()));
 | |
|     return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
 | |
|   }
 | |
|   
 | |
|   if (const VectorType *VTy = dyn_cast<VectorType>(NV->getType())) {
 | |
|     // If the result alloca is a vector type, this is either an element
 | |
|     // access or a bitcast to another vector type.
 | |
|     if (isa<VectorType>(LI->getType()))
 | |
|       return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
 | |
| 
 | |
|     // Otherwise it must be an element access.
 | |
|     const TargetData &TD = getAnalysis<TargetData>();
 | |
|     unsigned Elt = 0;
 | |
|     if (Offset) {
 | |
|       unsigned EltSize = TD.getABITypeSizeInBits(VTy->getElementType());
 | |
|       Elt = Offset/EltSize;
 | |
|       Offset -= EltSize*Elt;
 | |
|     }
 | |
|     NV = new ExtractElementInst(NV, ConstantInt::get(Type::Int32Ty, Elt),
 | |
|                                 "tmp", LI);
 | |
|     
 | |
|     // If we're done, return this element.
 | |
|     if (NV->getType() == LI->getType() && Offset == 0)
 | |
|       return NV;
 | |
|   }
 | |
|   
 | |
|   const IntegerType *NTy = cast<IntegerType>(NV->getType());
 | |
|   
 | |
|   // If this is a big-endian system and the load is narrower than the
 | |
|   // full alloca type, we need to do a shift to get the right bits.
 | |
|   int ShAmt = 0;
 | |
|   const TargetData &TD = getAnalysis<TargetData>();
 | |
|   if (TD.isBigEndian()) {
 | |
|     // On big-endian machines, the lowest bit is stored at the bit offset
 | |
|     // from the pointer given by getTypeStoreSizeInBits.  This matters for
 | |
|     // integers with a bitwidth that is not a multiple of 8.
 | |
|     ShAmt = TD.getTypeStoreSizeInBits(NTy) -
 | |
|     TD.getTypeStoreSizeInBits(LI->getType()) - Offset;
 | |
|   } else {
 | |
|     ShAmt = Offset;
 | |
|   }
 | |
|   
 | |
|   // Note: we support negative bitwidths (with shl) which are not defined.
 | |
|   // We do this to support (f.e.) loads off the end of a structure where
 | |
|   // only some bits are used.
 | |
|   if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
 | |
|     NV = BinaryOperator::CreateLShr(NV, 
 | |
|                                     ConstantInt::get(NV->getType(),ShAmt),
 | |
|                                     LI->getName(), LI);
 | |
|   else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
 | |
|     NV = BinaryOperator::CreateShl(NV, 
 | |
|                                    ConstantInt::get(NV->getType(),-ShAmt),
 | |
|                                    LI->getName(), LI);
 | |
|   
 | |
|   // Finally, unconditionally truncate the integer to the right width.
 | |
|   unsigned LIBitWidth = TD.getTypeSizeInBits(LI->getType());
 | |
|   if (LIBitWidth < NTy->getBitWidth())
 | |
|     NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
 | |
|                        LI->getName(), LI);
 | |
|   
 | |
|   // If the result is an integer, this is a trunc or bitcast.
 | |
|   if (isa<IntegerType>(LI->getType())) {
 | |
|     // Should be done.
 | |
|   } else if (LI->getType()->isFloatingPoint()) {
 | |
|     // Just do a bitcast, we know the sizes match up.
 | |
|     NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
 | |
|   } else {
 | |
|     // Otherwise must be a pointer.
 | |
|     NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
 | |
|   }
 | |
|   assert(NV->getType() == LI->getType() && "Didn't convert right?");
 | |
|   return NV;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ConvertUsesOfStoreToScalar - Convert the specified store to a load+store
 | |
| /// pair of the new alloca directly, returning the value that should be stored
 | |
| /// to the alloca.  This happens when we are converting an "integer union" to a
 | |
| /// single integer scalar, or when we are converting a "vector union" to a
 | |
| /// vector with insert/extractelement instructions.
 | |
| ///
 | |
| /// Offset is an offset from the original alloca, in bits that need to be
 | |
| /// shifted to the right.  By the end of this, there should be no uses of Ptr.
 | |
| Value *SROA::ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI, 
 | |
|                                         unsigned Offset) {
 | |
|   
 | |
|   // Convert the stored type to the actual type, shift it left to insert
 | |
|   // then 'or' into place.
 | |
|   Value *SV = SI->getOperand(0);
 | |
|   const Type *AllocaType = NewAI->getType()->getElementType();
 | |
|   if (SV->getType() == AllocaType && Offset == 0) {
 | |
|     // All is well.
 | |
|   } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
 | |
|     Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
 | |
|     
 | |
|     // If the result alloca is a vector type, this is either an element
 | |
|     // access or a bitcast to another vector type.
 | |
|     if (isa<VectorType>(SV->getType())) {
 | |
|       SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
 | |
|     } else {
 | |
|       // Must be an element insertion.
 | |
|       const TargetData &TD = getAnalysis<TargetData>();
 | |
|       unsigned Elt = Offset/TD.getABITypeSizeInBits(PTy->getElementType());
 | |
|       SV = InsertElementInst::Create(Old, SV,
 | |
|                                      ConstantInt::get(Type::Int32Ty, Elt),
 | |
|                                      "tmp", SI);
 | |
|     }
 | |
|   } else if (isa<PointerType>(AllocaType)) {
 | |
|     // If the alloca type is a pointer, then all the elements must be
 | |
|     // pointers.
 | |
|     if (SV->getType() != AllocaType)
 | |
|       SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
 | |
|   } else {
 | |
|     Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
 | |
|     
 | |
|     // If SV is a float, convert it to the appropriate integer type.
 | |
|     // If it is a pointer, do the same, and also handle ptr->ptr casts
 | |
|     // here.
 | |
|     const TargetData &TD = getAnalysis<TargetData>();
 | |
|     unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
 | |
|     unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
 | |
|     unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
 | |
|     unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
 | |
|     if (SV->getType()->isFloatingPoint())
 | |
|       SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
 | |
|                            SV->getName(), SI);
 | |
|     else if (isa<PointerType>(SV->getType()))
 | |
|       SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
 | |
|     
 | |
|     // Always zero extend the value if needed.
 | |
|     if (SV->getType() != AllocaType)
 | |
|       SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
 | |
|     
 | |
|     // If this is a big-endian system and the store is narrower than the
 | |
|     // full alloca type, we need to do a shift to get the right bits.
 | |
|     int ShAmt = 0;
 | |
|     if (TD.isBigEndian()) {
 | |
|       // On big-endian machines, the lowest bit is stored at the bit offset
 | |
|       // from the pointer given by getTypeStoreSizeInBits.  This matters for
 | |
|       // integers with a bitwidth that is not a multiple of 8.
 | |
|       ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
 | |
|     } else {
 | |
|       ShAmt = Offset;
 | |
|     }
 | |
|     
 | |
|     // Note: we support negative bitwidths (with shr) which are not defined.
 | |
|     // We do this to support (f.e.) stores off the end of a structure where
 | |
|     // only some bits in the structure are set.
 | |
|     APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
 | |
|     if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
 | |
|       SV = BinaryOperator::CreateShl(SV, 
 | |
|                                      ConstantInt::get(SV->getType(), ShAmt),
 | |
|                                      SV->getName(), SI);
 | |
|       Mask <<= ShAmt;
 | |
|     } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
 | |
|       SV = BinaryOperator::CreateLShr(SV,
 | |
|                                       ConstantInt::get(SV->getType(),-ShAmt),
 | |
|                                       SV->getName(), SI);
 | |
|       Mask = Mask.lshr(ShAmt);
 | |
|     }
 | |
|     
 | |
|     // Mask out the bits we are about to insert from the old value, and or
 | |
|     // in the new bits.
 | |
|     if (SrcWidth != DestWidth) {
 | |
|       assert(DestWidth > SrcWidth);
 | |
|       Old = BinaryOperator::CreateAnd(Old, ConstantInt::get(~Mask),
 | |
|                                       Old->getName()+".mask", SI);
 | |
|       SV = BinaryOperator::CreateOr(Old, SV, SV->getName()+".ins", SI);
 | |
|     }
 | |
|   }
 | |
|   return SV;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
 | |
| /// some part of a constant global variable.  This intentionally only accepts
 | |
| /// constant expressions because we don't can't rewrite arbitrary instructions.
 | |
| static bool PointsToConstantGlobal(Value *V) {
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | |
|     return GV->isConstant();
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|     if (CE->getOpcode() == Instruction::BitCast || 
 | |
|         CE->getOpcode() == Instruction::GetElementPtr)
 | |
|       return PointsToConstantGlobal(CE->getOperand(0));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
 | |
| /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
 | |
| /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
 | |
| /// track of whether it moves the pointer (with isOffset) but otherwise traverse
 | |
| /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
 | |
| /// the alloca, and if the source pointer is a pointer to a constant  global, we
 | |
| /// can optimize this.
 | |
| static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
 | |
|                                            bool isOffset) {
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
 | |
|     if (isa<LoadInst>(*UI)) {
 | |
|       // Ignore loads, they are always ok.
 | |
|       continue;
 | |
|     }
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
 | |
|       // If uses of the bitcast are ok, we are ok.
 | |
|       if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
 | |
|       // If the GEP has all zero indices, it doesn't offset the pointer.  If it
 | |
|       // doesn't, it does.
 | |
|       if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
 | |
|                                          isOffset || !GEP->hasAllZeroIndices()))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // If this is isn't our memcpy/memmove, reject it as something we can't
 | |
|     // handle.
 | |
|     if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
 | |
|       return false;
 | |
| 
 | |
|     // If we already have seen a copy, reject the second one.
 | |
|     if (TheCopy) return false;
 | |
|     
 | |
|     // If the pointer has been offset from the start of the alloca, we can't
 | |
|     // safely handle this.
 | |
|     if (isOffset) return false;
 | |
| 
 | |
|     // If the memintrinsic isn't using the alloca as the dest, reject it.
 | |
|     if (UI.getOperandNo() != 1) return false;
 | |
|     
 | |
|     MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
 | |
|     
 | |
|     // If the source of the memcpy/move is not a constant global, reject it.
 | |
|     if (!PointsToConstantGlobal(MI->getOperand(2)))
 | |
|       return false;
 | |
|     
 | |
|     // Otherwise, the transform is safe.  Remember the copy instruction.
 | |
|     TheCopy = MI;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
 | |
| /// modified by a copy from a constant global.  If we can prove this, we can
 | |
| /// replace any uses of the alloca with uses of the global directly.
 | |
| Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
 | |
|   Instruction *TheCopy = 0;
 | |
|   if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
 | |
|     return TheCopy;
 | |
|   return 0;
 | |
| }
 |