2004-08-15 23:34:48 +00:00

220 lines
7.3 KiB
C++

//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tool implements a just-in-time compiler for LLVM, allowing direct
// execution of LLVM bytecode in an efficient manner.
//
//===----------------------------------------------------------------------===//
#include "JIT.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/ModuleProvider.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetJITInfo.h"
#include "Support/DynamicLinker.h"
#include <iostream>
using namespace llvm;
JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji)
: ExecutionEngine(MP), TM(tm), TJI(tji), PM(MP) {
setTargetData(TM.getTargetData());
// Initialize MCE
MCE = createEmitter(*this);
// Add target data
PM.add (new TargetData (TM.getTargetData ()));
// Compile LLVM Code down to machine code in the intermediate representation
TJI.addPassesToJITCompile(PM);
// Turn the machine code intermediate representation into bytes in memory that
// may be executed.
if (TM.addPassesToEmitMachineCode(PM, *MCE)) {
std::cerr << "lli: target '" << TM.getName()
<< "' doesn't support machine code emission!\n";
abort();
}
}
JIT::~JIT() {
delete MCE;
delete &TM;
}
/// run - Start execution with the specified function and arguments.
///
GenericValue JIT::runFunction(Function *F,
const std::vector<GenericValue> &ArgValues) {
assert(F && "Function *F was null at entry to run()");
GenericValue rv;
void *FPtr = getPointerToFunction(F);
assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
const Type *RetTy = F->getReturnType();
// Handle some common cases first.
if (RetTy == Type::IntTy || RetTy == Type::UIntTy || RetTy == Type::VoidTy) {
if (ArgValues.size() == 3) {
int (*PF)(int, char **, const char **) =
(int(*)(int, char **, const char **))FPtr;
// Call the function.
rv.IntVal = PF(ArgValues[0].IntVal, (char **)GVTOP(ArgValues[1]),
(const char **)GVTOP(ArgValues[2]));
return rv;
} else if (ArgValues.size() == 1) {
int (*PF)(int) = (int(*)(int))FPtr;
rv.IntVal = PF(ArgValues[0].IntVal);
return rv;
} else if (ArgValues.size() == 0) {
int (*PF)() = (int(*)())FPtr;
rv.IntVal = PF();
return rv;
}
}
// FIXME: This code should handle a couple of common cases efficiently, but
// it should also implement the general case by code-gening a new anonymous
// nullary function to call.
std::cerr << "Sorry, unimplemented feature in the LLVM JIT. See LLVM"
<< " PR#419\n for details.\n";
abort();
return rv;
}
/// runJITOnFunction - Run the FunctionPassManager full of
/// just-in-time compilation passes on F, hopefully filling in
/// GlobalAddress[F] with the address of F's machine code.
///
void JIT::runJITOnFunction(Function *F) {
static bool isAlreadyCodeGenerating = false;
assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
// JIT the function
isAlreadyCodeGenerating = true;
PM.run(*F);
isAlreadyCodeGenerating = false;
// If the function referred to a global variable that had not yet been
// emitted, it allocates memory for the global, but doesn't emit it yet. Emit
// all of these globals now.
while (!PendingGlobals.empty()) {
const GlobalVariable *GV = PendingGlobals.back();
PendingGlobals.pop_back();
EmitGlobalVariable(GV);
}
}
/// getPointerToFunction - This method is used to get the address of the
/// specified function, compiling it if neccesary.
///
void *JIT::getPointerToFunction(Function *F) {
if (void *Addr = getPointerToGlobalIfAvailable(F))
return Addr; // Check if function already code gen'd
// Make sure we read in the function if it exists in this Module
try {
MP->materializeFunction(F);
} catch ( std::string& errmsg ) {
std::cerr << "Error reading bytecode file: " << errmsg << "\n";
abort();
} catch (...) {
std::cerr << "Error reading bytecode file!\n";
abort();
}
if (F->isExternal()) {
void *Addr = getPointerToNamedFunction(F->getName());
addGlobalMapping(F, Addr);
return Addr;
}
runJITOnFunction(F);
void *Addr = getPointerToGlobalIfAvailable(F);
assert(Addr && "Code generation didn't add function to GlobalAddress table!");
return Addr;
}
// getPointerToFunctionOrStub - If the specified function has been
// code-gen'd, return a pointer to the function. If not, compile it, or use
// a stub to implement lazy compilation if available.
//
void *JIT::getPointerToFunctionOrStub(Function *F) {
// If we have already code generated the function, just return the address.
if (void *Addr = getPointerToGlobalIfAvailable(F))
return Addr;
// If the target supports "stubs" for functions, get a stub now.
if (void *Ptr = TJI.getJITStubForFunction(F, *MCE))
return Ptr;
// Otherwise, if the target doesn't support it, just codegen the function.
return getPointerToFunction(F);
}
/// getOrEmitGlobalVariable - Return the address of the specified global
/// variable, possibly emitting it to memory if needed. This is used by the
/// Emitter.
void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
void *Ptr = getPointerToGlobalIfAvailable(GV);
if (Ptr) return Ptr;
// If the global is external, just remember the address.
if (GV->isExternal()) {
Ptr = GetAddressOfSymbol(GV->getName().c_str());
if (Ptr == 0) {
std::cerr << "Could not resolve external global address: "
<< GV->getName() << "\n";
abort();
}
} else {
// If the global hasn't been emitted to memory yet, allocate space. We will
// actually initialize the global after current function has finished
// compilation.
Ptr =new char[getTargetData().getTypeSize(GV->getType()->getElementType())];
PendingGlobals.push_back(GV);
}
addGlobalMapping(GV, Ptr);
return Ptr;
}
/// recompileAndRelinkFunction - This method is used to force a function
/// which has already been compiled, to be compiled again, possibly
/// after it has been modified. Then the entry to the old copy is overwritten
/// with a branch to the new copy. If there was no old copy, this acts
/// just like JIT::getPointerToFunction().
///
void *JIT::recompileAndRelinkFunction(Function *F) {
void *OldAddr = getPointerToGlobalIfAvailable(F);
// If it's not already compiled there is no reason to patch it up.
if (OldAddr == 0) { return getPointerToFunction(F); }
// Delete the old function mapping.
addGlobalMapping(F, 0);
// Recodegen the function
runJITOnFunction(F);
// Update state, forward the old function to the new function.
void *Addr = getPointerToGlobalIfAvailable(F);
assert(Addr && "Code generation didn't add function to GlobalAddress table!");
TJI.replaceMachineCodeForFunction(OldAddr, Addr);
return Addr;
}