mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29396 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1274 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1274 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Writer.cpp - Library for writing LLVM bytecode files --------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This library implements the functionality defined in llvm/Bytecode/Writer.h
 | |
| //
 | |
| // Note that this file uses an unusual technique of outputting all the bytecode
 | |
| // to a vector of unsigned char, then copies the vector to an ostream.  The
 | |
| // reason for this is that we must do "seeking" in the stream to do back-
 | |
| // patching, and some very important ostreams that we want to support (like
 | |
| // pipes) do not support seeking.  :( :( :(
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "WriterInternals.h"
 | |
| #include "llvm/Bytecode/WriteBytecodePass.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/SymbolTable.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/Compressor.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/System/Program.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <cstring>
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// This value needs to be incremented every time the bytecode format changes
 | |
| /// so that the reader can distinguish which format of the bytecode file has
 | |
| /// been written.
 | |
| /// @brief The bytecode version number
 | |
| const unsigned BCVersionNum = 5;
 | |
| 
 | |
| static RegisterPass<WriteBytecodePass> X("emitbytecode", "Bytecode Writer");
 | |
| 
 | |
| static Statistic<>
 | |
| BytesWritten("bytecodewriter", "Number of bytecode bytes written");
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //===                           Output Primitives                          ===//
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // output - If a position is specified, it must be in the valid portion of the
 | |
| // string... note that this should be inlined always so only the relevant IF
 | |
| // body should be included.
 | |
| inline void BytecodeWriter::output(unsigned i, int pos) {
 | |
|   if (pos == -1) { // Be endian clean, little endian is our friend
 | |
|     Out.push_back((unsigned char)i);
 | |
|     Out.push_back((unsigned char)(i >> 8));
 | |
|     Out.push_back((unsigned char)(i >> 16));
 | |
|     Out.push_back((unsigned char)(i >> 24));
 | |
|   } else {
 | |
|     Out[pos  ] = (unsigned char)i;
 | |
|     Out[pos+1] = (unsigned char)(i >> 8);
 | |
|     Out[pos+2] = (unsigned char)(i >> 16);
 | |
|     Out[pos+3] = (unsigned char)(i >> 24);
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline void BytecodeWriter::output(int i) {
 | |
|   output((unsigned)i);
 | |
| }
 | |
| 
 | |
| /// output_vbr - Output an unsigned value, by using the least number of bytes
 | |
| /// possible.  This is useful because many of our "infinite" values are really
 | |
| /// very small most of the time; but can be large a few times.
 | |
| /// Data format used:  If you read a byte with the high bit set, use the low
 | |
| /// seven bits as data and then read another byte.
 | |
| inline void BytecodeWriter::output_vbr(uint64_t i) {
 | |
|   while (1) {
 | |
|     if (i < 0x80) { // done?
 | |
|       Out.push_back((unsigned char)i);   // We know the high bit is clear...
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Nope, we are bigger than a character, output the next 7 bits and set the
 | |
|     // high bit to say that there is more coming...
 | |
|     Out.push_back(0x80 | ((unsigned char)i & 0x7F));
 | |
|     i >>= 7;  // Shift out 7 bits now...
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline void BytecodeWriter::output_vbr(unsigned i) {
 | |
|   while (1) {
 | |
|     if (i < 0x80) { // done?
 | |
|       Out.push_back((unsigned char)i);   // We know the high bit is clear...
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Nope, we are bigger than a character, output the next 7 bits and set the
 | |
|     // high bit to say that there is more coming...
 | |
|     Out.push_back(0x80 | ((unsigned char)i & 0x7F));
 | |
|     i >>= 7;  // Shift out 7 bits now...
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline void BytecodeWriter::output_typeid(unsigned i) {
 | |
|   if (i <= 0x00FFFFFF)
 | |
|     this->output_vbr(i);
 | |
|   else {
 | |
|     this->output_vbr(0x00FFFFFF);
 | |
|     this->output_vbr(i);
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline void BytecodeWriter::output_vbr(int64_t i) {
 | |
|   if (i < 0)
 | |
|     output_vbr(((uint64_t)(-i) << 1) | 1); // Set low order sign bit...
 | |
|   else
 | |
|     output_vbr((uint64_t)i << 1);          // Low order bit is clear.
 | |
| }
 | |
| 
 | |
| 
 | |
| inline void BytecodeWriter::output_vbr(int i) {
 | |
|   if (i < 0)
 | |
|     output_vbr(((unsigned)(-i) << 1) | 1); // Set low order sign bit...
 | |
|   else
 | |
|     output_vbr((unsigned)i << 1);          // Low order bit is clear.
 | |
| }
 | |
| 
 | |
| inline void BytecodeWriter::output(const std::string &s) {
 | |
|   unsigned Len = s.length();
 | |
|   output_vbr(Len);             // Strings may have an arbitrary length.
 | |
|   Out.insert(Out.end(), s.begin(), s.end());
 | |
| }
 | |
| 
 | |
| inline void BytecodeWriter::output_data(const void *Ptr, const void *End) {
 | |
|   Out.insert(Out.end(), (const unsigned char*)Ptr, (const unsigned char*)End);
 | |
| }
 | |
| 
 | |
| inline void BytecodeWriter::output_float(float& FloatVal) {
 | |
|   /// FIXME: This isn't optimal, it has size problems on some platforms
 | |
|   /// where FP is not IEEE.
 | |
|   uint32_t i = FloatToBits(FloatVal);
 | |
|   Out.push_back( static_cast<unsigned char>( (i      ) & 0xFF));
 | |
|   Out.push_back( static_cast<unsigned char>( (i >> 8 ) & 0xFF));
 | |
|   Out.push_back( static_cast<unsigned char>( (i >> 16) & 0xFF));
 | |
|   Out.push_back( static_cast<unsigned char>( (i >> 24) & 0xFF));
 | |
| }
 | |
| 
 | |
| inline void BytecodeWriter::output_double(double& DoubleVal) {
 | |
|   /// FIXME: This isn't optimal, it has size problems on some platforms
 | |
|   /// where FP is not IEEE.
 | |
|   uint64_t i = DoubleToBits(DoubleVal);
 | |
|   Out.push_back( static_cast<unsigned char>( (i      ) & 0xFF));
 | |
|   Out.push_back( static_cast<unsigned char>( (i >> 8 ) & 0xFF));
 | |
|   Out.push_back( static_cast<unsigned char>( (i >> 16) & 0xFF));
 | |
|   Out.push_back( static_cast<unsigned char>( (i >> 24) & 0xFF));
 | |
|   Out.push_back( static_cast<unsigned char>( (i >> 32) & 0xFF));
 | |
|   Out.push_back( static_cast<unsigned char>( (i >> 40) & 0xFF));
 | |
|   Out.push_back( static_cast<unsigned char>( (i >> 48) & 0xFF));
 | |
|   Out.push_back( static_cast<unsigned char>( (i >> 56) & 0xFF));
 | |
| }
 | |
| 
 | |
| inline BytecodeBlock::BytecodeBlock(unsigned ID, BytecodeWriter &w,
 | |
|                                     bool elideIfEmpty, bool hasLongFormat)
 | |
|   : Id(ID), Writer(w), ElideIfEmpty(elideIfEmpty), HasLongFormat(hasLongFormat){
 | |
| 
 | |
|   if (HasLongFormat) {
 | |
|     w.output(ID);
 | |
|     w.output(0U); // For length in long format
 | |
|   } else {
 | |
|     w.output(0U); /// Place holder for ID and length for this block
 | |
|   }
 | |
|   Loc = w.size();
 | |
| }
 | |
| 
 | |
| inline BytecodeBlock::~BytecodeBlock() { // Do backpatch when block goes out
 | |
|                                          // of scope...
 | |
|   if (Loc == Writer.size() && ElideIfEmpty) {
 | |
|     // If the block is empty, and we are allowed to, do not emit the block at
 | |
|     // all!
 | |
|     Writer.resize(Writer.size()-(HasLongFormat?8:4));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (HasLongFormat)
 | |
|     Writer.output(unsigned(Writer.size()-Loc), int(Loc-4));
 | |
|   else
 | |
|     Writer.output(unsigned(Writer.size()-Loc) << 5 | (Id & 0x1F), int(Loc-4));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //===                           Constant Output                            ===//
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void BytecodeWriter::outputType(const Type *T) {
 | |
|   output_vbr((unsigned)T->getTypeID());
 | |
| 
 | |
|   // That's all there is to handling primitive types...
 | |
|   if (T->isPrimitiveType()) {
 | |
|     return;     // We might do this if we alias a prim type: %x = type int
 | |
|   }
 | |
| 
 | |
|   switch (T->getTypeID()) {   // Handle derived types now.
 | |
|   case Type::FunctionTyID: {
 | |
|     const FunctionType *MT = cast<FunctionType>(T);
 | |
|     int Slot = Table.getSlot(MT->getReturnType());
 | |
|     assert(Slot != -1 && "Type used but not available!!");
 | |
|     output_typeid((unsigned)Slot);
 | |
| 
 | |
|     // Output the number of arguments to function (+1 if varargs):
 | |
|     output_vbr((unsigned)MT->getNumParams()+MT->isVarArg());
 | |
| 
 | |
|     // Output all of the arguments...
 | |
|     FunctionType::param_iterator I = MT->param_begin();
 | |
|     for (; I != MT->param_end(); ++I) {
 | |
|       Slot = Table.getSlot(*I);
 | |
|       assert(Slot != -1 && "Type used but not available!!");
 | |
|       output_typeid((unsigned)Slot);
 | |
|     }
 | |
| 
 | |
|     // Terminate list with VoidTy if we are a varargs function...
 | |
|     if (MT->isVarArg())
 | |
|       output_typeid((unsigned)Type::VoidTyID);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::ArrayTyID: {
 | |
|     const ArrayType *AT = cast<ArrayType>(T);
 | |
|     int Slot = Table.getSlot(AT->getElementType());
 | |
|     assert(Slot != -1 && "Type used but not available!!");
 | |
|     output_typeid((unsigned)Slot);
 | |
|     output_vbr(AT->getNumElements());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|  case Type::PackedTyID: {
 | |
|     const PackedType *PT = cast<PackedType>(T);
 | |
|     int Slot = Table.getSlot(PT->getElementType());
 | |
|     assert(Slot != -1 && "Type used but not available!!");
 | |
|     output_typeid((unsigned)Slot);
 | |
|     output_vbr(PT->getNumElements());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   case Type::StructTyID: {
 | |
|     const StructType *ST = cast<StructType>(T);
 | |
| 
 | |
|     // Output all of the element types...
 | |
|     for (StructType::element_iterator I = ST->element_begin(),
 | |
|            E = ST->element_end(); I != E; ++I) {
 | |
|       int Slot = Table.getSlot(*I);
 | |
|       assert(Slot != -1 && "Type used but not available!!");
 | |
|       output_typeid((unsigned)Slot);
 | |
|     }
 | |
| 
 | |
|     // Terminate list with VoidTy
 | |
|     output_typeid((unsigned)Type::VoidTyID);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::PointerTyID: {
 | |
|     const PointerType *PT = cast<PointerType>(T);
 | |
|     int Slot = Table.getSlot(PT->getElementType());
 | |
|     assert(Slot != -1 && "Type used but not available!!");
 | |
|     output_typeid((unsigned)Slot);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::OpaqueTyID:
 | |
|     // No need to emit anything, just the count of opaque types is enough.
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize"
 | |
|               << " Type '" << T->getDescription() << "'\n";
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BytecodeWriter::outputConstant(const Constant *CPV) {
 | |
|   assert((CPV->getType()->isPrimitiveType() || !CPV->isNullValue()) &&
 | |
|          "Shouldn't output null constants!");
 | |
| 
 | |
|   // We must check for a ConstantExpr before switching by type because
 | |
|   // a ConstantExpr can be of any type, and has no explicit value.
 | |
|   //
 | |
|   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
 | |
|     // FIXME: Encoding of constant exprs could be much more compact!
 | |
|     assert(CE->getNumOperands() > 0 && "ConstantExpr with 0 operands");
 | |
|     assert(CE->getNumOperands() != 1 || CE->getOpcode() == Instruction::Cast);
 | |
|     output_vbr(1+CE->getNumOperands());   // flags as an expr
 | |
|     output_vbr(CE->getOpcode());        // flags as an expr
 | |
| 
 | |
|     for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end(); ++OI){
 | |
|       int Slot = Table.getSlot(*OI);
 | |
|       assert(Slot != -1 && "Unknown constant used in ConstantExpr!!");
 | |
|       output_vbr((unsigned)Slot);
 | |
|       Slot = Table.getSlot((*OI)->getType());
 | |
|       output_typeid((unsigned)Slot);
 | |
|     }
 | |
|     return;
 | |
|   } else if (isa<UndefValue>(CPV)) {
 | |
|     output_vbr(1U);       // 1 -> UndefValue constant.
 | |
|     return;
 | |
|   } else {
 | |
|     output_vbr(0U);       // flag as not a ConstantExpr
 | |
|   }
 | |
| 
 | |
|   switch (CPV->getType()->getTypeID()) {
 | |
|   case Type::BoolTyID:    // Boolean Types
 | |
|     if (cast<ConstantBool>(CPV)->getValue())
 | |
|       output_vbr(1U);
 | |
|     else
 | |
|       output_vbr(0U);
 | |
|     break;
 | |
| 
 | |
|   case Type::UByteTyID:   // Unsigned integer types...
 | |
|   case Type::UShortTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::ULongTyID:
 | |
|     output_vbr(cast<ConstantUInt>(CPV)->getValue());
 | |
|     break;
 | |
| 
 | |
|   case Type::SByteTyID:   // Signed integer types...
 | |
|   case Type::ShortTyID:
 | |
|   case Type::IntTyID:
 | |
|   case Type::LongTyID:
 | |
|     output_vbr(cast<ConstantSInt>(CPV)->getValue());
 | |
|     break;
 | |
| 
 | |
|   case Type::ArrayTyID: {
 | |
|     const ConstantArray *CPA = cast<ConstantArray>(CPV);
 | |
|     assert(!CPA->isString() && "Constant strings should be handled specially!");
 | |
| 
 | |
|     for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) {
 | |
|       int Slot = Table.getSlot(CPA->getOperand(i));
 | |
|       assert(Slot != -1 && "Constant used but not available!!");
 | |
|       output_vbr((unsigned)Slot);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::PackedTyID: {
 | |
|     const ConstantPacked *CP = cast<ConstantPacked>(CPV);
 | |
| 
 | |
|     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) {
 | |
|       int Slot = Table.getSlot(CP->getOperand(i));
 | |
|       assert(Slot != -1 && "Constant used but not available!!");
 | |
|       output_vbr((unsigned)Slot);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::StructTyID: {
 | |
|     const ConstantStruct *CPS = cast<ConstantStruct>(CPV);
 | |
| 
 | |
|     for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) {
 | |
|       int Slot = Table.getSlot(CPS->getOperand(i));
 | |
|       assert(Slot != -1 && "Constant used but not available!!");
 | |
|       output_vbr((unsigned)Slot);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::PointerTyID:
 | |
|     assert(0 && "No non-null, non-constant-expr constants allowed!");
 | |
|     abort();
 | |
| 
 | |
|   case Type::FloatTyID: {   // Floating point types...
 | |
|     float Tmp = (float)cast<ConstantFP>(CPV)->getValue();
 | |
|     output_float(Tmp);
 | |
|     break;
 | |
|   }
 | |
|   case Type::DoubleTyID: {
 | |
|     double Tmp = cast<ConstantFP>(CPV)->getValue();
 | |
|     output_double(Tmp);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::VoidTyID:
 | |
|   case Type::LabelTyID:
 | |
|   default:
 | |
|     std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize"
 | |
|               << " type '" << *CPV->getType() << "'\n";
 | |
|     break;
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// outputInlineAsm - InlineAsm's get emitted to the constant pool, so they can
 | |
| /// be shared by multiple uses.
 | |
| void BytecodeWriter::outputInlineAsm(const InlineAsm *IA) {
 | |
|   // Output a marker, so we know when we have one one parsing the constant pool.
 | |
|   // Note that this encoding is 5 bytes: not very efficient for a marker.  Since
 | |
|   // unique inline asms are rare, this should hardly matter.
 | |
|   output_vbr(~0U);
 | |
|   
 | |
|   output(IA->getAsmString());
 | |
|   output(IA->getConstraintString());
 | |
|   output_vbr(unsigned(IA->hasSideEffects()));
 | |
| }
 | |
| 
 | |
| void BytecodeWriter::outputConstantStrings() {
 | |
|   SlotCalculator::string_iterator I = Table.string_begin();
 | |
|   SlotCalculator::string_iterator E = Table.string_end();
 | |
|   if (I == E) return;  // No strings to emit
 | |
| 
 | |
|   // If we have != 0 strings to emit, output them now.  Strings are emitted into
 | |
|   // the 'void' type plane.
 | |
|   output_vbr(unsigned(E-I));
 | |
|   output_typeid(Type::VoidTyID);
 | |
| 
 | |
|   // Emit all of the strings.
 | |
|   for (I = Table.string_begin(); I != E; ++I) {
 | |
|     const ConstantArray *Str = *I;
 | |
|     int Slot = Table.getSlot(Str->getType());
 | |
|     assert(Slot != -1 && "Constant string of unknown type?");
 | |
|     output_typeid((unsigned)Slot);
 | |
| 
 | |
|     // Now that we emitted the type (which indicates the size of the string),
 | |
|     // emit all of the characters.
 | |
|     std::string Val = Str->getAsString();
 | |
|     output_data(Val.c_str(), Val.c_str()+Val.size());
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //===                           Instruction Output                         ===//
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // outputInstructionFormat0 - Output those weird instructions that have a large
 | |
| // number of operands or have large operands themselves.
 | |
| //
 | |
| // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
 | |
| //
 | |
| void BytecodeWriter::outputInstructionFormat0(const Instruction *I,
 | |
|                                               unsigned Opcode,
 | |
|                                               const SlotCalculator &Table,
 | |
|                                               unsigned Type) {
 | |
|   // Opcode must have top two bits clear...
 | |
|   output_vbr(Opcode << 2);                  // Instruction Opcode ID
 | |
|   output_typeid(Type);                      // Result type
 | |
| 
 | |
|   unsigned NumArgs = I->getNumOperands();
 | |
|   output_vbr(NumArgs + (isa<CastInst>(I)  ||
 | |
|                         isa<VAArgInst>(I) || Opcode == 56 || Opcode == 58));
 | |
| 
 | |
|   if (!isa<GetElementPtrInst>(&I)) {
 | |
|     for (unsigned i = 0; i < NumArgs; ++i) {
 | |
|       int Slot = Table.getSlot(I->getOperand(i));
 | |
|       assert(Slot >= 0 && "No slot number for value!?!?");
 | |
|       output_vbr((unsigned)Slot);
 | |
|     }
 | |
| 
 | |
|     if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
 | |
|       int Slot = Table.getSlot(I->getType());
 | |
|       assert(Slot != -1 && "Cast return type unknown?");
 | |
|       output_typeid((unsigned)Slot);
 | |
|     } else if (Opcode == 56) {  // Invoke escape sequence
 | |
|       output_vbr(cast<InvokeInst>(I)->getCallingConv());
 | |
|     } else if (Opcode == 58) {  // Call escape sequence
 | |
|       output_vbr((cast<CallInst>(I)->getCallingConv() << 1) |
 | |
|                  unsigned(cast<CallInst>(I)->isTailCall()));
 | |
|     }
 | |
|   } else {
 | |
|     int Slot = Table.getSlot(I->getOperand(0));
 | |
|     assert(Slot >= 0 && "No slot number for value!?!?");
 | |
|     output_vbr(unsigned(Slot));
 | |
| 
 | |
|     // We need to encode the type of sequential type indices into their slot #
 | |
|     unsigned Idx = 1;
 | |
|     for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I);
 | |
|          Idx != NumArgs; ++TI, ++Idx) {
 | |
|       Slot = Table.getSlot(I->getOperand(Idx));
 | |
|       assert(Slot >= 0 && "No slot number for value!?!?");
 | |
| 
 | |
|       if (isa<SequentialType>(*TI)) {
 | |
|         unsigned IdxId;
 | |
|         switch (I->getOperand(Idx)->getType()->getTypeID()) {
 | |
|         default: assert(0 && "Unknown index type!");
 | |
|         case Type::UIntTyID:  IdxId = 0; break;
 | |
|         case Type::IntTyID:   IdxId = 1; break;
 | |
|         case Type::ULongTyID: IdxId = 2; break;
 | |
|         case Type::LongTyID:  IdxId = 3; break;
 | |
|         }
 | |
|         Slot = (Slot << 2) | IdxId;
 | |
|       }
 | |
|       output_vbr(unsigned(Slot));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // outputInstrVarArgsCall - Output the absurdly annoying varargs function calls.
 | |
| // This are more annoying than most because the signature of the call does not
 | |
| // tell us anything about the types of the arguments in the varargs portion.
 | |
| // Because of this, we encode (as type 0) all of the argument types explicitly
 | |
| // before the argument value.  This really sucks, but you shouldn't be using
 | |
| // varargs functions in your code! *death to printf*!
 | |
| //
 | |
| // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
 | |
| //
 | |
| void BytecodeWriter::outputInstrVarArgsCall(const Instruction *I,
 | |
|                                             unsigned Opcode,
 | |
|                                             const SlotCalculator &Table,
 | |
|                                             unsigned Type) {
 | |
|   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
 | |
|   // Opcode must have top two bits clear...
 | |
|   output_vbr(Opcode << 2);                  // Instruction Opcode ID
 | |
|   output_typeid(Type);                      // Result type (varargs type)
 | |
| 
 | |
|   const PointerType *PTy = cast<PointerType>(I->getOperand(0)->getType());
 | |
|   const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | |
|   unsigned NumParams = FTy->getNumParams();
 | |
| 
 | |
|   unsigned NumFixedOperands;
 | |
|   if (isa<CallInst>(I)) {
 | |
|     // Output an operand for the callee and each fixed argument, then two for
 | |
|     // each variable argument.
 | |
|     NumFixedOperands = 1+NumParams;
 | |
|   } else {
 | |
|     assert(isa<InvokeInst>(I) && "Not call or invoke??");
 | |
|     // Output an operand for the callee and destinations, then two for each
 | |
|     // variable argument.
 | |
|     NumFixedOperands = 3+NumParams;
 | |
|   }
 | |
|   output_vbr(2 * I->getNumOperands()-NumFixedOperands +
 | |
|              unsigned(Opcode == 56 || Opcode == 58));
 | |
| 
 | |
|   // The type for the function has already been emitted in the type field of the
 | |
|   // instruction.  Just emit the slot # now.
 | |
|   for (unsigned i = 0; i != NumFixedOperands; ++i) {
 | |
|     int Slot = Table.getSlot(I->getOperand(i));
 | |
|     assert(Slot >= 0 && "No slot number for value!?!?");
 | |
|     output_vbr((unsigned)Slot);
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = NumFixedOperands, e = I->getNumOperands(); i != e; ++i) {
 | |
|     // Output Arg Type ID
 | |
|     int Slot = Table.getSlot(I->getOperand(i)->getType());
 | |
|     assert(Slot >= 0 && "No slot number for value!?!?");
 | |
|     output_typeid((unsigned)Slot);
 | |
| 
 | |
|     // Output arg ID itself
 | |
|     Slot = Table.getSlot(I->getOperand(i));
 | |
|     assert(Slot >= 0 && "No slot number for value!?!?");
 | |
|     output_vbr((unsigned)Slot);
 | |
|   }
 | |
|   
 | |
|   // If this is the escape sequence for call, emit the tailcall/cc info.
 | |
|   if (Opcode == 58) {
 | |
|     const CallInst *CI = cast<CallInst>(I);
 | |
|     output_vbr((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
 | |
|   } else if (Opcode == 56) {    // Invoke escape sequence.
 | |
|     output_vbr(cast<InvokeInst>(I)->getCallingConv());
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // outputInstructionFormat1 - Output one operand instructions, knowing that no
 | |
| // operand index is >= 2^12.
 | |
| //
 | |
| inline void BytecodeWriter::outputInstructionFormat1(const Instruction *I,
 | |
|                                                      unsigned Opcode,
 | |
|                                                      unsigned *Slots,
 | |
|                                                      unsigned Type) {
 | |
|   // bits   Instruction format:
 | |
|   // --------------------------
 | |
|   // 01-00: Opcode type, fixed to 1.
 | |
|   // 07-02: Opcode
 | |
|   // 19-08: Resulting type plane
 | |
|   // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
 | |
|   //
 | |
|   output(1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20));
 | |
| }
 | |
| 
 | |
| 
 | |
| // outputInstructionFormat2 - Output two operand instructions, knowing that no
 | |
| // operand index is >= 2^8.
 | |
| //
 | |
| inline void BytecodeWriter::outputInstructionFormat2(const Instruction *I,
 | |
|                                                      unsigned Opcode,
 | |
|                                                      unsigned *Slots,
 | |
|                                                      unsigned Type) {
 | |
|   // bits   Instruction format:
 | |
|   // --------------------------
 | |
|   // 01-00: Opcode type, fixed to 2.
 | |
|   // 07-02: Opcode
 | |
|   // 15-08: Resulting type plane
 | |
|   // 23-16: Operand #1
 | |
|   // 31-24: Operand #2
 | |
|   //
 | |
|   output(2 | (Opcode << 2) | (Type << 8) | (Slots[0] << 16) | (Slots[1] << 24));
 | |
| }
 | |
| 
 | |
| 
 | |
| // outputInstructionFormat3 - Output three operand instructions, knowing that no
 | |
| // operand index is >= 2^6.
 | |
| //
 | |
| inline void BytecodeWriter::outputInstructionFormat3(const Instruction *I,
 | |
|                                                      unsigned Opcode,
 | |
|                                                      unsigned *Slots,
 | |
|                                                      unsigned Type) {
 | |
|   // bits   Instruction format:
 | |
|   // --------------------------
 | |
|   // 01-00: Opcode type, fixed to 3.
 | |
|   // 07-02: Opcode
 | |
|   // 13-08: Resulting type plane
 | |
|   // 19-14: Operand #1
 | |
|   // 25-20: Operand #2
 | |
|   // 31-26: Operand #3
 | |
|   //
 | |
|   output(3 | (Opcode << 2) | (Type << 8) |
 | |
|           (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26));
 | |
| }
 | |
| 
 | |
| void BytecodeWriter::outputInstruction(const Instruction &I) {
 | |
|   assert(I.getOpcode() < 56 && "Opcode too big???");
 | |
|   unsigned Opcode = I.getOpcode();
 | |
|   unsigned NumOperands = I.getNumOperands();
 | |
| 
 | |
|   // Encode 'tail call' as 61, 'volatile load' as 62, and 'volatile store' as
 | |
|   // 63.
 | |
|   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
 | |
|     if (CI->getCallingConv() == CallingConv::C) {
 | |
|       if (CI->isTailCall())
 | |
|         Opcode = 61;   // CCC + Tail Call
 | |
|       else
 | |
|         ;     // Opcode = Instruction::Call
 | |
|     } else if (CI->getCallingConv() == CallingConv::Fast) {
 | |
|       if (CI->isTailCall())
 | |
|         Opcode = 59;    // FastCC + TailCall
 | |
|       else
 | |
|         Opcode = 60;    // FastCC + Not Tail Call
 | |
|     } else {
 | |
|       Opcode = 58;      // Call escape sequence.
 | |
|     }
 | |
|   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
 | |
|     if (II->getCallingConv() == CallingConv::Fast)
 | |
|       Opcode = 57;      // FastCC invoke.
 | |
|     else if (II->getCallingConv() != CallingConv::C)
 | |
|       Opcode = 56;      // Invoke escape sequence.
 | |
| 
 | |
|   } else if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) {
 | |
|     Opcode = 62;
 | |
|   } else if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) {
 | |
|     Opcode = 63;
 | |
|   }
 | |
| 
 | |
|   // Figure out which type to encode with the instruction.  Typically we want
 | |
|   // the type of the first parameter, as opposed to the type of the instruction
 | |
|   // (for example, with setcc, we always know it returns bool, but the type of
 | |
|   // the first param is actually interesting).  But if we have no arguments
 | |
|   // we take the type of the instruction itself.
 | |
|   //
 | |
|   const Type *Ty;
 | |
|   switch (I.getOpcode()) {
 | |
|   case Instruction::Select:
 | |
|   case Instruction::Malloc:
 | |
|   case Instruction::Alloca:
 | |
|     Ty = I.getType();  // These ALWAYS want to encode the return type
 | |
|     break;
 | |
|   case Instruction::Store:
 | |
|     Ty = I.getOperand(1)->getType();  // Encode the pointer type...
 | |
|     assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?");
 | |
|     break;
 | |
|   default:              // Otherwise use the default behavior...
 | |
|     Ty = NumOperands ? I.getOperand(0)->getType() : I.getType();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   unsigned Type;
 | |
|   int Slot = Table.getSlot(Ty);
 | |
|   assert(Slot != -1 && "Type not available!!?!");
 | |
|   Type = (unsigned)Slot;
 | |
| 
 | |
|   // Varargs calls and invokes are encoded entirely different from any other
 | |
|   // instructions.
 | |
|   if (const CallInst *CI = dyn_cast<CallInst>(&I)){
 | |
|     const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType());
 | |
|     if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
 | |
|       outputInstrVarArgsCall(CI, Opcode, Table, Type);
 | |
|       return;
 | |
|     }
 | |
|   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
 | |
|     const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType());
 | |
|     if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
 | |
|       outputInstrVarArgsCall(II, Opcode, Table, Type);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (NumOperands <= 3) {
 | |
|     // Make sure that we take the type number into consideration.  We don't want
 | |
|     // to overflow the field size for the instruction format we select.
 | |
|     //
 | |
|     unsigned MaxOpSlot = Type;
 | |
|     unsigned Slots[3]; Slots[0] = (1 << 12)-1;   // Marker to signify 0 operands
 | |
| 
 | |
|     for (unsigned i = 0; i != NumOperands; ++i) {
 | |
|       int slot = Table.getSlot(I.getOperand(i));
 | |
|       assert(slot != -1 && "Broken bytecode!");
 | |
|       if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot);
 | |
|       Slots[i] = unsigned(slot);
 | |
|     }
 | |
| 
 | |
|     // Handle the special cases for various instructions...
 | |
|     if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
 | |
|       // Cast has to encode the destination type as the second argument in the
 | |
|       // packet, or else we won't know what type to cast to!
 | |
|       Slots[1] = Table.getSlot(I.getType());
 | |
|       assert(Slots[1] != ~0U && "Cast return type unknown?");
 | |
|       if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
 | |
|       NumOperands++;
 | |
|     } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
 | |
|       assert(NumOperands == 1 && "Bogus allocation!");
 | |
|       if (AI->getAlignment()) {
 | |
|         Slots[1] = Log2_32(AI->getAlignment())+1;
 | |
|         if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
 | |
|         NumOperands = 2;
 | |
|       }
 | |
|     } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
 | |
|       // We need to encode the type of sequential type indices into their slot #
 | |
|       unsigned Idx = 1;
 | |
|       for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
 | |
|            I != E; ++I, ++Idx)
 | |
|         if (isa<SequentialType>(*I)) {
 | |
|           unsigned IdxId;
 | |
|           switch (GEP->getOperand(Idx)->getType()->getTypeID()) {
 | |
|           default: assert(0 && "Unknown index type!");
 | |
|           case Type::UIntTyID:  IdxId = 0; break;
 | |
|           case Type::IntTyID:   IdxId = 1; break;
 | |
|           case Type::ULongTyID: IdxId = 2; break;
 | |
|           case Type::LongTyID:  IdxId = 3; break;
 | |
|           }
 | |
|           Slots[Idx] = (Slots[Idx] << 2) | IdxId;
 | |
|           if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx];
 | |
|         }
 | |
|     } else if (Opcode == 58) {
 | |
|       // If this is the escape sequence for call, emit the tailcall/cc info.
 | |
|       const CallInst &CI = cast<CallInst>(I);
 | |
|       ++NumOperands;
 | |
|       if (NumOperands <= 3) {
 | |
|         Slots[NumOperands-1] =
 | |
|           (CI.getCallingConv() << 1)|unsigned(CI.isTailCall());
 | |
|         if (Slots[NumOperands-1] > MaxOpSlot)
 | |
|           MaxOpSlot = Slots[NumOperands-1];
 | |
|       }
 | |
|     } else if (Opcode == 56) {
 | |
|       // Invoke escape seq has at least 4 operands to encode.
 | |
|       ++NumOperands;
 | |
|     }
 | |
| 
 | |
|     // Decide which instruction encoding to use.  This is determined primarily
 | |
|     // by the number of operands, and secondarily by whether or not the max
 | |
|     // operand will fit into the instruction encoding.  More operands == fewer
 | |
|     // bits per operand.
 | |
|     //
 | |
|     switch (NumOperands) {
 | |
|     case 0:
 | |
|     case 1:
 | |
|       if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
 | |
|         outputInstructionFormat1(&I, Opcode, Slots, Type);
 | |
|         return;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case 2:
 | |
|       if (MaxOpSlot < (1 << 8)) {
 | |
|         outputInstructionFormat2(&I, Opcode, Slots, Type);
 | |
|         return;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case 3:
 | |
|       if (MaxOpSlot < (1 << 6)) {
 | |
|         outputInstructionFormat3(&I, Opcode, Slots, Type);
 | |
|         return;
 | |
|       }
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we weren't handled before here, we either have a large number of
 | |
|   // operands or a large operand index that we are referring to.
 | |
|   outputInstructionFormat0(&I, Opcode, Table, Type);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //===                              Block Output                            ===//
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| BytecodeWriter::BytecodeWriter(std::vector<unsigned char> &o, const Module *M)
 | |
|   : Out(o), Table(M) {
 | |
| 
 | |
|   // Emit the signature...
 | |
|   static const unsigned char *Sig = (const unsigned char*)"llvm";
 | |
|   output_data(Sig, Sig+4);
 | |
| 
 | |
|   // Emit the top level CLASS block.
 | |
|   BytecodeBlock ModuleBlock(BytecodeFormat::ModuleBlockID, *this, false, true);
 | |
| 
 | |
|   bool isBigEndian      = M->getEndianness() == Module::BigEndian;
 | |
|   bool hasLongPointers  = M->getPointerSize() == Module::Pointer64;
 | |
|   bool hasNoEndianness  = M->getEndianness() == Module::AnyEndianness;
 | |
|   bool hasNoPointerSize = M->getPointerSize() == Module::AnyPointerSize;
 | |
| 
 | |
|   // Output the version identifier and other information.
 | |
|   unsigned Version = (BCVersionNum << 4) |
 | |
|                      (unsigned)isBigEndian | (hasLongPointers << 1) |
 | |
|                      (hasNoEndianness << 2) |
 | |
|                      (hasNoPointerSize << 3);
 | |
|   output_vbr(Version);
 | |
| 
 | |
|   // The Global type plane comes first
 | |
|   {
 | |
|     BytecodeBlock CPool(BytecodeFormat::GlobalTypePlaneBlockID, *this);
 | |
|     outputTypes(Type::FirstDerivedTyID);
 | |
|   }
 | |
| 
 | |
|   // The ModuleInfoBlock follows directly after the type information
 | |
|   outputModuleInfoBlock(M);
 | |
| 
 | |
|   // Output module level constants, used for global variable initializers
 | |
|   outputConstants(false);
 | |
| 
 | |
|   // Do the whole module now! Process each function at a time...
 | |
|   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
 | |
|     outputFunction(I);
 | |
| 
 | |
|   // If needed, output the symbol table for the module...
 | |
|   outputSymbolTable(M->getSymbolTable());
 | |
| }
 | |
| 
 | |
| void BytecodeWriter::outputTypes(unsigned TypeNum) {
 | |
|   // Write the type plane for types first because earlier planes (e.g. for a
 | |
|   // primitive type like float) may have constants constructed using types
 | |
|   // coming later (e.g., via getelementptr from a pointer type).  The type
 | |
|   // plane is needed before types can be fwd or bkwd referenced.
 | |
|   const std::vector<const Type*>& Types = Table.getTypes();
 | |
|   assert(!Types.empty() && "No types at all?");
 | |
|   assert(TypeNum <= Types.size() && "Invalid TypeNo index");
 | |
| 
 | |
|   unsigned NumEntries = Types.size() - TypeNum;
 | |
| 
 | |
|   // Output type header: [num entries]
 | |
|   output_vbr(NumEntries);
 | |
| 
 | |
|   for (unsigned i = TypeNum; i < TypeNum+NumEntries; ++i)
 | |
|     outputType(Types[i]);
 | |
| }
 | |
| 
 | |
| // Helper function for outputConstants().
 | |
| // Writes out all the constants in the plane Plane starting at entry StartNo.
 | |
| //
 | |
| void BytecodeWriter::outputConstantsInPlane(const std::vector<const Value*>
 | |
|                                             &Plane, unsigned StartNo) {
 | |
|   unsigned ValNo = StartNo;
 | |
| 
 | |
|   // Scan through and ignore function arguments, global values, and constant
 | |
|   // strings.
 | |
|   for (; ValNo < Plane.size() &&
 | |
|          (isa<Argument>(Plane[ValNo]) || isa<GlobalValue>(Plane[ValNo]) ||
 | |
|           (isa<ConstantArray>(Plane[ValNo]) &&
 | |
|            cast<ConstantArray>(Plane[ValNo])->isString())); ValNo++)
 | |
|     /*empty*/;
 | |
| 
 | |
|   unsigned NC = ValNo;              // Number of constants
 | |
|   for (; NC < Plane.size() && (isa<Constant>(Plane[NC]) || 
 | |
|                                isa<InlineAsm>(Plane[NC])); NC++)
 | |
|     /*empty*/;
 | |
|   NC -= ValNo;                      // Convert from index into count
 | |
|   if (NC == 0) return;              // Skip empty type planes...
 | |
| 
 | |
|   // FIXME: Most slabs only have 1 or 2 entries!  We should encode this much
 | |
|   // more compactly.
 | |
| 
 | |
|   // Output type header: [num entries][type id number]
 | |
|   //
 | |
|   output_vbr(NC);
 | |
| 
 | |
|   // Output the Type ID Number...
 | |
|   int Slot = Table.getSlot(Plane.front()->getType());
 | |
|   assert (Slot != -1 && "Type in constant pool but not in function!!");
 | |
|   output_typeid((unsigned)Slot);
 | |
| 
 | |
|   for (unsigned i = ValNo; i < ValNo+NC; ++i) {
 | |
|     const Value *V = Plane[i];
 | |
|     if (const Constant *C = dyn_cast<Constant>(V))
 | |
|       outputConstant(C);
 | |
|     else
 | |
|       outputInlineAsm(cast<InlineAsm>(V));
 | |
|   }
 | |
| }
 | |
| 
 | |
| static inline bool hasNullValue(const Type *Ty) {
 | |
|   return Ty != Type::LabelTy && Ty != Type::VoidTy && !isa<OpaqueType>(Ty);
 | |
| }
 | |
| 
 | |
| void BytecodeWriter::outputConstants(bool isFunction) {
 | |
|   BytecodeBlock CPool(BytecodeFormat::ConstantPoolBlockID, *this,
 | |
|                       true  /* Elide block if empty */);
 | |
| 
 | |
|   unsigned NumPlanes = Table.getNumPlanes();
 | |
| 
 | |
|   if (isFunction)
 | |
|     // Output the type plane before any constants!
 | |
|     outputTypes(Table.getModuleTypeLevel());
 | |
|   else
 | |
|     // Output module-level string constants before any other constants.
 | |
|     outputConstantStrings();
 | |
| 
 | |
|   for (unsigned pno = 0; pno != NumPlanes; pno++) {
 | |
|     const std::vector<const Value*> &Plane = Table.getPlane(pno);
 | |
|     if (!Plane.empty()) {              // Skip empty type planes...
 | |
|       unsigned ValNo = 0;
 | |
|       if (isFunction)                  // Don't re-emit module constants
 | |
|         ValNo += Table.getModuleLevel(pno);
 | |
| 
 | |
|       if (hasNullValue(Plane[0]->getType())) {
 | |
|         // Skip zero initializer
 | |
|         if (ValNo == 0)
 | |
|           ValNo = 1;
 | |
|       }
 | |
| 
 | |
|       // Write out constants in the plane
 | |
|       outputConstantsInPlane(Plane, ValNo);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned getEncodedLinkage(const GlobalValue *GV) {
 | |
|   switch (GV->getLinkage()) {
 | |
|   default: assert(0 && "Invalid linkage!");
 | |
|   case GlobalValue::ExternalLinkage:  return 0;
 | |
|   case GlobalValue::WeakLinkage:      return 1;
 | |
|   case GlobalValue::AppendingLinkage: return 2;
 | |
|   case GlobalValue::InternalLinkage:  return 3;
 | |
|   case GlobalValue::LinkOnceLinkage:  return 4;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BytecodeWriter::outputModuleInfoBlock(const Module *M) {
 | |
|   BytecodeBlock ModuleInfoBlock(BytecodeFormat::ModuleGlobalInfoBlockID, *this);
 | |
| 
 | |
|   // Give numbers to sections as we encounter them.
 | |
|   unsigned SectionIDCounter = 0;
 | |
|   std::vector<std::string> SectionNames;
 | |
|   std::map<std::string, unsigned> SectionID;
 | |
|   
 | |
|   // Output the types for the global variables in the module...
 | |
|   for (Module::const_global_iterator I = M->global_begin(),
 | |
|          End = M->global_end(); I != End; ++I) {
 | |
|     int Slot = Table.getSlot(I->getType());
 | |
|     assert(Slot != -1 && "Module global vars is broken!");
 | |
| 
 | |
|     assert((I->hasInitializer() || !I->hasInternalLinkage()) &&
 | |
|            "Global must have an initializer or have external linkage!");
 | |
|     
 | |
|     // Fields: bit0 = isConstant, bit1 = hasInitializer, bit2-4=Linkage,
 | |
|     // bit5+ = Slot # for type.
 | |
|     bool HasExtensionWord = (I->getAlignment() != 0) || I->hasSection();
 | |
|     
 | |
|     // If we need to use the extension byte, set linkage=3(internal) and
 | |
|     // initializer = 0 (impossible!).
 | |
|     if (!HasExtensionWord) {
 | |
|       unsigned oSlot = ((unsigned)Slot << 5) | (getEncodedLinkage(I) << 2) |
 | |
|                         (I->hasInitializer() << 1) | (unsigned)I->isConstant();
 | |
|       output_vbr(oSlot);
 | |
|     } else {
 | |
|       unsigned oSlot = ((unsigned)Slot << 5) | (3 << 2) |
 | |
|                         (0 << 1) | (unsigned)I->isConstant();
 | |
|       output_vbr(oSlot);
 | |
|       
 | |
|       // The extension word has this format: bit 0 = has initializer, bit 1-3 =
 | |
|       // linkage, bit 4-8 = alignment (log2), bit 9 = has SectionID, 
 | |
|       // bits 10+ = future use.
 | |
|       unsigned ExtWord = (unsigned)I->hasInitializer() |
 | |
|                          (getEncodedLinkage(I) << 1) |
 | |
|                          ((Log2_32(I->getAlignment())+1) << 4) |
 | |
|                          ((unsigned)I->hasSection() << 9);
 | |
|       output_vbr(ExtWord);
 | |
|       if (I->hasSection()) {
 | |
|         // Give section names unique ID's.
 | |
|         unsigned &Entry = SectionID[I->getSection()];
 | |
|         if (Entry == 0) {
 | |
|           Entry = ++SectionIDCounter;
 | |
|           SectionNames.push_back(I->getSection());
 | |
|         }
 | |
|         output_vbr(Entry);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we have an initializer, output it now.
 | |
|     if (I->hasInitializer()) {
 | |
|       Slot = Table.getSlot((Value*)I->getInitializer());
 | |
|       assert(Slot != -1 && "No slot for global var initializer!");
 | |
|       output_vbr((unsigned)Slot);
 | |
|     }
 | |
|   }
 | |
|   output_typeid((unsigned)Table.getSlot(Type::VoidTy));
 | |
| 
 | |
|   // Output the types of the functions in this module.
 | |
|   for (Module::const_iterator I = M->begin(), End = M->end(); I != End; ++I) {
 | |
|     int Slot = Table.getSlot(I->getType());
 | |
|     assert(Slot != -1 && "Module slot calculator is broken!");
 | |
|     assert(Slot >= Type::FirstDerivedTyID && "Derived type not in range!");
 | |
|     assert(((Slot << 6) >> 6) == Slot && "Slot # too big!");
 | |
|     unsigned CC = I->getCallingConv()+1;
 | |
|     unsigned ID = (Slot << 5) | (CC & 15);
 | |
| 
 | |
|     if (I->isExternal())   // If external, we don't have an FunctionInfo block.
 | |
|       ID |= 1 << 4;
 | |
|     
 | |
|     if (I->getAlignment() || I->hasSection() || (CC & ~15) != 0)
 | |
|       ID |= 1 << 31;       // Do we need an extension word?
 | |
|     
 | |
|     output_vbr(ID);
 | |
|     
 | |
|     if (ID & (1 << 31)) {
 | |
|       // Extension byte: bits 0-4 = alignment, bits 5-9 = top nibble of calling
 | |
|       // convention, bit 10 = hasSectionID.
 | |
|       ID = (Log2_32(I->getAlignment())+1) | ((CC >> 4) << 5) | 
 | |
|            (I->hasSection() << 10);
 | |
|       output_vbr(ID);
 | |
|       
 | |
|       // Give section names unique ID's.
 | |
|       if (I->hasSection()) {
 | |
|         unsigned &Entry = SectionID[I->getSection()];
 | |
|         if (Entry == 0) {
 | |
|           Entry = ++SectionIDCounter;
 | |
|           SectionNames.push_back(I->getSection());
 | |
|         }
 | |
|         output_vbr(Entry);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   output_vbr((unsigned)Table.getSlot(Type::VoidTy) << 5);
 | |
| 
 | |
|   // Emit the list of dependent libraries for the Module.
 | |
|   Module::lib_iterator LI = M->lib_begin();
 | |
|   Module::lib_iterator LE = M->lib_end();
 | |
|   output_vbr(unsigned(LE - LI));   // Emit the number of dependent libraries.
 | |
|   for (; LI != LE; ++LI)
 | |
|     output(*LI);
 | |
| 
 | |
|   // Output the target triple from the module
 | |
|   output(M->getTargetTriple());
 | |
|   
 | |
|   // Emit the table of section names.
 | |
|   output_vbr((unsigned)SectionNames.size());
 | |
|   for (unsigned i = 0, e = SectionNames.size(); i != e; ++i)
 | |
|     output(SectionNames[i]);
 | |
|   
 | |
|   // Output the inline asm string.
 | |
|   output(M->getModuleInlineAsm());
 | |
| }
 | |
| 
 | |
| void BytecodeWriter::outputInstructions(const Function *F) {
 | |
|   BytecodeBlock ILBlock(BytecodeFormat::InstructionListBlockID, *this);
 | |
|   for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | |
|     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
 | |
|       outputInstruction(*I);
 | |
| }
 | |
| 
 | |
| void BytecodeWriter::outputFunction(const Function *F) {
 | |
|   // If this is an external function, there is nothing else to emit!
 | |
|   if (F->isExternal()) return;
 | |
| 
 | |
|   BytecodeBlock FunctionBlock(BytecodeFormat::FunctionBlockID, *this);
 | |
|   output_vbr(getEncodedLinkage(F));
 | |
| 
 | |
|   // Get slot information about the function...
 | |
|   Table.incorporateFunction(F);
 | |
| 
 | |
|   if (Table.getCompactionTable().empty()) {
 | |
|     // Output information about the constants in the function if the compaction
 | |
|     // table is not being used.
 | |
|     outputConstants(true);
 | |
|   } else {
 | |
|     // Otherwise, emit the compaction table.
 | |
|     outputCompactionTable();
 | |
|   }
 | |
| 
 | |
|   // Output all of the instructions in the body of the function
 | |
|   outputInstructions(F);
 | |
| 
 | |
|   // If needed, output the symbol table for the function...
 | |
|   outputSymbolTable(F->getSymbolTable());
 | |
| 
 | |
|   Table.purgeFunction();
 | |
| }
 | |
| 
 | |
| void BytecodeWriter::outputCompactionTablePlane(unsigned PlaneNo,
 | |
|                                          const std::vector<const Value*> &Plane,
 | |
|                                                 unsigned StartNo) {
 | |
|   unsigned End = Table.getModuleLevel(PlaneNo);
 | |
|   if (Plane.empty() || StartNo == End || End == 0) return;   // Nothing to emit
 | |
|   assert(StartNo < End && "Cannot emit negative range!");
 | |
|   assert(StartNo < Plane.size() && End <= Plane.size());
 | |
| 
 | |
|   // Do not emit the null initializer!
 | |
|   ++StartNo;
 | |
| 
 | |
|   // Figure out which encoding to use.  By far the most common case we have is
 | |
|   // to emit 0-2 entries in a compaction table plane.
 | |
|   switch (End-StartNo) {
 | |
|   case 0:         // Avoid emitting two vbr's if possible.
 | |
|   case 1:
 | |
|   case 2:
 | |
|     output_vbr((PlaneNo << 2) | End-StartNo);
 | |
|     break;
 | |
|   default:
 | |
|     // Output the number of things.
 | |
|     output_vbr((unsigned(End-StartNo) << 2) | 3);
 | |
|     output_typeid(PlaneNo);                 // Emit the type plane this is
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = StartNo; i != End; ++i)
 | |
|     output_vbr(Table.getGlobalSlot(Plane[i]));
 | |
| }
 | |
| 
 | |
| void BytecodeWriter::outputCompactionTypes(unsigned StartNo) {
 | |
|   // Get the compaction type table from the slot calculator
 | |
|   const std::vector<const Type*> &CTypes = Table.getCompactionTypes();
 | |
| 
 | |
|   // The compaction types may have been uncompactified back to the
 | |
|   // global types. If so, we just write an empty table
 | |
|   if (CTypes.size() == 0) {
 | |
|     output_vbr(0U);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(CTypes.size() >= StartNo && "Invalid compaction types start index");
 | |
| 
 | |
|   // Determine how many types to write
 | |
|   unsigned NumTypes = CTypes.size() - StartNo;
 | |
| 
 | |
|   // Output the number of types.
 | |
|   output_vbr(NumTypes);
 | |
| 
 | |
|   for (unsigned i = StartNo; i < StartNo+NumTypes; ++i)
 | |
|     output_typeid(Table.getGlobalSlot(CTypes[i]));
 | |
| }
 | |
| 
 | |
| void BytecodeWriter::outputCompactionTable() {
 | |
|   // Avoid writing the compaction table at all if there is no content.
 | |
|   if (Table.getCompactionTypes().size() >= Type::FirstDerivedTyID ||
 | |
|       (!Table.CompactionTableIsEmpty())) {
 | |
|     BytecodeBlock CTB(BytecodeFormat::CompactionTableBlockID, *this,
 | |
|                       true/*ElideIfEmpty*/);
 | |
|     const std::vector<std::vector<const Value*> > &CT =
 | |
|       Table.getCompactionTable();
 | |
| 
 | |
|     // First things first, emit the type compaction table if there is one.
 | |
|     outputCompactionTypes(Type::FirstDerivedTyID);
 | |
| 
 | |
|     for (unsigned i = 0, e = CT.size(); i != e; ++i)
 | |
|       outputCompactionTablePlane(i, CT[i], 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BytecodeWriter::outputSymbolTable(const SymbolTable &MST) {
 | |
|   // Do not output the Bytecode block for an empty symbol table, it just wastes
 | |
|   // space!
 | |
|   if (MST.isEmpty()) return;
 | |
| 
 | |
|   BytecodeBlock SymTabBlock(BytecodeFormat::SymbolTableBlockID, *this,
 | |
|                             true/*ElideIfEmpty*/);
 | |
| 
 | |
|   // Write the number of types
 | |
|   output_vbr(MST.num_types());
 | |
| 
 | |
|   // Write each of the types
 | |
|   for (SymbolTable::type_const_iterator TI = MST.type_begin(),
 | |
|        TE = MST.type_end(); TI != TE; ++TI) {
 | |
|     // Symtab entry:[def slot #][name]
 | |
|     output_typeid((unsigned)Table.getSlot(TI->second));
 | |
|     output(TI->first);
 | |
|   }
 | |
| 
 | |
|   // Now do each of the type planes in order.
 | |
|   for (SymbolTable::plane_const_iterator PI = MST.plane_begin(),
 | |
|        PE = MST.plane_end(); PI != PE;  ++PI) {
 | |
|     SymbolTable::value_const_iterator I = MST.value_begin(PI->first);
 | |
|     SymbolTable::value_const_iterator End = MST.value_end(PI->first);
 | |
|     int Slot;
 | |
| 
 | |
|     if (I == End) continue;  // Don't mess with an absent type...
 | |
| 
 | |
|     // Write the number of values in this plane
 | |
|     output_vbr((unsigned)PI->second.size());
 | |
| 
 | |
|     // Write the slot number of the type for this plane
 | |
|     Slot = Table.getSlot(PI->first);
 | |
|     assert(Slot != -1 && "Type in symtab, but not in table!");
 | |
|     output_typeid((unsigned)Slot);
 | |
| 
 | |
|     // Write each of the values in this plane
 | |
|     for (; I != End; ++I) {
 | |
|       // Symtab entry: [def slot #][name]
 | |
|       Slot = Table.getSlot(I->second);
 | |
|       assert(Slot != -1 && "Value in symtab but has no slot number!!");
 | |
|       output_vbr((unsigned)Slot);
 | |
|       output(I->first);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void llvm::WriteBytecodeToFile(const Module *M, std::ostream &Out,
 | |
|                                bool compress) {
 | |
|   assert(M && "You can't write a null module!!");
 | |
| 
 | |
|   // Make sure that std::cout is put into binary mode for systems
 | |
|   // that care.
 | |
|   if (&Out == std::cout)
 | |
|     sys::Program::ChangeStdoutToBinary();
 | |
| 
 | |
|   // Create a vector of unsigned char for the bytecode output. We
 | |
|   // reserve 256KBytes of space in the vector so that we avoid doing
 | |
|   // lots of little allocations. 256KBytes is sufficient for a large
 | |
|   // proportion of the bytecode files we will encounter. Larger files
 | |
|   // will be automatically doubled in size as needed (std::vector
 | |
|   // behavior).
 | |
|   std::vector<unsigned char> Buffer;
 | |
|   Buffer.reserve(256 * 1024);
 | |
| 
 | |
|   // The BytecodeWriter populates Buffer for us.
 | |
|   BytecodeWriter BCW(Buffer, M);
 | |
| 
 | |
|   // Keep track of how much we've written
 | |
|   BytesWritten += Buffer.size();
 | |
| 
 | |
|   // Determine start and end points of the Buffer
 | |
|   const unsigned char *FirstByte = &Buffer.front();
 | |
| 
 | |
|   // If we're supposed to compress this mess ...
 | |
|   if (compress) {
 | |
| 
 | |
|     // We signal compression by using an alternate magic number for the
 | |
|     // file. The compressed bytecode file's magic number is "llvc" instead
 | |
|     // of "llvm".
 | |
|     char compressed_magic[4];
 | |
|     compressed_magic[0] = 'l';
 | |
|     compressed_magic[1] = 'l';
 | |
|     compressed_magic[2] = 'v';
 | |
|     compressed_magic[3] = 'c';
 | |
| 
 | |
|     Out.write(compressed_magic,4);
 | |
| 
 | |
|     // Compress everything after the magic number (which we altered)
 | |
|     uint64_t zipSize = Compressor::compressToStream(
 | |
|       (char*)(FirstByte+4),        // Skip the magic number
 | |
|       Buffer.size()-4,             // Skip the magic number
 | |
|       Out                          // Where to write compressed data
 | |
|     );
 | |
| 
 | |
|   } else {
 | |
| 
 | |
|     // We're not compressing, so just write the entire block.
 | |
|     Out.write((char*)FirstByte, Buffer.size());
 | |
|   }
 | |
| 
 | |
|   // make sure it hits disk now
 | |
|   Out.flush();
 | |
| }
 |