mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29351 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			517 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			517 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the pass that transforms the X86 machine instructions into
 | 
						|
// relocatable machine code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86TargetMachine.h"
 | 
						|
#include "X86Relocations.h"
 | 
						|
#include "X86.h"
 | 
						|
#include "llvm/PassManager.h"
 | 
						|
#include "llvm/CodeGen/MachineCodeEmitter.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/Visibility.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include <iostream>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<>
 | 
						|
  NumEmitted("x86-emitter", "Number of machine instructions emitted");
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass {
 | 
						|
    const X86InstrInfo  *II;
 | 
						|
    TargetMachine &TM;
 | 
						|
    MachineCodeEmitter  &MCE;
 | 
						|
  public:
 | 
						|
    explicit Emitter(TargetMachine &tm, MachineCodeEmitter &mce)
 | 
						|
      : II(0), TM(tm), MCE(mce) {}
 | 
						|
    Emitter(TargetMachine &tm, MachineCodeEmitter &mce,
 | 
						|
            const X86InstrInfo& ii)
 | 
						|
      : II(&ii), TM(tm), MCE(mce) {}
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF);
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "X86 Machine Code Emitter";
 | 
						|
    }
 | 
						|
 | 
						|
    void emitInstruction(const MachineInstr &MI);
 | 
						|
 | 
						|
  private:
 | 
						|
    void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
 | 
						|
    void emitPCRelativeValue(unsigned Address);
 | 
						|
    void emitGlobalAddressForCall(GlobalValue *GV, bool isTailCall);
 | 
						|
    void emitGlobalAddressForPtr(GlobalValue *GV, int Disp = 0);
 | 
						|
    void emitExternalSymbolAddress(const char *ES, bool isPCRelative);
 | 
						|
 | 
						|
    void emitDisplacementField(const MachineOperand *RelocOp, int DispVal);
 | 
						|
 | 
						|
    void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
 | 
						|
    void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
 | 
						|
    void emitConstant(unsigned Val, unsigned Size);
 | 
						|
 | 
						|
    void emitMemModRMByte(const MachineInstr &MI,
 | 
						|
                          unsigned Op, unsigned RegOpcodeField);
 | 
						|
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
 | 
						|
/// to the specified MCE object.
 | 
						|
FunctionPass *llvm::createX86CodeEmitterPass(X86TargetMachine &TM,
 | 
						|
                                             MachineCodeEmitter &MCE) {
 | 
						|
  return new Emitter(TM, MCE);
 | 
						|
}
 | 
						|
 | 
						|
bool Emitter::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
 | 
						|
          MF.getTarget().getRelocationModel() != Reloc::Static) &&
 | 
						|
         "JIT relocation model must be set to static or default!");
 | 
						|
  II = ((X86TargetMachine&)MF.getTarget()).getInstrInfo();
 | 
						|
 | 
						|
  do {
 | 
						|
    MCE.startFunction(MF);
 | 
						|
    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); 
 | 
						|
         MBB != E; ++MBB) {
 | 
						|
      MCE.StartMachineBasicBlock(MBB);
 | 
						|
      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
 | 
						|
           I != E; ++I)
 | 
						|
        emitInstruction(*I);
 | 
						|
    }
 | 
						|
  } while (MCE.finishFunction(MF));
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// emitPCRelativeValue - Emit a 32-bit PC relative address.
 | 
						|
///
 | 
						|
void Emitter::emitPCRelativeValue(unsigned Address) {
 | 
						|
  MCE.emitWordLE(Address-MCE.getCurrentPCValue()-4);
 | 
						|
}
 | 
						|
 | 
						|
/// emitPCRelativeBlockAddress - This method keeps track of the information
 | 
						|
/// necessary to resolve the address of this block later and emits a dummy
 | 
						|
/// value.
 | 
						|
///
 | 
						|
void Emitter::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
 | 
						|
  // Remember where this reference was and where it is to so we can
 | 
						|
  // deal with it later.
 | 
						|
  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
 | 
						|
                                             X86::reloc_pcrel_word, MBB));
 | 
						|
  MCE.emitWordLE(0);
 | 
						|
}
 | 
						|
 | 
						|
/// emitGlobalAddressForCall - Emit the specified address to the code stream
 | 
						|
/// assuming this is part of a function call, which is PC relative.
 | 
						|
///
 | 
						|
void Emitter::emitGlobalAddressForCall(GlobalValue *GV, bool isTailCall) {
 | 
						|
  MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
 | 
						|
                                      X86::reloc_pcrel_word, GV, 0,
 | 
						|
                                      !isTailCall /*Doesn'tNeedStub*/));
 | 
						|
  MCE.emitWordLE(0);
 | 
						|
}
 | 
						|
 | 
						|
/// emitGlobalAddress - Emit the specified address to the code stream assuming
 | 
						|
/// this is part of a "take the address of a global" instruction, which is not
 | 
						|
/// PC relative.
 | 
						|
///
 | 
						|
void Emitter::emitGlobalAddressForPtr(GlobalValue *GV, int Disp /* = 0 */) {
 | 
						|
  MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
 | 
						|
                                      X86::reloc_absolute_word, GV));
 | 
						|
  MCE.emitWordLE(Disp); // The relocated value will be added to the displacement
 | 
						|
}
 | 
						|
 | 
						|
/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
 | 
						|
/// be emitted to the current location in the function, and allow it to be PC
 | 
						|
/// relative.
 | 
						|
void Emitter::emitExternalSymbolAddress(const char *ES, bool isPCRelative) {
 | 
						|
  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
 | 
						|
          isPCRelative ? X86::reloc_pcrel_word : X86::reloc_absolute_word, ES));
 | 
						|
  MCE.emitWordLE(0);
 | 
						|
}
 | 
						|
 | 
						|
/// N86 namespace - Native X86 Register numbers... used by X86 backend.
 | 
						|
///
 | 
						|
namespace N86 {
 | 
						|
  enum {
 | 
						|
    EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// getX86RegNum - This function maps LLVM register identifiers to their X86
 | 
						|
// specific numbering, which is used in various places encoding instructions.
 | 
						|
//
 | 
						|
static unsigned getX86RegNum(unsigned RegNo) {
 | 
						|
  switch(RegNo) {
 | 
						|
  case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
 | 
						|
  case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
 | 
						|
  case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
 | 
						|
  case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
 | 
						|
  case X86::ESP: case X86::SP: case X86::AH: return N86::ESP;
 | 
						|
  case X86::EBP: case X86::BP: case X86::CH: return N86::EBP;
 | 
						|
  case X86::ESI: case X86::SI: case X86::DH: return N86::ESI;
 | 
						|
  case X86::EDI: case X86::DI: case X86::BH: return N86::EDI;
 | 
						|
 | 
						|
  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
 | 
						|
  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
 | 
						|
    return RegNo-X86::ST0;
 | 
						|
 | 
						|
  case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
 | 
						|
  case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7:
 | 
						|
    return RegNo-X86::XMM0;
 | 
						|
 | 
						|
  default:
 | 
						|
    assert(MRegisterInfo::isVirtualRegister(RegNo) &&
 | 
						|
           "Unknown physical register!");
 | 
						|
    assert(0 && "Register allocator hasn't allocated reg correctly yet!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
 | 
						|
                                      unsigned RM) {
 | 
						|
  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
 | 
						|
  return RM | (RegOpcode << 3) | (Mod << 6);
 | 
						|
}
 | 
						|
 | 
						|
void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
 | 
						|
  MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
 | 
						|
}
 | 
						|
 | 
						|
void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
 | 
						|
  // SIB byte is in the same format as the ModRMByte...
 | 
						|
  MCE.emitByte(ModRMByte(SS, Index, Base));
 | 
						|
}
 | 
						|
 | 
						|
void Emitter::emitConstant(unsigned Val, unsigned Size) {
 | 
						|
  // Output the constant in little endian byte order...
 | 
						|
  for (unsigned i = 0; i != Size; ++i) {
 | 
						|
    MCE.emitByte(Val & 255);
 | 
						|
    Val >>= 8;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isDisp8 - Return true if this signed displacement fits in a 8-bit 
 | 
						|
/// sign-extended field. 
 | 
						|
static bool isDisp8(int Value) {
 | 
						|
  return Value == (signed char)Value;
 | 
						|
}
 | 
						|
 | 
						|
void Emitter::emitDisplacementField(const MachineOperand *RelocOp,
 | 
						|
                                    int DispVal) {
 | 
						|
  // If this is a simple integer displacement that doesn't require a relocation,
 | 
						|
  // emit it now.
 | 
						|
  if (!RelocOp) {
 | 
						|
    emitConstant(DispVal, 4);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, this is something that requires a relocation.  Emit it as such
 | 
						|
  // now.
 | 
						|
  if (RelocOp->isGlobalAddress()) {
 | 
						|
    emitGlobalAddressForPtr(RelocOp->getGlobal(), RelocOp->getOffset());
 | 
						|
  } else {
 | 
						|
    assert(0 && "Unknown value to relocate!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Emitter::emitMemModRMByte(const MachineInstr &MI,
 | 
						|
                               unsigned Op, unsigned RegOpcodeField) {
 | 
						|
  const MachineOperand &Op3 = MI.getOperand(Op+3);
 | 
						|
  int DispVal = 0;
 | 
						|
  const MachineOperand *DispForReloc = 0;
 | 
						|
  
 | 
						|
  // Figure out what sort of displacement we have to handle here.
 | 
						|
  if (Op3.isGlobalAddress()) {
 | 
						|
    DispForReloc = &Op3;
 | 
						|
  } else if (Op3.isConstantPoolIndex()) {
 | 
						|
    DispVal += MCE.getConstantPoolEntryAddress(Op3.getConstantPoolIndex());
 | 
						|
    DispVal += Op3.getOffset();
 | 
						|
  } else if (Op3.isJumpTableIndex()) {
 | 
						|
    DispVal += MCE.getJumpTableEntryAddress(Op3.getJumpTableIndex());
 | 
						|
  } else {
 | 
						|
    DispVal = Op3.getImmedValue();
 | 
						|
  }
 | 
						|
 | 
						|
  const MachineOperand &Base     = MI.getOperand(Op);
 | 
						|
  const MachineOperand &Scale    = MI.getOperand(Op+1);
 | 
						|
  const MachineOperand &IndexReg = MI.getOperand(Op+2);
 | 
						|
 | 
						|
  unsigned BaseReg = Base.getReg();
 | 
						|
 | 
						|
  // Is a SIB byte needed?
 | 
						|
  if (IndexReg.getReg() == 0 && BaseReg != X86::ESP) {
 | 
						|
    if (BaseReg == 0) {  // Just a displacement?
 | 
						|
      // Emit special case [disp32] encoding
 | 
						|
      MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
 | 
						|
      
 | 
						|
      emitDisplacementField(DispForReloc, DispVal);
 | 
						|
    } else {
 | 
						|
      unsigned BaseRegNo = getX86RegNum(BaseReg);
 | 
						|
      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
 | 
						|
        // Emit simple indirect register encoding... [EAX] f.e.
 | 
						|
        MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
 | 
						|
      } else if (!DispForReloc && isDisp8(DispVal)) {
 | 
						|
        // Emit the disp8 encoding... [REG+disp8]
 | 
						|
        MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
 | 
						|
        emitConstant(DispVal, 1);
 | 
						|
      } else {
 | 
						|
        // Emit the most general non-SIB encoding: [REG+disp32]
 | 
						|
        MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
 | 
						|
        emitDisplacementField(DispForReloc, DispVal);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
 | 
						|
    assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!");
 | 
						|
 | 
						|
    bool ForceDisp32 = false;
 | 
						|
    bool ForceDisp8  = false;
 | 
						|
    if (BaseReg == 0) {
 | 
						|
      // If there is no base register, we emit the special case SIB byte with
 | 
						|
      // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
 | 
						|
      MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
 | 
						|
      ForceDisp32 = true;
 | 
						|
    } else if (DispForReloc) {
 | 
						|
      // Emit the normal disp32 encoding.
 | 
						|
      MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
 | 
						|
      ForceDisp32 = true;
 | 
						|
    } else if (DispVal == 0 && BaseReg != X86::EBP) {
 | 
						|
      // Emit no displacement ModR/M byte
 | 
						|
      MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
 | 
						|
    } else if (isDisp8(DispVal)) {
 | 
						|
      // Emit the disp8 encoding...
 | 
						|
      MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
 | 
						|
      ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
 | 
						|
    } else {
 | 
						|
      // Emit the normal disp32 encoding...
 | 
						|
      MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
 | 
						|
    }
 | 
						|
 | 
						|
    // Calculate what the SS field value should be...
 | 
						|
    static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
 | 
						|
    unsigned SS = SSTable[Scale.getImmedValue()];
 | 
						|
 | 
						|
    if (BaseReg == 0) {
 | 
						|
      // Handle the SIB byte for the case where there is no base.  The
 | 
						|
      // displacement has already been output.
 | 
						|
      assert(IndexReg.getReg() && "Index register must be specified!");
 | 
						|
      emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
 | 
						|
    } else {
 | 
						|
      unsigned BaseRegNo = getX86RegNum(BaseReg);
 | 
						|
      unsigned IndexRegNo;
 | 
						|
      if (IndexReg.getReg())
 | 
						|
        IndexRegNo = getX86RegNum(IndexReg.getReg());
 | 
						|
      else
 | 
						|
        IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
 | 
						|
      emitSIBByte(SS, IndexRegNo, BaseRegNo);
 | 
						|
    }
 | 
						|
 | 
						|
    // Do we need to output a displacement?
 | 
						|
    if (ForceDisp8) {
 | 
						|
      emitConstant(DispVal, 1);
 | 
						|
    } else if (DispVal != 0 || ForceDisp32) {
 | 
						|
      emitDisplacementField(DispForReloc, DispVal);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned sizeOfImm(const TargetInstrDescriptor &Desc) {
 | 
						|
  switch (Desc.TSFlags & X86II::ImmMask) {
 | 
						|
  case X86II::Imm8:   return 1;
 | 
						|
  case X86II::Imm16:  return 2;
 | 
						|
  case X86II::Imm32:  return 4;
 | 
						|
  default: assert(0 && "Immediate size not set!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Emitter::emitInstruction(const MachineInstr &MI) {
 | 
						|
  NumEmitted++;  // Keep track of the # of mi's emitted
 | 
						|
 | 
						|
  unsigned Opcode = MI.getOpcode();
 | 
						|
  const TargetInstrDescriptor &Desc = II->get(Opcode);
 | 
						|
 | 
						|
  // Emit the repeat opcode prefix as needed.
 | 
						|
  if ((Desc.TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3);
 | 
						|
 | 
						|
  // Emit the operand size opcode prefix as needed.
 | 
						|
  if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);
 | 
						|
 | 
						|
  switch (Desc.TSFlags & X86II::Op0Mask) {
 | 
						|
  case X86II::TB:
 | 
						|
    MCE.emitByte(0x0F);   // Two-byte opcode prefix
 | 
						|
    break;
 | 
						|
  case X86II::REP: break; // already handled.
 | 
						|
  case X86II::XS:   // F3 0F
 | 
						|
    MCE.emitByte(0xF3);
 | 
						|
    MCE.emitByte(0x0F);
 | 
						|
    break;
 | 
						|
  case X86II::XD:   // F2 0F
 | 
						|
    MCE.emitByte(0xF2);
 | 
						|
    MCE.emitByte(0x0F);
 | 
						|
    break;
 | 
						|
  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
 | 
						|
  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
 | 
						|
    MCE.emitByte(0xD8+
 | 
						|
                 (((Desc.TSFlags & X86II::Op0Mask)-X86II::D8)
 | 
						|
                                   >> X86II::Op0Shift));
 | 
						|
    break; // Two-byte opcode prefix
 | 
						|
  default: assert(0 && "Invalid prefix!");
 | 
						|
  case 0: break;  // No prefix!
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode);
 | 
						|
  switch (Desc.TSFlags & X86II::FormMask) {
 | 
						|
  default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
 | 
						|
  case X86II::Pseudo:
 | 
						|
#ifndef NDEBUG
 | 
						|
    switch (Opcode) {
 | 
						|
    default: 
 | 
						|
      assert(0 && "psuedo instructions should be removed before code emission");
 | 
						|
    case X86::IMPLICIT_USE:
 | 
						|
    case X86::IMPLICIT_DEF:
 | 
						|
    case X86::IMPLICIT_DEF_GR8:
 | 
						|
    case X86::IMPLICIT_DEF_GR16:
 | 
						|
    case X86::IMPLICIT_DEF_GR32:
 | 
						|
    case X86::IMPLICIT_DEF_FR32:
 | 
						|
    case X86::IMPLICIT_DEF_FR64:
 | 
						|
    case X86::IMPLICIT_DEF_VR64:
 | 
						|
    case X86::IMPLICIT_DEF_VR128:
 | 
						|
    case X86::FP_REG_KILL:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::RawFrm:
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    if (Desc.numOperands == 1) {
 | 
						|
      const MachineOperand &MO = MI.getOperand(0);
 | 
						|
      if (MO.isMachineBasicBlock()) {
 | 
						|
        emitPCRelativeBlockAddress(MO.getMachineBasicBlock());
 | 
						|
      } else if (MO.isGlobalAddress()) {
 | 
						|
        bool isTailCall = Opcode == X86::TAILJMPd ||
 | 
						|
                          Opcode == X86::TAILJMPr || Opcode == X86::TAILJMPm;
 | 
						|
        emitGlobalAddressForCall(MO.getGlobal(), isTailCall);
 | 
						|
      } else if (MO.isExternalSymbol()) {
 | 
						|
        emitExternalSymbolAddress(MO.getSymbolName(), true);
 | 
						|
      } else if (MO.isImmediate()) {
 | 
						|
        emitConstant(MO.getImmedValue(), sizeOfImm(Desc));
 | 
						|
      } else {
 | 
						|
        assert(0 && "Unknown RawFrm operand!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::AddRegFrm:
 | 
						|
    MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg()));
 | 
						|
    if (MI.getNumOperands() == 2) {
 | 
						|
      const MachineOperand &MO1 = MI.getOperand(1);
 | 
						|
      if (MO1.isGlobalAddress()) {
 | 
						|
        assert(sizeOfImm(Desc) == 4 &&
 | 
						|
               "Don't know how to emit non-pointer values!");
 | 
						|
        emitGlobalAddressForPtr(MO1.getGlobal(), MO1.getOffset());
 | 
						|
      } else if (MO1.isExternalSymbol()) {
 | 
						|
        assert(sizeOfImm(Desc) == 4 &&
 | 
						|
               "Don't know how to emit non-pointer values!");
 | 
						|
        emitExternalSymbolAddress(MO1.getSymbolName(), false);
 | 
						|
      } else if (MO1.isJumpTableIndex()) {
 | 
						|
        assert(sizeOfImm(Desc) == 4 &&
 | 
						|
               "Don't know how to emit non-pointer values!");
 | 
						|
        emitConstant(MCE.getJumpTableEntryAddress(MO1.getJumpTableIndex()), 4);
 | 
						|
      } else {
 | 
						|
        emitConstant(MO1.getImmedValue(), sizeOfImm(Desc));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMDestReg: {
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitRegModRMByte(MI.getOperand(0).getReg(),
 | 
						|
                     getX86RegNum(MI.getOperand(1).getReg()));
 | 
						|
    if (MI.getNumOperands() == 3)
 | 
						|
      emitConstant(MI.getOperand(2).getImmedValue(), sizeOfImm(Desc));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86II::MRMDestMem:
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg()));
 | 
						|
    if (MI.getNumOperands() == 6)
 | 
						|
      emitConstant(MI.getOperand(5).getImmedValue(), sizeOfImm(Desc));
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMSrcReg:
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitRegModRMByte(MI.getOperand(1).getReg(),
 | 
						|
                     getX86RegNum(MI.getOperand(0).getReg()));
 | 
						|
    if (MI.getNumOperands() == 3)
 | 
						|
      emitConstant(MI.getOperand(2).getImmedValue(), sizeOfImm(Desc));
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMSrcMem:
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitMemModRMByte(MI, 1, getX86RegNum(MI.getOperand(0).getReg()));
 | 
						|
    if (MI.getNumOperands() == 2+4)
 | 
						|
      emitConstant(MI.getOperand(5).getImmedValue(), sizeOfImm(Desc));
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRM0r: case X86II::MRM1r:
 | 
						|
  case X86II::MRM2r: case X86II::MRM3r:
 | 
						|
  case X86II::MRM4r: case X86II::MRM5r:
 | 
						|
  case X86II::MRM6r: case X86II::MRM7r:
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitRegModRMByte(MI.getOperand(0).getReg(),
 | 
						|
                     (Desc.TSFlags & X86II::FormMask)-X86II::MRM0r);
 | 
						|
 | 
						|
    if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) {
 | 
						|
      emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(),
 | 
						|
                   sizeOfImm(Desc));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRM0m: case X86II::MRM1m:
 | 
						|
  case X86II::MRM2m: case X86II::MRM3m:
 | 
						|
  case X86II::MRM4m: case X86II::MRM5m:
 | 
						|
  case X86II::MRM6m: case X86II::MRM7m:
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitMemModRMByte(MI, 0, (Desc.TSFlags & X86II::FormMask)-X86II::MRM0m);
 | 
						|
 | 
						|
    if (MI.getNumOperands() == 5) {
 | 
						|
      if (MI.getOperand(4).isImmediate())
 | 
						|
        emitConstant(MI.getOperand(4).getImmedValue(), sizeOfImm(Desc));
 | 
						|
      else if (MI.getOperand(4).isGlobalAddress())
 | 
						|
        emitGlobalAddressForPtr(MI.getOperand(4).getGlobal(),
 | 
						|
                                MI.getOperand(4).getOffset());
 | 
						|
      else if (MI.getOperand(4).isJumpTableIndex())
 | 
						|
        emitConstant(MCE.getJumpTableEntryAddress(MI.getOperand(4)
 | 
						|
                                                    .getJumpTableIndex()), 4);
 | 
						|
      else
 | 
						|
        assert(0 && "Unknown operand!");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMInitReg:
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitRegModRMByte(MI.getOperand(0).getReg(),
 | 
						|
                     getX86RegNum(MI.getOperand(0).getReg()));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 |