mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165382 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1015 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1015 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the declaration of the MachineInstr class, which is the
 | |
| // basic representation for all target dependent machine instructions used by
 | |
| // the back end.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_CODEGEN_MACHINEINSTR_H
 | |
| #define LLVM_CODEGEN_MACHINEINSTR_H
 | |
| 
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/MC/MCInstrDesc.h"
 | |
| #include "llvm/Target/TargetOpcodes.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/ilist.h"
 | |
| #include "llvm/ADT/ilist_node.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/DenseMapInfo.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Support/DebugLoc.h"
 | |
| #include <vector>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| template <typename T> class SmallVectorImpl;
 | |
| class AliasAnalysis;
 | |
| class TargetInstrInfo;
 | |
| class TargetRegisterClass;
 | |
| class TargetRegisterInfo;
 | |
| class MachineFunction;
 | |
| class MachineMemOperand;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// MachineInstr - Representation of each machine instruction.
 | |
| ///
 | |
| class MachineInstr : public ilist_node<MachineInstr> {
 | |
| public:
 | |
|   typedef MachineMemOperand **mmo_iterator;
 | |
| 
 | |
|   /// Flags to specify different kinds of comments to output in
 | |
|   /// assembly code.  These flags carry semantic information not
 | |
|   /// otherwise easily derivable from the IR text.
 | |
|   ///
 | |
|   enum CommentFlag {
 | |
|     ReloadReuse = 0x1
 | |
|   };
 | |
| 
 | |
|   enum MIFlag {
 | |
|     NoFlags      = 0,
 | |
|     FrameSetup   = 1 << 0,              // Instruction is used as a part of
 | |
|                                         // function frame setup code.
 | |
|     InsideBundle = 1 << 1               // Instruction is inside a bundle (not
 | |
|                                         // the first MI in a bundle)
 | |
|   };
 | |
| private:
 | |
|   const MCInstrDesc *MCID;              // Instruction descriptor.
 | |
| 
 | |
|   uint8_t Flags;                        // Various bits of additional
 | |
|                                         // information about machine
 | |
|                                         // instruction.
 | |
| 
 | |
|   uint8_t AsmPrinterFlags;              // Various bits of information used by
 | |
|                                         // the AsmPrinter to emit helpful
 | |
|                                         // comments.  This is *not* semantic
 | |
|                                         // information.  Do not use this for
 | |
|                                         // anything other than to convey comment
 | |
|                                         // information to AsmPrinter.
 | |
| 
 | |
|   uint16_t NumMemRefs;                  // information on memory references
 | |
|   mmo_iterator MemRefs;
 | |
| 
 | |
|   std::vector<MachineOperand> Operands; // the operands
 | |
|   MachineBasicBlock *Parent;            // Pointer to the owning basic block.
 | |
|   DebugLoc debugLoc;                    // Source line information.
 | |
| 
 | |
|   MachineInstr(const MachineInstr&) LLVM_DELETED_FUNCTION;
 | |
|   void operator=(const MachineInstr&) LLVM_DELETED_FUNCTION;
 | |
| 
 | |
|   // Intrusive list support
 | |
|   friend struct ilist_traits<MachineInstr>;
 | |
|   friend struct ilist_traits<MachineBasicBlock>;
 | |
|   void setParent(MachineBasicBlock *P) { Parent = P; }
 | |
| 
 | |
|   /// MachineInstr ctor - This constructor creates a copy of the given
 | |
|   /// MachineInstr in the given MachineFunction.
 | |
|   MachineInstr(MachineFunction &, const MachineInstr &);
 | |
| 
 | |
|   /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
 | |
|   /// MCID NULL and no operands.
 | |
|   MachineInstr();
 | |
| 
 | |
|   /// MachineInstr ctor - This constructor create a MachineInstr and add the
 | |
|   /// implicit operands.  It reserves space for number of operands specified by
 | |
|   /// MCInstrDesc.  An explicit DebugLoc is supplied.
 | |
|   MachineInstr(const MCInstrDesc &MCID, const DebugLoc dl, bool NoImp = false);
 | |
| 
 | |
|   /// MachineInstr ctor - Work exactly the same as the ctor above, except that
 | |
|   /// the MachineInstr is created and added to the end of the specified basic
 | |
|   /// block.
 | |
|   MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
 | |
|                const MCInstrDesc &MCID);
 | |
| 
 | |
|   ~MachineInstr();
 | |
| 
 | |
|   // MachineInstrs are pool-allocated and owned by MachineFunction.
 | |
|   friend class MachineFunction;
 | |
| 
 | |
| public:
 | |
|   const MachineBasicBlock* getParent() const { return Parent; }
 | |
|   MachineBasicBlock* getParent() { return Parent; }
 | |
| 
 | |
|   /// getAsmPrinterFlags - Return the asm printer flags bitvector.
 | |
|   ///
 | |
|   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
 | |
| 
 | |
|   /// clearAsmPrinterFlags - clear the AsmPrinter bitvector
 | |
|   ///
 | |
|   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
 | |
| 
 | |
|   /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
 | |
|   ///
 | |
|   bool getAsmPrinterFlag(CommentFlag Flag) const {
 | |
|     return AsmPrinterFlags & Flag;
 | |
|   }
 | |
| 
 | |
|   /// setAsmPrinterFlag - Set a flag for the AsmPrinter.
 | |
|   ///
 | |
|   void setAsmPrinterFlag(CommentFlag Flag) {
 | |
|     AsmPrinterFlags |= (uint8_t)Flag;
 | |
|   }
 | |
| 
 | |
|   /// clearAsmPrinterFlag - clear specific AsmPrinter flags
 | |
|   ///
 | |
|   void clearAsmPrinterFlag(CommentFlag Flag) {
 | |
|     AsmPrinterFlags &= ~Flag;
 | |
|   }
 | |
| 
 | |
|   /// getFlags - Return the MI flags bitvector.
 | |
|   uint8_t getFlags() const {
 | |
|     return Flags;
 | |
|   }
 | |
| 
 | |
|   /// getFlag - Return whether an MI flag is set.
 | |
|   bool getFlag(MIFlag Flag) const {
 | |
|     return Flags & Flag;
 | |
|   }
 | |
| 
 | |
|   /// setFlag - Set a MI flag.
 | |
|   void setFlag(MIFlag Flag) {
 | |
|     Flags |= (uint8_t)Flag;
 | |
|   }
 | |
| 
 | |
|   void setFlags(unsigned flags) {
 | |
|     Flags = flags;
 | |
|   }
 | |
| 
 | |
|   /// clearFlag - Clear a MI flag.
 | |
|   void clearFlag(MIFlag Flag) {
 | |
|     Flags &= ~((uint8_t)Flag);
 | |
|   }
 | |
| 
 | |
|   /// isInsideBundle - Return true if MI is in a bundle (but not the first MI
 | |
|   /// in a bundle).
 | |
|   ///
 | |
|   /// A bundle looks like this before it's finalized:
 | |
|   ///   ----------------
 | |
|   ///   |      MI      |
 | |
|   ///   ----------------
 | |
|   ///          |
 | |
|   ///   ----------------
 | |
|   ///   |      MI    * |
 | |
|   ///   ----------------
 | |
|   ///          |
 | |
|   ///   ----------------
 | |
|   ///   |      MI    * |
 | |
|   ///   ----------------
 | |
|   /// In this case, the first MI starts a bundle but is not inside a bundle, the
 | |
|   /// next 2 MIs are considered "inside" the bundle.
 | |
|   ///
 | |
|   /// After a bundle is finalized, it looks like this:
 | |
|   ///   ----------------
 | |
|   ///   |    Bundle    |
 | |
|   ///   ----------------
 | |
|   ///          |
 | |
|   ///   ----------------
 | |
|   ///   |      MI    * |
 | |
|   ///   ----------------
 | |
|   ///          |
 | |
|   ///   ----------------
 | |
|   ///   |      MI    * |
 | |
|   ///   ----------------
 | |
|   ///          |
 | |
|   ///   ----------------
 | |
|   ///   |      MI    * |
 | |
|   ///   ----------------
 | |
|   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
 | |
|   /// a bundle, but the next three MIs are.
 | |
|   bool isInsideBundle() const {
 | |
|     return getFlag(InsideBundle);
 | |
|   }
 | |
| 
 | |
|   /// setIsInsideBundle - Set InsideBundle bit.
 | |
|   ///
 | |
|   void setIsInsideBundle(bool Val = true) {
 | |
|     if (Val)
 | |
|       setFlag(InsideBundle);
 | |
|     else
 | |
|       clearFlag(InsideBundle);
 | |
|   }
 | |
| 
 | |
|   /// isBundled - Return true if this instruction part of a bundle. This is true
 | |
|   /// if either itself or its following instruction is marked "InsideBundle".
 | |
|   bool isBundled() const;
 | |
| 
 | |
|   /// getDebugLoc - Returns the debug location id of this MachineInstr.
 | |
|   ///
 | |
|   DebugLoc getDebugLoc() const { return debugLoc; }
 | |
| 
 | |
|   /// emitError - Emit an error referring to the source location of this
 | |
|   /// instruction. This should only be used for inline assembly that is somehow
 | |
|   /// impossible to compile. Other errors should have been handled much
 | |
|   /// earlier.
 | |
|   ///
 | |
|   /// If this method returns, the caller should try to recover from the error.
 | |
|   ///
 | |
|   void emitError(StringRef Msg) const;
 | |
| 
 | |
|   /// getDesc - Returns the target instruction descriptor of this
 | |
|   /// MachineInstr.
 | |
|   const MCInstrDesc &getDesc() const { return *MCID; }
 | |
| 
 | |
|   /// getOpcode - Returns the opcode of this MachineInstr.
 | |
|   ///
 | |
|   int getOpcode() const { return MCID->Opcode; }
 | |
| 
 | |
|   /// Access to explicit operands of the instruction.
 | |
|   ///
 | |
|   unsigned getNumOperands() const { return (unsigned)Operands.size(); }
 | |
| 
 | |
|   const MachineOperand& getOperand(unsigned i) const {
 | |
|     assert(i < getNumOperands() && "getOperand() out of range!");
 | |
|     return Operands[i];
 | |
|   }
 | |
|   MachineOperand& getOperand(unsigned i) {
 | |
|     assert(i < getNumOperands() && "getOperand() out of range!");
 | |
|     return Operands[i];
 | |
|   }
 | |
| 
 | |
|   /// getNumExplicitOperands - Returns the number of non-implicit operands.
 | |
|   ///
 | |
|   unsigned getNumExplicitOperands() const;
 | |
| 
 | |
|   /// iterator/begin/end - Iterate over all operands of a machine instruction.
 | |
|   typedef std::vector<MachineOperand>::iterator mop_iterator;
 | |
|   typedef std::vector<MachineOperand>::const_iterator const_mop_iterator;
 | |
| 
 | |
|   mop_iterator operands_begin() { return Operands.begin(); }
 | |
|   mop_iterator operands_end() { return Operands.end(); }
 | |
| 
 | |
|   const_mop_iterator operands_begin() const { return Operands.begin(); }
 | |
|   const_mop_iterator operands_end() const { return Operands.end(); }
 | |
| 
 | |
|   /// Access to memory operands of the instruction
 | |
|   mmo_iterator memoperands_begin() const { return MemRefs; }
 | |
|   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
 | |
|   bool memoperands_empty() const { return NumMemRefs == 0; }
 | |
| 
 | |
|   /// hasOneMemOperand - Return true if this instruction has exactly one
 | |
|   /// MachineMemOperand.
 | |
|   bool hasOneMemOperand() const {
 | |
|     return NumMemRefs == 1;
 | |
|   }
 | |
| 
 | |
|   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
 | |
|   /// queries but they are bundle aware.
 | |
| 
 | |
|   enum QueryType {
 | |
|     IgnoreBundle,    // Ignore bundles
 | |
|     AnyInBundle,     // Return true if any instruction in bundle has property
 | |
|     AllInBundle      // Return true if all instructions in bundle have property
 | |
|   };
 | |
| 
 | |
|   /// hasProperty - Return true if the instruction (or in the case of a bundle,
 | |
|   /// the instructions inside the bundle) has the specified property.
 | |
|   /// The first argument is the property being queried.
 | |
|   /// The second argument indicates whether the query should look inside
 | |
|   /// instruction bundles.
 | |
|   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
 | |
|     // Inline the fast path.
 | |
|     if (Type == IgnoreBundle || !isBundle())
 | |
|       return getDesc().getFlags() & (1 << MCFlag);
 | |
| 
 | |
|     // If we have a bundle, take the slow path.
 | |
|     return hasPropertyInBundle(1 << MCFlag, Type);
 | |
|   }
 | |
| 
 | |
|   /// isVariadic - Return true if this instruction can have a variable number of
 | |
|   /// operands.  In this case, the variable operands will be after the normal
 | |
|   /// operands but before the implicit definitions and uses (if any are
 | |
|   /// present).
 | |
|   bool isVariadic(QueryType Type = IgnoreBundle) const {
 | |
|     return hasProperty(MCID::Variadic, Type);
 | |
|   }
 | |
| 
 | |
|   /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
 | |
|   /// ARM instructions which can set condition code if 's' bit is set.
 | |
|   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
 | |
|     return hasProperty(MCID::HasOptionalDef, Type);
 | |
|   }
 | |
| 
 | |
|   /// isPseudo - Return true if this is a pseudo instruction that doesn't
 | |
|   /// correspond to a real machine instruction.
 | |
|   ///
 | |
|   bool isPseudo(QueryType Type = IgnoreBundle) const {
 | |
|     return hasProperty(MCID::Pseudo, Type);
 | |
|   }
 | |
| 
 | |
|   bool isReturn(QueryType Type = AnyInBundle) const {
 | |
|     return hasProperty(MCID::Return, Type);
 | |
|   }
 | |
| 
 | |
|   bool isCall(QueryType Type = AnyInBundle) const {
 | |
|     return hasProperty(MCID::Call, Type);
 | |
|   }
 | |
| 
 | |
|   /// isBarrier - Returns true if the specified instruction stops control flow
 | |
|   /// from executing the instruction immediately following it.  Examples include
 | |
|   /// unconditional branches and return instructions.
 | |
|   bool isBarrier(QueryType Type = AnyInBundle) const {
 | |
|     return hasProperty(MCID::Barrier, Type);
 | |
|   }
 | |
| 
 | |
|   /// isTerminator - Returns true if this instruction part of the terminator for
 | |
|   /// a basic block.  Typically this is things like return and branch
 | |
|   /// instructions.
 | |
|   ///
 | |
|   /// Various passes use this to insert code into the bottom of a basic block,
 | |
|   /// but before control flow occurs.
 | |
|   bool isTerminator(QueryType Type = AnyInBundle) const {
 | |
|     return hasProperty(MCID::Terminator, Type);
 | |
|   }
 | |
| 
 | |
|   /// isBranch - Returns true if this is a conditional, unconditional, or
 | |
|   /// indirect branch.  Predicates below can be used to discriminate between
 | |
|   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
 | |
|   /// get more information.
 | |
|   bool isBranch(QueryType Type = AnyInBundle) const {
 | |
|     return hasProperty(MCID::Branch, Type);
 | |
|   }
 | |
| 
 | |
|   /// isIndirectBranch - Return true if this is an indirect branch, such as a
 | |
|   /// branch through a register.
 | |
|   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
 | |
|     return hasProperty(MCID::IndirectBranch, Type);
 | |
|   }
 | |
| 
 | |
|   /// isConditionalBranch - Return true if this is a branch which may fall
 | |
|   /// through to the next instruction or may transfer control flow to some other
 | |
|   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
 | |
|   /// information about this branch.
 | |
|   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
 | |
|     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
 | |
|   }
 | |
| 
 | |
|   /// isUnconditionalBranch - Return true if this is a branch which always
 | |
|   /// transfers control flow to some other block.  The
 | |
|   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
 | |
|   /// about this branch.
 | |
|   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
 | |
|     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
 | |
|   }
 | |
| 
 | |
|   // isPredicable - Return true if this instruction has a predicate operand that
 | |
|   // controls execution.  It may be set to 'always', or may be set to other
 | |
|   /// values.   There are various methods in TargetInstrInfo that can be used to
 | |
|   /// control and modify the predicate in this instruction.
 | |
|   bool isPredicable(QueryType Type = AllInBundle) const {
 | |
|     // If it's a bundle than all bundled instructions must be predicable for this
 | |
|     // to return true.
 | |
|     return hasProperty(MCID::Predicable, Type);
 | |
|   }
 | |
| 
 | |
|   /// isCompare - Return true if this instruction is a comparison.
 | |
|   bool isCompare(QueryType Type = IgnoreBundle) const {
 | |
|     return hasProperty(MCID::Compare, Type);
 | |
|   }
 | |
| 
 | |
|   /// isMoveImmediate - Return true if this instruction is a move immediate
 | |
|   /// (including conditional moves) instruction.
 | |
|   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
 | |
|     return hasProperty(MCID::MoveImm, Type);
 | |
|   }
 | |
| 
 | |
|   /// isBitcast - Return true if this instruction is a bitcast instruction.
 | |
|   ///
 | |
|   bool isBitcast(QueryType Type = IgnoreBundle) const {
 | |
|     return hasProperty(MCID::Bitcast, Type);
 | |
|   }
 | |
| 
 | |
|   /// isSelect - Return true if this instruction is a select instruction.
 | |
|   ///
 | |
|   bool isSelect(QueryType Type = IgnoreBundle) const {
 | |
|     return hasProperty(MCID::Select, Type);
 | |
|   }
 | |
| 
 | |
|   /// isNotDuplicable - Return true if this instruction cannot be safely
 | |
|   /// duplicated.  For example, if the instruction has a unique labels attached
 | |
|   /// to it, duplicating it would cause multiple definition errors.
 | |
|   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
 | |
|     return hasProperty(MCID::NotDuplicable, Type);
 | |
|   }
 | |
| 
 | |
|   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
 | |
|   /// which must be filled by the code generator.
 | |
|   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
 | |
|     return hasProperty(MCID::DelaySlot, Type);
 | |
|   }
 | |
| 
 | |
|   /// canFoldAsLoad - Return true for instructions that can be folded as
 | |
|   /// memory operands in other instructions. The most common use for this
 | |
|   /// is instructions that are simple loads from memory that don't modify
 | |
|   /// the loaded value in any way, but it can also be used for instructions
 | |
|   /// that can be expressed as constant-pool loads, such as V_SETALLONES
 | |
|   /// on x86, to allow them to be folded when it is beneficial.
 | |
|   /// This should only be set on instructions that return a value in their
 | |
|   /// only virtual register definition.
 | |
|   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
 | |
|     return hasProperty(MCID::FoldableAsLoad, Type);
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Side Effect Analysis
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   /// mayLoad - Return true if this instruction could possibly read memory.
 | |
|   /// Instructions with this flag set are not necessarily simple load
 | |
|   /// instructions, they may load a value and modify it, for example.
 | |
|   bool mayLoad(QueryType Type = AnyInBundle) const {
 | |
|     return hasProperty(MCID::MayLoad, Type);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /// mayStore - Return true if this instruction could possibly modify memory.
 | |
|   /// Instructions with this flag set are not necessarily simple store
 | |
|   /// instructions, they may store a modified value based on their operands, or
 | |
|   /// may not actually modify anything, for example.
 | |
|   bool mayStore(QueryType Type = AnyInBundle) const {
 | |
|     return hasProperty(MCID::MayStore, Type);
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Flags that indicate whether an instruction can be modified by a method.
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   /// isCommutable - Return true if this may be a 2- or 3-address
 | |
|   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
 | |
|   /// result if Y and Z are exchanged.  If this flag is set, then the
 | |
|   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
 | |
|   /// instruction.
 | |
|   ///
 | |
|   /// Note that this flag may be set on instructions that are only commutable
 | |
|   /// sometimes.  In these cases, the call to commuteInstruction will fail.
 | |
|   /// Also note that some instructions require non-trivial modification to
 | |
|   /// commute them.
 | |
|   bool isCommutable(QueryType Type = IgnoreBundle) const {
 | |
|     return hasProperty(MCID::Commutable, Type);
 | |
|   }
 | |
| 
 | |
|   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
 | |
|   /// which can be changed into a 3-address instruction if needed.  Doing this
 | |
|   /// transformation can be profitable in the register allocator, because it
 | |
|   /// means that the instruction can use a 2-address form if possible, but
 | |
|   /// degrade into a less efficient form if the source and dest register cannot
 | |
|   /// be assigned to the same register.  For example, this allows the x86
 | |
|   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
 | |
|   /// is the same speed as the shift but has bigger code size.
 | |
|   ///
 | |
|   /// If this returns true, then the target must implement the
 | |
|   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
 | |
|   /// is allowed to fail if the transformation isn't valid for this specific
 | |
|   /// instruction (e.g. shl reg, 4 on x86).
 | |
|   ///
 | |
|   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
 | |
|     return hasProperty(MCID::ConvertibleTo3Addr, Type);
 | |
|   }
 | |
| 
 | |
|   /// usesCustomInsertionHook - Return true if this instruction requires
 | |
|   /// custom insertion support when the DAG scheduler is inserting it into a
 | |
|   /// machine basic block.  If this is true for the instruction, it basically
 | |
|   /// means that it is a pseudo instruction used at SelectionDAG time that is
 | |
|   /// expanded out into magic code by the target when MachineInstrs are formed.
 | |
|   ///
 | |
|   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
 | |
|   /// is used to insert this into the MachineBasicBlock.
 | |
|   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
 | |
|     return hasProperty(MCID::UsesCustomInserter, Type);
 | |
|   }
 | |
| 
 | |
|   /// hasPostISelHook - Return true if this instruction requires *adjustment*
 | |
|   /// after instruction selection by calling a target hook. For example, this
 | |
|   /// can be used to fill in ARM 's' optional operand depending on whether
 | |
|   /// the conditional flag register is used.
 | |
|   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
 | |
|     return hasProperty(MCID::HasPostISelHook, Type);
 | |
|   }
 | |
| 
 | |
|   /// isRematerializable - Returns true if this instruction is a candidate for
 | |
|   /// remat.  This flag is deprecated, please don't use it anymore.  If this
 | |
|   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
 | |
|   /// verify the instruction is really rematable.
 | |
|   bool isRematerializable(QueryType Type = AllInBundle) const {
 | |
|     // It's only possible to re-mat a bundle if all bundled instructions are
 | |
|     // re-materializable.
 | |
|     return hasProperty(MCID::Rematerializable, Type);
 | |
|   }
 | |
| 
 | |
|   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
 | |
|   /// less) than a move instruction. This is useful during certain types of
 | |
|   /// optimizations (e.g., remat during two-address conversion or machine licm)
 | |
|   /// where we would like to remat or hoist the instruction, but not if it costs
 | |
|   /// more than moving the instruction into the appropriate register. Note, we
 | |
|   /// are not marking copies from and to the same register class with this flag.
 | |
|   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
 | |
|     // Only returns true for a bundle if all bundled instructions are cheap.
 | |
|     // FIXME: This probably requires a target hook.
 | |
|     return hasProperty(MCID::CheapAsAMove, Type);
 | |
|   }
 | |
| 
 | |
|   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
 | |
|   /// have special register allocation requirements that are not captured by the
 | |
|   /// operand register classes. e.g. ARM::STRD's two source registers must be an
 | |
|   /// even / odd pair, ARM::STM registers have to be in ascending order.
 | |
|   /// Post-register allocation passes should not attempt to change allocations
 | |
|   /// for sources of instructions with this flag.
 | |
|   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
 | |
|     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
 | |
|   }
 | |
| 
 | |
|   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
 | |
|   /// have special register allocation requirements that are not captured by the
 | |
|   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
 | |
|   /// even / odd pair, ARM::LDM registers have to be in ascending order.
 | |
|   /// Post-register allocation passes should not attempt to change allocations
 | |
|   /// for definitions of instructions with this flag.
 | |
|   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
 | |
|     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   enum MICheckType {
 | |
|     CheckDefs,      // Check all operands for equality
 | |
|     CheckKillDead,  // Check all operands including kill / dead markers
 | |
|     IgnoreDefs,     // Ignore all definitions
 | |
|     IgnoreVRegDefs  // Ignore virtual register definitions
 | |
|   };
 | |
| 
 | |
|   /// isIdenticalTo - Return true if this instruction is identical to (same
 | |
|   /// opcode and same operands as) the specified instruction.
 | |
|   bool isIdenticalTo(const MachineInstr *Other,
 | |
|                      MICheckType Check = CheckDefs) const;
 | |
| 
 | |
|   /// removeFromParent - This method unlinks 'this' from the containing basic
 | |
|   /// block, and returns it, but does not delete it.
 | |
|   MachineInstr *removeFromParent();
 | |
| 
 | |
|   /// eraseFromParent - This method unlinks 'this' from the containing basic
 | |
|   /// block and deletes it.
 | |
|   void eraseFromParent();
 | |
| 
 | |
|   /// isLabel - Returns true if the MachineInstr represents a label.
 | |
|   ///
 | |
|   bool isLabel() const {
 | |
|     return getOpcode() == TargetOpcode::PROLOG_LABEL ||
 | |
|            getOpcode() == TargetOpcode::EH_LABEL ||
 | |
|            getOpcode() == TargetOpcode::GC_LABEL;
 | |
|   }
 | |
| 
 | |
|   bool isPrologLabel() const {
 | |
|     return getOpcode() == TargetOpcode::PROLOG_LABEL;
 | |
|   }
 | |
|   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
 | |
|   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
 | |
|   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
 | |
| 
 | |
|   bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
 | |
|   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
 | |
|   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
 | |
|   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
 | |
|   bool isStackAligningInlineAsm() const;
 | |
|   InlineAsm::AsmDialect getInlineAsmDialect() const;
 | |
|   bool isInsertSubreg() const {
 | |
|     return getOpcode() == TargetOpcode::INSERT_SUBREG;
 | |
|   }
 | |
|   bool isSubregToReg() const {
 | |
|     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
 | |
|   }
 | |
|   bool isRegSequence() const {
 | |
|     return getOpcode() == TargetOpcode::REG_SEQUENCE;
 | |
|   }
 | |
|   bool isBundle() const {
 | |
|     return getOpcode() == TargetOpcode::BUNDLE;
 | |
|   }
 | |
|   bool isCopy() const {
 | |
|     return getOpcode() == TargetOpcode::COPY;
 | |
|   }
 | |
|   bool isFullCopy() const {
 | |
|     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
 | |
|   }
 | |
| 
 | |
|   /// isCopyLike - Return true if the instruction behaves like a copy.
 | |
|   /// This does not include native copy instructions.
 | |
|   bool isCopyLike() const {
 | |
|     return isCopy() || isSubregToReg();
 | |
|   }
 | |
| 
 | |
|   /// isIdentityCopy - Return true is the instruction is an identity copy.
 | |
|   bool isIdentityCopy() const {
 | |
|     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
 | |
|       getOperand(0).getSubReg() == getOperand(1).getSubReg();
 | |
|   }
 | |
| 
 | |
|   /// isTransient - Return true if this is a transient instruction that is
 | |
|   /// either very likely to be eliminated during register allocation (such as
 | |
|   /// copy-like instructions), or if this instruction doesn't have an
 | |
|   /// execution-time cost.
 | |
|   bool isTransient() const {
 | |
|     switch(getOpcode()) {
 | |
|     default: return false;
 | |
|     // Copy-like instructions are usually eliminated during register allocation.
 | |
|     case TargetOpcode::PHI:
 | |
|     case TargetOpcode::COPY:
 | |
|     case TargetOpcode::INSERT_SUBREG:
 | |
|     case TargetOpcode::SUBREG_TO_REG:
 | |
|     case TargetOpcode::REG_SEQUENCE:
 | |
|     // Pseudo-instructions that don't produce any real output.
 | |
|     case TargetOpcode::IMPLICIT_DEF:
 | |
|     case TargetOpcode::KILL:
 | |
|     case TargetOpcode::PROLOG_LABEL:
 | |
|     case TargetOpcode::EH_LABEL:
 | |
|     case TargetOpcode::GC_LABEL:
 | |
|     case TargetOpcode::DBG_VALUE:
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// getBundleSize - Return the number of instructions inside the MI bundle.
 | |
|   unsigned getBundleSize() const;
 | |
| 
 | |
|   /// readsRegister - Return true if the MachineInstr reads the specified
 | |
|   /// register. If TargetRegisterInfo is passed, then it also checks if there
 | |
|   /// is a read of a super-register.
 | |
|   /// This does not count partial redefines of virtual registers as reads:
 | |
|   ///   %reg1024:6 = OP.
 | |
|   bool readsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
 | |
|     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
 | |
|   }
 | |
| 
 | |
|   /// readsVirtualRegister - Return true if the MachineInstr reads the specified
 | |
|   /// virtual register. Take into account that a partial define is a
 | |
|   /// read-modify-write operation.
 | |
|   bool readsVirtualRegister(unsigned Reg) const {
 | |
|     return readsWritesVirtualRegister(Reg).first;
 | |
|   }
 | |
| 
 | |
|   /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
 | |
|   /// indicating if this instruction reads or writes Reg. This also considers
 | |
|   /// partial defines.
 | |
|   /// If Ops is not null, all operand indices for Reg are added.
 | |
|   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
 | |
|                                       SmallVectorImpl<unsigned> *Ops = 0) const;
 | |
| 
 | |
|   /// killsRegister - Return true if the MachineInstr kills the specified
 | |
|   /// register. If TargetRegisterInfo is passed, then it also checks if there is
 | |
|   /// a kill of a super-register.
 | |
|   bool killsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
 | |
|     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
 | |
|   }
 | |
| 
 | |
|   /// definesRegister - Return true if the MachineInstr fully defines the
 | |
|   /// specified register. If TargetRegisterInfo is passed, then it also checks
 | |
|   /// if there is a def of a super-register.
 | |
|   /// NOTE: It's ignoring subreg indices on virtual registers.
 | |
|   bool definesRegister(unsigned Reg, const TargetRegisterInfo *TRI=NULL) const {
 | |
|     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
 | |
|   }
 | |
| 
 | |
|   /// modifiesRegister - Return true if the MachineInstr modifies (fully define
 | |
|   /// or partially define) the specified register.
 | |
|   /// NOTE: It's ignoring subreg indices on virtual registers.
 | |
|   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
 | |
|     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
 | |
|   }
 | |
| 
 | |
|   /// registerDefIsDead - Returns true if the register is dead in this machine
 | |
|   /// instruction. If TargetRegisterInfo is passed, then it also checks
 | |
|   /// if there is a dead def of a super-register.
 | |
|   bool registerDefIsDead(unsigned Reg,
 | |
|                          const TargetRegisterInfo *TRI = NULL) const {
 | |
|     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
 | |
|   }
 | |
| 
 | |
|   /// findRegisterUseOperandIdx() - Returns the operand index that is a use of
 | |
|   /// the specific register or -1 if it is not found. It further tightens
 | |
|   /// the search criteria to a use that kills the register if isKill is true.
 | |
|   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
 | |
|                                 const TargetRegisterInfo *TRI = NULL) const;
 | |
| 
 | |
|   /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
 | |
|   /// a pointer to the MachineOperand rather than an index.
 | |
|   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
 | |
|                                          const TargetRegisterInfo *TRI = NULL) {
 | |
|     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
 | |
|     return (Idx == -1) ? NULL : &getOperand(Idx);
 | |
|   }
 | |
| 
 | |
|   /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
 | |
|   /// the specified register or -1 if it is not found. If isDead is true, defs
 | |
|   /// that are not dead are skipped. If Overlap is true, then it also looks for
 | |
|   /// defs that merely overlap the specified register. If TargetRegisterInfo is
 | |
|   /// non-null, then it also checks if there is a def of a super-register.
 | |
|   /// This may also return a register mask operand when Overlap is true.
 | |
|   int findRegisterDefOperandIdx(unsigned Reg,
 | |
|                                 bool isDead = false, bool Overlap = false,
 | |
|                                 const TargetRegisterInfo *TRI = NULL) const;
 | |
| 
 | |
|   /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
 | |
|   /// a pointer to the MachineOperand rather than an index.
 | |
|   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
 | |
|                                          const TargetRegisterInfo *TRI = NULL) {
 | |
|     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
 | |
|     return (Idx == -1) ? NULL : &getOperand(Idx);
 | |
|   }
 | |
| 
 | |
|   /// findFirstPredOperandIdx() - Find the index of the first operand in the
 | |
|   /// operand list that is used to represent the predicate. It returns -1 if
 | |
|   /// none is found.
 | |
|   int findFirstPredOperandIdx() const;
 | |
| 
 | |
|   /// findInlineAsmFlagIdx() - Find the index of the flag word operand that
 | |
|   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
 | |
|   /// getOperand(OpIdx) does not belong to an inline asm operand group.
 | |
|   ///
 | |
|   /// If GroupNo is not NULL, it will receive the number of the operand group
 | |
|   /// containing OpIdx.
 | |
|   ///
 | |
|   /// The flag operand is an immediate that can be decoded with methods like
 | |
|   /// InlineAsm::hasRegClassConstraint().
 | |
|   ///
 | |
|   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = 0) const;
 | |
| 
 | |
|   /// getRegClassConstraint - Compute the static register class constraint for
 | |
|   /// operand OpIdx.  For normal instructions, this is derived from the
 | |
|   /// MCInstrDesc.  For inline assembly it is derived from the flag words.
 | |
|   ///
 | |
|   /// Returns NULL if the static register classs constraint cannot be
 | |
|   /// determined.
 | |
|   ///
 | |
|   const TargetRegisterClass*
 | |
|   getRegClassConstraint(unsigned OpIdx,
 | |
|                         const TargetInstrInfo *TII,
 | |
|                         const TargetRegisterInfo *TRI) const;
 | |
| 
 | |
|   /// tieOperands - Add a tie between the register operands at DefIdx and
 | |
|   /// UseIdx. The tie will cause the register allocator to ensure that the two
 | |
|   /// operands are assigned the same physical register.
 | |
|   ///
 | |
|   /// Tied operands are managed automatically for explicit operands in the
 | |
|   /// MCInstrDesc. This method is for exceptional cases like inline asm.
 | |
|   void tieOperands(unsigned DefIdx, unsigned UseIdx);
 | |
| 
 | |
|   /// findTiedOperandIdx - Given the index of a tied register operand, find the
 | |
|   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
 | |
|   /// index of the tied operand which must exist.
 | |
|   unsigned findTiedOperandIdx(unsigned OpIdx) const;
 | |
| 
 | |
|   /// isRegTiedToUseOperand - Given the index of a register def operand,
 | |
|   /// check if the register def is tied to a source operand, due to either
 | |
|   /// two-address elimination or inline assembly constraints. Returns the
 | |
|   /// first tied use operand index by reference if UseOpIdx is not null.
 | |
|   bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx = 0) const {
 | |
|     const MachineOperand &MO = getOperand(DefOpIdx);
 | |
|     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
 | |
|       return false;
 | |
|     if (UseOpIdx)
 | |
|       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// isRegTiedToDefOperand - Return true if the use operand of the specified
 | |
|   /// index is tied to an def operand. It also returns the def operand index by
 | |
|   /// reference if DefOpIdx is not null.
 | |
|   bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx = 0) const {
 | |
|     const MachineOperand &MO = getOperand(UseOpIdx);
 | |
|     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
 | |
|       return false;
 | |
|     if (DefOpIdx)
 | |
|       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// clearKillInfo - Clears kill flags on all operands.
 | |
|   ///
 | |
|   void clearKillInfo();
 | |
| 
 | |
|   /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
 | |
|   ///
 | |
|   void copyKillDeadInfo(const MachineInstr *MI);
 | |
| 
 | |
|   /// copyPredicates - Copies predicate operand(s) from MI.
 | |
|   void copyPredicates(const MachineInstr *MI);
 | |
| 
 | |
|   /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
 | |
|   /// properly composing subreg indices where necessary.
 | |
|   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
 | |
|                           const TargetRegisterInfo &RegInfo);
 | |
| 
 | |
|   /// addRegisterKilled - We have determined MI kills a register. Look for the
 | |
|   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
 | |
|   /// add a implicit operand if it's not found. Returns true if the operand
 | |
|   /// exists / is added.
 | |
|   bool addRegisterKilled(unsigned IncomingReg,
 | |
|                          const TargetRegisterInfo *RegInfo,
 | |
|                          bool AddIfNotFound = false);
 | |
| 
 | |
|   /// clearRegisterKills - Clear all kill flags affecting Reg.  If RegInfo is
 | |
|   /// provided, this includes super-register kills.
 | |
|   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
 | |
| 
 | |
|   /// addRegisterDead - We have determined MI defined a register without a use.
 | |
|   /// Look for the operand that defines it and mark it as IsDead. If
 | |
|   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
 | |
|   /// true if the operand exists / is added.
 | |
|   bool addRegisterDead(unsigned IncomingReg, const TargetRegisterInfo *RegInfo,
 | |
|                        bool AddIfNotFound = false);
 | |
| 
 | |
|   /// addRegisterDefined - We have determined MI defines a register. Make sure
 | |
|   /// there is an operand defining Reg.
 | |
|   void addRegisterDefined(unsigned IncomingReg,
 | |
|                           const TargetRegisterInfo *RegInfo = 0);
 | |
| 
 | |
|   /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as
 | |
|   /// dead except those in the UsedRegs list.
 | |
|   ///
 | |
|   /// On instructions with register mask operands, also add implicit-def
 | |
|   /// operands for all registers in UsedRegs.
 | |
|   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
 | |
|                              const TargetRegisterInfo &TRI);
 | |
| 
 | |
|   /// isSafeToMove - Return true if it is safe to move this instruction. If
 | |
|   /// SawStore is set to true, it means that there is a store (or call) between
 | |
|   /// the instruction's location and its intended destination.
 | |
|   bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
 | |
|                     bool &SawStore) const;
 | |
| 
 | |
|   /// isSafeToReMat - Return true if it's safe to rematerialize the specified
 | |
|   /// instruction which defined the specified register instead of copying it.
 | |
|   bool isSafeToReMat(const TargetInstrInfo *TII, AliasAnalysis *AA,
 | |
|                      unsigned DstReg) const;
 | |
| 
 | |
|   /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
 | |
|   /// or volatile memory reference, or if the information describing the memory
 | |
|   /// reference is not available. Return false if it is known to have no
 | |
|   /// ordered or volatile memory references.
 | |
|   bool hasOrderedMemoryRef() const;
 | |
| 
 | |
|   /// isInvariantLoad - Return true if this instruction is loading from a
 | |
|   /// location whose value is invariant across the function.  For example,
 | |
|   /// loading a value from the constant pool or from the argument area of
 | |
|   /// a function if it does not change.  This should only return true of *all*
 | |
|   /// loads the instruction does are invariant (if it does multiple loads).
 | |
|   bool isInvariantLoad(AliasAnalysis *AA) const;
 | |
| 
 | |
|   /// isConstantValuePHI - If the specified instruction is a PHI that always
 | |
|   /// merges together the same virtual register, return the register, otherwise
 | |
|   /// return 0.
 | |
|   unsigned isConstantValuePHI() const;
 | |
| 
 | |
|   /// hasUnmodeledSideEffects - Return true if this instruction has side
 | |
|   /// effects that are not modeled by mayLoad / mayStore, etc.
 | |
|   /// For all instructions, the property is encoded in MCInstrDesc::Flags
 | |
|   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
 | |
|   /// INLINEASM instruction, in which case the side effect property is encoded
 | |
|   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
 | |
|   ///
 | |
|   bool hasUnmodeledSideEffects() const;
 | |
| 
 | |
|   /// allDefsAreDead - Return true if all the defs of this instruction are dead.
 | |
|   ///
 | |
|   bool allDefsAreDead() const;
 | |
| 
 | |
|   /// copyImplicitOps - Copy implicit register operands from specified
 | |
|   /// instruction to this instruction.
 | |
|   void copyImplicitOps(const MachineInstr *MI);
 | |
| 
 | |
|   //
 | |
|   // Debugging support
 | |
|   //
 | |
|   void print(raw_ostream &OS, const TargetMachine *TM = 0) const;
 | |
|   void dump() const;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Accessors used to build up machine instructions.
 | |
| 
 | |
|   /// addOperand - Add the specified operand to the instruction.  If it is an
 | |
|   /// implicit operand, it is added to the end of the operand list.  If it is
 | |
|   /// an explicit operand it is added at the end of the explicit operand list
 | |
|   /// (before the first implicit operand).
 | |
|   void addOperand(const MachineOperand &Op);
 | |
| 
 | |
|   /// setDesc - Replace the instruction descriptor (thus opcode) of
 | |
|   /// the current instruction with a new one.
 | |
|   ///
 | |
|   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
 | |
| 
 | |
|   /// setDebugLoc - Replace current source information with new such.
 | |
|   /// Avoid using this, the constructor argument is preferable.
 | |
|   ///
 | |
|   void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
 | |
| 
 | |
|   /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
 | |
|   /// fewer operand than it started with.
 | |
|   ///
 | |
|   void RemoveOperand(unsigned i);
 | |
| 
 | |
|   /// addMemOperand - Add a MachineMemOperand to the machine instruction.
 | |
|   /// This function should be used only occasionally. The setMemRefs function
 | |
|   /// is the primary method for setting up a MachineInstr's MemRefs list.
 | |
|   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
 | |
| 
 | |
|   /// setMemRefs - Assign this MachineInstr's memory reference descriptor
 | |
|   /// list. This does not transfer ownership.
 | |
|   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
 | |
|     MemRefs = NewMemRefs;
 | |
|     NumMemRefs = NewMemRefsEnd - NewMemRefs;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// getRegInfo - If this instruction is embedded into a MachineFunction,
 | |
|   /// return the MachineRegisterInfo object for the current function, otherwise
 | |
|   /// return null.
 | |
|   MachineRegisterInfo *getRegInfo();
 | |
| 
 | |
|   /// untieRegOperand - Break any tie involving OpIdx.
 | |
|   void untieRegOperand(unsigned OpIdx) {
 | |
|     MachineOperand &MO = getOperand(OpIdx);
 | |
|     if (MO.isReg() && MO.isTied()) {
 | |
|       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
 | |
|       MO.TiedTo = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// addImplicitDefUseOperands - Add all implicit def and use operands to
 | |
|   /// this instruction.
 | |
|   void addImplicitDefUseOperands();
 | |
| 
 | |
|   /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
 | |
|   /// this instruction from their respective use lists.  This requires that the
 | |
|   /// operands already be on their use lists.
 | |
|   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
 | |
| 
 | |
|   /// AddRegOperandsToUseLists - Add all of the register operands in
 | |
|   /// this instruction from their respective use lists.  This requires that the
 | |
|   /// operands not be on their use lists yet.
 | |
|   void AddRegOperandsToUseLists(MachineRegisterInfo&);
 | |
| 
 | |
|   /// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a
 | |
|   /// bundle.
 | |
|   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
 | |
| };
 | |
| 
 | |
| /// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
 | |
| /// MachineInstr* by *value* of the instruction rather than by pointer value.
 | |
| /// The hashing and equality testing functions ignore definitions so this is
 | |
| /// useful for CSE, etc.
 | |
| struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
 | |
|   static inline MachineInstr *getEmptyKey() {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   static inline MachineInstr *getTombstoneKey() {
 | |
|     return reinterpret_cast<MachineInstr*>(-1);
 | |
|   }
 | |
| 
 | |
|   static unsigned getHashValue(const MachineInstr* const &MI);
 | |
| 
 | |
|   static bool isEqual(const MachineInstr* const &LHS,
 | |
|                       const MachineInstr* const &RHS) {
 | |
|     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
 | |
|         LHS == getEmptyKey() || LHS == getTombstoneKey())
 | |
|       return LHS == RHS;
 | |
|     return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Debugging Support
 | |
| 
 | |
| inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
 | |
|   MI.print(OS);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |