mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109449 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2020 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2020 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements bottom-up and top-down register pressure reduction list
 | |
| // schedulers, using standard algorithms.  The basic approach uses a priority
 | |
| // queue of available nodes to schedule.  One at a time, nodes are taken from
 | |
| // the priority queue (thus in priority order), checked for legality to
 | |
| // schedule, and emitted if legal.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "pre-RA-sched"
 | |
| #include "ScheduleDAGSDNodes.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/CodeGen/SchedulerRegistry.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <climits>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
 | |
| STATISTIC(NumUnfolds,    "Number of nodes unfolded");
 | |
| STATISTIC(NumDups,       "Number of duplicated nodes");
 | |
| STATISTIC(NumPRCopies,   "Number of physical register copies");
 | |
| 
 | |
| static RegisterScheduler
 | |
|   burrListDAGScheduler("list-burr",
 | |
|                        "Bottom-up register reduction list scheduling",
 | |
|                        createBURRListDAGScheduler);
 | |
| static RegisterScheduler
 | |
|   tdrListrDAGScheduler("list-tdrr",
 | |
|                        "Top-down register reduction list scheduling",
 | |
|                        createTDRRListDAGScheduler);
 | |
| static RegisterScheduler
 | |
|   sourceListDAGScheduler("source",
 | |
|                          "Similar to list-burr but schedules in source "
 | |
|                          "order when possible",
 | |
|                          createSourceListDAGScheduler);
 | |
| 
 | |
| static RegisterScheduler
 | |
|   hybridListDAGScheduler("list-hybrid",
 | |
|                          "Bottom-up register pressure aware list scheduling "
 | |
|                          "which tries to balance latency and register pressure",
 | |
|                          createHybridListDAGScheduler);
 | |
| 
 | |
| static RegisterScheduler
 | |
|   ILPListDAGScheduler("list-ilp",
 | |
|                       "Bottom-up register pressure aware list scheduling "
 | |
|                       "which tries to balance ILP and register pressure",
 | |
|                       createILPListDAGScheduler);
 | |
| 
 | |
| namespace {
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ScheduleDAGRRList - The actual register reduction list scheduler
 | |
| /// implementation.  This supports both top-down and bottom-up scheduling.
 | |
| ///
 | |
| class ScheduleDAGRRList : public ScheduleDAGSDNodes {
 | |
| private:
 | |
|   /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
 | |
|   /// it is top-down.
 | |
|   bool isBottomUp;
 | |
| 
 | |
|   /// NeedLatency - True if the scheduler will make use of latency information.
 | |
|   ///
 | |
|   bool NeedLatency;
 | |
| 
 | |
|   /// AvailableQueue - The priority queue to use for the available SUnits.
 | |
|   SchedulingPriorityQueue *AvailableQueue;
 | |
| 
 | |
|   /// LiveRegDefs - A set of physical registers and their definition
 | |
|   /// that are "live". These nodes must be scheduled before any other nodes that
 | |
|   /// modifies the registers can be scheduled.
 | |
|   unsigned NumLiveRegs;
 | |
|   std::vector<SUnit*> LiveRegDefs;
 | |
|   std::vector<unsigned> LiveRegCycles;
 | |
| 
 | |
|   /// Topo - A topological ordering for SUnits which permits fast IsReachable
 | |
|   /// and similar queries.
 | |
|   ScheduleDAGTopologicalSort Topo;
 | |
| 
 | |
| public:
 | |
|   ScheduleDAGRRList(MachineFunction &mf,
 | |
|                     bool isbottomup, bool needlatency,
 | |
|                     SchedulingPriorityQueue *availqueue)
 | |
|     : ScheduleDAGSDNodes(mf), isBottomUp(isbottomup), NeedLatency(needlatency),
 | |
|       AvailableQueue(availqueue), Topo(SUnits) {
 | |
|     }
 | |
| 
 | |
|   ~ScheduleDAGRRList() {
 | |
|     delete AvailableQueue;
 | |
|   }
 | |
| 
 | |
|   void Schedule();
 | |
| 
 | |
|   /// IsReachable - Checks if SU is reachable from TargetSU.
 | |
|   bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
 | |
|     return Topo.IsReachable(SU, TargetSU);
 | |
|   }
 | |
| 
 | |
|   /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
 | |
|   /// create a cycle.
 | |
|   bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
 | |
|     return Topo.WillCreateCycle(SU, TargetSU);
 | |
|   }
 | |
| 
 | |
|   /// AddPred - adds a predecessor edge to SUnit SU.
 | |
|   /// This returns true if this is a new predecessor.
 | |
|   /// Updates the topological ordering if required.
 | |
|   void AddPred(SUnit *SU, const SDep &D) {
 | |
|     Topo.AddPred(SU, D.getSUnit());
 | |
|     SU->addPred(D);
 | |
|   }
 | |
| 
 | |
|   /// RemovePred - removes a predecessor edge from SUnit SU.
 | |
|   /// This returns true if an edge was removed.
 | |
|   /// Updates the topological ordering if required.
 | |
|   void RemovePred(SUnit *SU, const SDep &D) {
 | |
|     Topo.RemovePred(SU, D.getSUnit());
 | |
|     SU->removePred(D);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void ReleasePred(SUnit *SU, const SDep *PredEdge);
 | |
|   void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
 | |
|   void ReleaseSucc(SUnit *SU, const SDep *SuccEdge);
 | |
|   void ReleaseSuccessors(SUnit *SU);
 | |
|   void CapturePred(SDep *PredEdge);
 | |
|   void ScheduleNodeBottomUp(SUnit*, unsigned);
 | |
|   void ScheduleNodeTopDown(SUnit*, unsigned);
 | |
|   void UnscheduleNodeBottomUp(SUnit*);
 | |
|   void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
 | |
|   SUnit *CopyAndMoveSuccessors(SUnit*);
 | |
|   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
 | |
|                                 const TargetRegisterClass*,
 | |
|                                 const TargetRegisterClass*,
 | |
|                                 SmallVector<SUnit*, 2>&);
 | |
|   bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
 | |
|   void ListScheduleTopDown();
 | |
|   void ListScheduleBottomUp();
 | |
| 
 | |
| 
 | |
|   /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
 | |
|   /// Updates the topological ordering if required.
 | |
|   SUnit *CreateNewSUnit(SDNode *N) {
 | |
|     unsigned NumSUnits = SUnits.size();
 | |
|     SUnit *NewNode = NewSUnit(N);
 | |
|     // Update the topological ordering.
 | |
|     if (NewNode->NodeNum >= NumSUnits)
 | |
|       Topo.InitDAGTopologicalSorting();
 | |
|     return NewNode;
 | |
|   }
 | |
| 
 | |
|   /// CreateClone - Creates a new SUnit from an existing one.
 | |
|   /// Updates the topological ordering if required.
 | |
|   SUnit *CreateClone(SUnit *N) {
 | |
|     unsigned NumSUnits = SUnits.size();
 | |
|     SUnit *NewNode = Clone(N);
 | |
|     // Update the topological ordering.
 | |
|     if (NewNode->NodeNum >= NumSUnits)
 | |
|       Topo.InitDAGTopologicalSorting();
 | |
|     return NewNode;
 | |
|   }
 | |
| 
 | |
|   /// ForceUnitLatencies - Register-pressure-reducing scheduling doesn't
 | |
|   /// need actual latency information but the hybrid scheduler does.
 | |
|   bool ForceUnitLatencies() const {
 | |
|     return !NeedLatency;
 | |
|   }
 | |
| };
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| 
 | |
| /// Schedule - Schedule the DAG using list scheduling.
 | |
| void ScheduleDAGRRList::Schedule() {
 | |
|   DEBUG(dbgs()
 | |
|         << "********** List Scheduling BB#" << BB->getNumber()
 | |
|         << " **********\n");
 | |
| 
 | |
|   NumLiveRegs = 0;
 | |
|   LiveRegDefs.resize(TRI->getNumRegs(), NULL);  
 | |
|   LiveRegCycles.resize(TRI->getNumRegs(), 0);
 | |
| 
 | |
|   // Build the scheduling graph.
 | |
|   BuildSchedGraph(NULL);
 | |
| 
 | |
|   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | |
|           SUnits[su].dumpAll(this));
 | |
|   Topo.InitDAGTopologicalSorting();
 | |
| 
 | |
|   AvailableQueue->initNodes(SUnits);
 | |
|   
 | |
|   // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
 | |
|   if (isBottomUp)
 | |
|     ListScheduleBottomUp();
 | |
|   else
 | |
|     ListScheduleTopDown();
 | |
|   
 | |
|   AvailableQueue->releaseState();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Bottom-Up Scheduling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
 | |
| /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
 | |
| void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
 | |
|   SUnit *PredSU = PredEdge->getSUnit();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (PredSU->NumSuccsLeft == 0) {
 | |
|     dbgs() << "*** Scheduling failed! ***\n";
 | |
|     PredSU->dump(this);
 | |
|     dbgs() << " has been released too many times!\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| #endif
 | |
|   --PredSU->NumSuccsLeft;
 | |
| 
 | |
|   if (!ForceUnitLatencies()) {
 | |
|     // Updating predecessor's height. This is now the cycle when the
 | |
|     // predecessor can be scheduled without causing a pipeline stall.
 | |
|     PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
 | |
|   }
 | |
| 
 | |
|   // If all the node's successors are scheduled, this node is ready
 | |
|   // to be scheduled. Ignore the special EntrySU node.
 | |
|   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
 | |
|     PredSU->isAvailable = true;
 | |
|     AvailableQueue->push(PredSU);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
 | |
|   // Bottom up: release predecessors
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     ReleasePred(SU, &*I);
 | |
|     if (I->isAssignedRegDep()) {
 | |
|       // This is a physical register dependency and it's impossible or
 | |
|       // expensive to copy the register. Make sure nothing that can 
 | |
|       // clobber the register is scheduled between the predecessor and
 | |
|       // this node.
 | |
|       if (!LiveRegDefs[I->getReg()]) {
 | |
|         ++NumLiveRegs;
 | |
|         LiveRegDefs[I->getReg()] = I->getSUnit();
 | |
|         LiveRegCycles[I->getReg()] = CurCycle;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
 | |
| /// count of its predecessors. If a predecessor pending count is zero, add it to
 | |
| /// the Available queue.
 | |
| void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
 | |
|   DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
 | |
|   DEBUG(SU->dump(this));
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (CurCycle < SU->getHeight())
 | |
|     DEBUG(dbgs() << "   Height [" << SU->getHeight() << "] pipeline stall!\n");
 | |
| #endif
 | |
| 
 | |
|   // FIXME: Handle noop hazard.
 | |
|   SU->setHeightToAtLeast(CurCycle);
 | |
|   Sequence.push_back(SU);
 | |
| 
 | |
|   AvailableQueue->ScheduledNode(SU);
 | |
| 
 | |
|   ReleasePredecessors(SU, CurCycle);
 | |
| 
 | |
|   // Release all the implicit physical register defs that are live.
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isAssignedRegDep()) {
 | |
|       if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
 | |
|         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
 | |
|         assert(LiveRegDefs[I->getReg()] == SU &&
 | |
|                "Physical register dependency violated?");
 | |
|         --NumLiveRegs;
 | |
|         LiveRegDefs[I->getReg()] = NULL;
 | |
|         LiveRegCycles[I->getReg()] = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SU->isScheduled = true;
 | |
| }
 | |
| 
 | |
| /// CapturePred - This does the opposite of ReleasePred. Since SU is being
 | |
| /// unscheduled, incrcease the succ left count of its predecessors. Remove
 | |
| /// them from AvailableQueue if necessary.
 | |
| void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {  
 | |
|   SUnit *PredSU = PredEdge->getSUnit();
 | |
|   if (PredSU->isAvailable) {
 | |
|     PredSU->isAvailable = false;
 | |
|     if (!PredSU->isPending)
 | |
|       AvailableQueue->remove(PredSU);
 | |
|   }
 | |
| 
 | |
|   assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
 | |
|   ++PredSU->NumSuccsLeft;
 | |
| }
 | |
| 
 | |
| /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
 | |
| /// its predecessor states to reflect the change.
 | |
| void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
 | |
|   DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
 | |
|   DEBUG(SU->dump(this));
 | |
| 
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     CapturePred(&*I);
 | |
|     if (I->isAssignedRegDep() && SU->getHeight() == LiveRegCycles[I->getReg()]){
 | |
|       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
 | |
|       assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
 | |
|              "Physical register dependency violated?");
 | |
|       --NumLiveRegs;
 | |
|       LiveRegDefs[I->getReg()] = NULL;
 | |
|       LiveRegCycles[I->getReg()] = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isAssignedRegDep()) {
 | |
|       if (!LiveRegDefs[I->getReg()]) {
 | |
|         LiveRegDefs[I->getReg()] = SU;
 | |
|         ++NumLiveRegs;
 | |
|       }
 | |
|       if (I->getSUnit()->getHeight() < LiveRegCycles[I->getReg()])
 | |
|         LiveRegCycles[I->getReg()] = I->getSUnit()->getHeight();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SU->setHeightDirty();
 | |
|   SU->isScheduled = false;
 | |
|   SU->isAvailable = true;
 | |
|   AvailableQueue->push(SU);
 | |
|   AvailableQueue->UnscheduledNode(SU);
 | |
| }
 | |
| 
 | |
| /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
 | |
| /// BTCycle in order to schedule a specific node.
 | |
| void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
 | |
|                                           unsigned &CurCycle) {
 | |
|   SUnit *OldSU = NULL;
 | |
|   while (CurCycle > BtCycle) {
 | |
|     OldSU = Sequence.back();
 | |
|     Sequence.pop_back();
 | |
|     if (SU->isSucc(OldSU))
 | |
|       // Don't try to remove SU from AvailableQueue.
 | |
|       SU->isAvailable = false;
 | |
|     UnscheduleNodeBottomUp(OldSU);
 | |
|     --CurCycle;
 | |
|     AvailableQueue->setCurCycle(CurCycle);
 | |
|   }
 | |
| 
 | |
|   assert(!SU->isSucc(OldSU) && "Something is wrong!");
 | |
| 
 | |
|   ++NumBacktracks;
 | |
| }
 | |
| 
 | |
| static bool isOperandOf(const SUnit *SU, SDNode *N) {
 | |
|   for (const SDNode *SUNode = SU->getNode(); SUNode;
 | |
|        SUNode = SUNode->getFlaggedNode()) {
 | |
|     if (SUNode->isOperandOf(N))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
 | |
| /// successors to the newly created node.
 | |
| SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
 | |
|   if (SU->getNode()->getFlaggedNode())
 | |
|     return NULL;
 | |
| 
 | |
|   SDNode *N = SU->getNode();
 | |
|   if (!N)
 | |
|     return NULL;
 | |
| 
 | |
|   SUnit *NewSU;
 | |
|   bool TryUnfold = false;
 | |
|   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
 | |
|     EVT VT = N->getValueType(i);
 | |
|     if (VT == MVT::Flag)
 | |
|       return NULL;
 | |
|     else if (VT == MVT::Other)
 | |
|       TryUnfold = true;
 | |
|   }
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     const SDValue &Op = N->getOperand(i);
 | |
|     EVT VT = Op.getNode()->getValueType(Op.getResNo());
 | |
|     if (VT == MVT::Flag)
 | |
|       return NULL;
 | |
|   }
 | |
| 
 | |
|   if (TryUnfold) {
 | |
|     SmallVector<SDNode*, 2> NewNodes;
 | |
|     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
 | |
|       return NULL;
 | |
| 
 | |
|     DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
 | |
|     assert(NewNodes.size() == 2 && "Expected a load folding node!");
 | |
| 
 | |
|     N = NewNodes[1];
 | |
|     SDNode *LoadNode = NewNodes[0];
 | |
|     unsigned NumVals = N->getNumValues();
 | |
|     unsigned OldNumVals = SU->getNode()->getNumValues();
 | |
|     for (unsigned i = 0; i != NumVals; ++i)
 | |
|       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
 | |
|     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
 | |
|                                    SDValue(LoadNode, 1));
 | |
| 
 | |
|     // LoadNode may already exist. This can happen when there is another
 | |
|     // load from the same location and producing the same type of value
 | |
|     // but it has different alignment or volatileness.
 | |
|     bool isNewLoad = true;
 | |
|     SUnit *LoadSU;
 | |
|     if (LoadNode->getNodeId() != -1) {
 | |
|       LoadSU = &SUnits[LoadNode->getNodeId()];
 | |
|       isNewLoad = false;
 | |
|     } else {
 | |
|       LoadSU = CreateNewSUnit(LoadNode);
 | |
|       LoadNode->setNodeId(LoadSU->NodeNum);
 | |
|       ComputeLatency(LoadSU);
 | |
|     }
 | |
| 
 | |
|     SUnit *NewSU = CreateNewSUnit(N);
 | |
|     assert(N->getNodeId() == -1 && "Node already inserted!");
 | |
|     N->setNodeId(NewSU->NodeNum);
 | |
|       
 | |
|     const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
 | |
|     for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
 | |
|       if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
 | |
|         NewSU->isTwoAddress = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (TID.isCommutable())
 | |
|       NewSU->isCommutable = true;
 | |
|     ComputeLatency(NewSU);
 | |
| 
 | |
|     // Record all the edges to and from the old SU, by category.
 | |
|     SmallVector<SDep, 4> ChainPreds;
 | |
|     SmallVector<SDep, 4> ChainSuccs;
 | |
|     SmallVector<SDep, 4> LoadPreds;
 | |
|     SmallVector<SDep, 4> NodePreds;
 | |
|     SmallVector<SDep, 4> NodeSuccs;
 | |
|     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->isCtrl())
 | |
|         ChainPreds.push_back(*I);
 | |
|       else if (isOperandOf(I->getSUnit(), LoadNode))
 | |
|         LoadPreds.push_back(*I);
 | |
|       else
 | |
|         NodePreds.push_back(*I);
 | |
|     }
 | |
|     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->isCtrl())
 | |
|         ChainSuccs.push_back(*I);
 | |
|       else
 | |
|         NodeSuccs.push_back(*I);
 | |
|     }
 | |
| 
 | |
|     // Now assign edges to the newly-created nodes.
 | |
|     for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
 | |
|       const SDep &Pred = ChainPreds[i];
 | |
|       RemovePred(SU, Pred);
 | |
|       if (isNewLoad)
 | |
|         AddPred(LoadSU, Pred);
 | |
|     }
 | |
|     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
 | |
|       const SDep &Pred = LoadPreds[i];
 | |
|       RemovePred(SU, Pred);
 | |
|       if (isNewLoad)
 | |
|         AddPred(LoadSU, Pred);
 | |
|     }
 | |
|     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
 | |
|       const SDep &Pred = NodePreds[i];
 | |
|       RemovePred(SU, Pred);
 | |
|       AddPred(NewSU, Pred);
 | |
|     }
 | |
|     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
 | |
|       SDep D = NodeSuccs[i];
 | |
|       SUnit *SuccDep = D.getSUnit();
 | |
|       D.setSUnit(SU);
 | |
|       RemovePred(SuccDep, D);
 | |
|       D.setSUnit(NewSU);
 | |
|       AddPred(SuccDep, D);
 | |
|     }
 | |
|     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
 | |
|       SDep D = ChainSuccs[i];
 | |
|       SUnit *SuccDep = D.getSUnit();
 | |
|       D.setSUnit(SU);
 | |
|       RemovePred(SuccDep, D);
 | |
|       if (isNewLoad) {
 | |
|         D.setSUnit(LoadSU);
 | |
|         AddPred(SuccDep, D);
 | |
|       }
 | |
|     } 
 | |
| 
 | |
|     // Add a data dependency to reflect that NewSU reads the value defined
 | |
|     // by LoadSU.
 | |
|     AddPred(NewSU, SDep(LoadSU, SDep::Data, LoadSU->Latency));
 | |
| 
 | |
|     if (isNewLoad)
 | |
|       AvailableQueue->addNode(LoadSU);
 | |
|     AvailableQueue->addNode(NewSU);
 | |
| 
 | |
|     ++NumUnfolds;
 | |
| 
 | |
|     if (NewSU->NumSuccsLeft == 0) {
 | |
|       NewSU->isAvailable = true;
 | |
|       return NewSU;
 | |
|     }
 | |
|     SU = NewSU;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
 | |
|   NewSU = CreateClone(SU);
 | |
| 
 | |
|   // New SUnit has the exact same predecessors.
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I)
 | |
|     if (!I->isArtificial())
 | |
|       AddPred(NewSU, *I);
 | |
| 
 | |
|   // Only copy scheduled successors. Cut them from old node's successor
 | |
|   // list and move them over.
 | |
|   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isArtificial())
 | |
|       continue;
 | |
|     SUnit *SuccSU = I->getSUnit();
 | |
|     if (SuccSU->isScheduled) {
 | |
|       SDep D = *I;
 | |
|       D.setSUnit(NewSU);
 | |
|       AddPred(SuccSU, D);
 | |
|       D.setSUnit(SU);
 | |
|       DelDeps.push_back(std::make_pair(SuccSU, D));
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
 | |
|     RemovePred(DelDeps[i].first, DelDeps[i].second);
 | |
| 
 | |
|   AvailableQueue->updateNode(SU);
 | |
|   AvailableQueue->addNode(NewSU);
 | |
| 
 | |
|   ++NumDups;
 | |
|   return NewSU;
 | |
| }
 | |
| 
 | |
| /// InsertCopiesAndMoveSuccs - Insert register copies and move all
 | |
| /// scheduled successors of the given SUnit to the last copy.
 | |
| void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
 | |
|                                                const TargetRegisterClass *DestRC,
 | |
|                                                const TargetRegisterClass *SrcRC,
 | |
|                                                SmallVector<SUnit*, 2> &Copies) {
 | |
|   SUnit *CopyFromSU = CreateNewSUnit(NULL);
 | |
|   CopyFromSU->CopySrcRC = SrcRC;
 | |
|   CopyFromSU->CopyDstRC = DestRC;
 | |
| 
 | |
|   SUnit *CopyToSU = CreateNewSUnit(NULL);
 | |
|   CopyToSU->CopySrcRC = DestRC;
 | |
|   CopyToSU->CopyDstRC = SrcRC;
 | |
| 
 | |
|   // Only copy scheduled successors. Cut them from old node's successor
 | |
|   // list and move them over.
 | |
|   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isArtificial())
 | |
|       continue;
 | |
|     SUnit *SuccSU = I->getSUnit();
 | |
|     if (SuccSU->isScheduled) {
 | |
|       SDep D = *I;
 | |
|       D.setSUnit(CopyToSU);
 | |
|       AddPred(SuccSU, D);
 | |
|       DelDeps.push_back(std::make_pair(SuccSU, *I));
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
 | |
|     RemovePred(DelDeps[i].first, DelDeps[i].second);
 | |
| 
 | |
|   AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
 | |
|   AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
 | |
| 
 | |
|   AvailableQueue->updateNode(SU);
 | |
|   AvailableQueue->addNode(CopyFromSU);
 | |
|   AvailableQueue->addNode(CopyToSU);
 | |
|   Copies.push_back(CopyFromSU);
 | |
|   Copies.push_back(CopyToSU);
 | |
| 
 | |
|   ++NumPRCopies;
 | |
| }
 | |
| 
 | |
| /// getPhysicalRegisterVT - Returns the ValueType of the physical register
 | |
| /// definition of the specified node.
 | |
| /// FIXME: Move to SelectionDAG?
 | |
| static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
 | |
|                                  const TargetInstrInfo *TII) {
 | |
|   const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
 | |
|   assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
 | |
|   unsigned NumRes = TID.getNumDefs();
 | |
|   for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
 | |
|     if (Reg == *ImpDef)
 | |
|       break;
 | |
|     ++NumRes;
 | |
|   }
 | |
|   return N->getValueType(NumRes);
 | |
| }
 | |
| 
 | |
| /// CheckForLiveRegDef - Return true and update live register vector if the
 | |
| /// specified register def of the specified SUnit clobbers any "live" registers.
 | |
| static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
 | |
|                                std::vector<SUnit*> &LiveRegDefs,
 | |
|                                SmallSet<unsigned, 4> &RegAdded,
 | |
|                                SmallVector<unsigned, 4> &LRegs,
 | |
|                                const TargetRegisterInfo *TRI) {
 | |
|   bool Added = false;
 | |
|   if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != SU) {
 | |
|     if (RegAdded.insert(Reg)) {
 | |
|       LRegs.push_back(Reg);
 | |
|       Added = true;
 | |
|     }
 | |
|   }
 | |
|   for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias)
 | |
|     if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
 | |
|       if (RegAdded.insert(*Alias)) {
 | |
|         LRegs.push_back(*Alias);
 | |
|         Added = true;
 | |
|       }
 | |
|     }
 | |
|   return Added;
 | |
| }
 | |
| 
 | |
| /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
 | |
| /// scheduling of the given node to satisfy live physical register dependencies.
 | |
| /// If the specific node is the last one that's available to schedule, do
 | |
| /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
 | |
| bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
 | |
|                                                  SmallVector<unsigned, 4> &LRegs){
 | |
|   if (NumLiveRegs == 0)
 | |
|     return false;
 | |
| 
 | |
|   SmallSet<unsigned, 4> RegAdded;
 | |
|   // If this node would clobber any "live" register, then it's not ready.
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isAssignedRegDep())
 | |
|       CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
 | |
|                          RegAdded, LRegs, TRI);
 | |
|   }
 | |
| 
 | |
|   for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) {
 | |
|     if (Node->getOpcode() == ISD::INLINEASM) {
 | |
|       // Inline asm can clobber physical defs.
 | |
|       unsigned NumOps = Node->getNumOperands();
 | |
|       if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag)
 | |
|         --NumOps;  // Ignore the flag operand.
 | |
| 
 | |
|       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
 | |
|         unsigned Flags =
 | |
|           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
 | |
|         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
 | |
| 
 | |
|         ++i; // Skip the ID value.
 | |
|         if (InlineAsm::isRegDefKind(Flags) ||
 | |
|             InlineAsm::isRegDefEarlyClobberKind(Flags)) {
 | |
|           // Check for def of register or earlyclobber register.
 | |
|           for (; NumVals; --NumVals, ++i) {
 | |
|             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
 | |
|             if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|               CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
 | |
|           }
 | |
|         } else
 | |
|           i += NumVals;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!Node->isMachineOpcode())
 | |
|       continue;
 | |
|     const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
 | |
|     if (!TID.ImplicitDefs)
 | |
|       continue;
 | |
|     for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg)
 | |
|       CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
 | |
|   }
 | |
|   return !LRegs.empty();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
 | |
| /// schedulers.
 | |
| void ScheduleDAGRRList::ListScheduleBottomUp() {
 | |
|   unsigned CurCycle = 0;
 | |
| 
 | |
|   // Release any predecessors of the special Exit node.
 | |
|   ReleasePredecessors(&ExitSU, CurCycle);
 | |
| 
 | |
|   // Add root to Available queue.
 | |
|   if (!SUnits.empty()) {
 | |
|     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
 | |
|     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
 | |
|     RootSU->isAvailable = true;
 | |
|     AvailableQueue->push(RootSU);
 | |
|   }
 | |
| 
 | |
|   // While Available queue is not empty, grab the node with the highest
 | |
|   // priority. If it is not ready put it back.  Schedule the node.
 | |
|   SmallVector<SUnit*, 4> NotReady;
 | |
|   DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
 | |
|   Sequence.reserve(SUnits.size());
 | |
|   while (!AvailableQueue->empty()) {
 | |
|     bool Delayed = false;
 | |
|     LRegsMap.clear();
 | |
|     SUnit *CurSU = AvailableQueue->pop();
 | |
|     while (CurSU) {
 | |
|       SmallVector<unsigned, 4> LRegs;
 | |
|       if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
 | |
|         break;
 | |
|       Delayed = true;
 | |
|       LRegsMap.insert(std::make_pair(CurSU, LRegs));
 | |
| 
 | |
|       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
 | |
|       NotReady.push_back(CurSU);
 | |
|       CurSU = AvailableQueue->pop();
 | |
|     }
 | |
| 
 | |
|     // All candidates are delayed due to live physical reg dependencies.
 | |
|     // Try backtracking, code duplication, or inserting cross class copies
 | |
|     // to resolve it.
 | |
|     if (Delayed && !CurSU) {
 | |
|       for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
 | |
|         SUnit *TrySU = NotReady[i];
 | |
|         SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
 | |
| 
 | |
|         // Try unscheduling up to the point where it's safe to schedule
 | |
|         // this node.
 | |
|         unsigned LiveCycle = CurCycle;
 | |
|         for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
 | |
|           unsigned Reg = LRegs[j];
 | |
|           unsigned LCycle = LiveRegCycles[Reg];
 | |
|           LiveCycle = std::min(LiveCycle, LCycle);
 | |
|         }
 | |
|         SUnit *OldSU = Sequence[LiveCycle];
 | |
|         if (!WillCreateCycle(TrySU, OldSU))  {
 | |
|           BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
 | |
|           // Force the current node to be scheduled before the node that
 | |
|           // requires the physical reg dep.
 | |
|           if (OldSU->isAvailable) {
 | |
|             OldSU->isAvailable = false;
 | |
|             AvailableQueue->remove(OldSU);
 | |
|           }
 | |
|           AddPred(TrySU, SDep(OldSU, SDep::Order, /*Latency=*/1,
 | |
|                               /*Reg=*/0, /*isNormalMemory=*/false,
 | |
|                               /*isMustAlias=*/false, /*isArtificial=*/true));
 | |
|           // If one or more successors has been unscheduled, then the current
 | |
|           // node is no longer avaialable. Schedule a successor that's now
 | |
|           // available instead.
 | |
|           if (!TrySU->isAvailable)
 | |
|             CurSU = AvailableQueue->pop();
 | |
|           else {
 | |
|             CurSU = TrySU;
 | |
|             TrySU->isPending = false;
 | |
|             NotReady.erase(NotReady.begin()+i);
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!CurSU) {
 | |
|         // Can't backtrack. If it's too expensive to copy the value, then try
 | |
|         // duplicate the nodes that produces these "too expensive to copy"
 | |
|         // values to break the dependency. In case even that doesn't work,
 | |
|         // insert cross class copies.
 | |
|         // If it's not too expensive, i.e. cost != -1, issue copies.
 | |
|         SUnit *TrySU = NotReady[0];
 | |
|         SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
 | |
|         assert(LRegs.size() == 1 && "Can't handle this yet!");
 | |
|         unsigned Reg = LRegs[0];
 | |
|         SUnit *LRDef = LiveRegDefs[Reg];
 | |
|         EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
 | |
|         const TargetRegisterClass *RC =
 | |
|           TRI->getMinimalPhysRegClass(Reg, VT);
 | |
|         const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
 | |
| 
 | |
|         // If cross copy register class is null, then it must be possible copy
 | |
|         // the value directly. Do not try duplicate the def.
 | |
|         SUnit *NewDef = 0;
 | |
|         if (DestRC)
 | |
|           NewDef = CopyAndMoveSuccessors(LRDef);
 | |
|         else
 | |
|           DestRC = RC;
 | |
|         if (!NewDef) {
 | |
|           // Issue copies, these can be expensive cross register class copies.
 | |
|           SmallVector<SUnit*, 2> Copies;
 | |
|           InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
 | |
|           DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
 | |
|                        << " to SU #" << Copies.front()->NodeNum << "\n");
 | |
|           AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
 | |
|                               /*Reg=*/0, /*isNormalMemory=*/false,
 | |
|                               /*isMustAlias=*/false,
 | |
|                               /*isArtificial=*/true));
 | |
|           NewDef = Copies.back();
 | |
|         }
 | |
| 
 | |
|         DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
 | |
|                      << " to SU #" << TrySU->NodeNum << "\n");
 | |
|         LiveRegDefs[Reg] = NewDef;
 | |
|         AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
 | |
|                              /*Reg=*/0, /*isNormalMemory=*/false,
 | |
|                              /*isMustAlias=*/false,
 | |
|                              /*isArtificial=*/true));
 | |
|         TrySU->isAvailable = false;
 | |
|         CurSU = NewDef;
 | |
|       }
 | |
| 
 | |
|       assert(CurSU && "Unable to resolve live physical register dependencies!");
 | |
|     }
 | |
| 
 | |
|     // Add the nodes that aren't ready back onto the available list.
 | |
|     for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
 | |
|       NotReady[i]->isPending = false;
 | |
|       // May no longer be available due to backtracking.
 | |
|       if (NotReady[i]->isAvailable)
 | |
|         AvailableQueue->push(NotReady[i]);
 | |
|     }
 | |
|     NotReady.clear();
 | |
| 
 | |
|     if (CurSU)
 | |
|       ScheduleNodeBottomUp(CurSU, CurCycle);
 | |
|     ++CurCycle;
 | |
|     AvailableQueue->setCurCycle(CurCycle);
 | |
|   }
 | |
| 
 | |
|   // Reverse the order if it is bottom up.
 | |
|   std::reverse(Sequence.begin(), Sequence.end());
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   VerifySchedule(isBottomUp);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Top-Down Scheduling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | |
| /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
 | |
| void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, const SDep *SuccEdge) {
 | |
|   SUnit *SuccSU = SuccEdge->getSUnit();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (SuccSU->NumPredsLeft == 0) {
 | |
|     dbgs() << "*** Scheduling failed! ***\n";
 | |
|     SuccSU->dump(this);
 | |
|     dbgs() << " has been released too many times!\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| #endif
 | |
|   --SuccSU->NumPredsLeft;
 | |
| 
 | |
|   // If all the node's predecessors are scheduled, this node is ready
 | |
|   // to be scheduled. Ignore the special ExitSU node.
 | |
|   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
 | |
|     SuccSU->isAvailable = true;
 | |
|     AvailableQueue->push(SuccSU);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGRRList::ReleaseSuccessors(SUnit *SU) {
 | |
|   // Top down: release successors
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     assert(!I->isAssignedRegDep() &&
 | |
|            "The list-tdrr scheduler doesn't yet support physreg dependencies!");
 | |
| 
 | |
|     ReleaseSucc(SU, &*I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | |
| /// count of its successors. If a successor pending count is zero, add it to
 | |
| /// the Available queue.
 | |
| void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
 | |
|   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
 | |
|   DEBUG(SU->dump(this));
 | |
| 
 | |
|   assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
 | |
|   SU->setDepthToAtLeast(CurCycle);
 | |
|   Sequence.push_back(SU);
 | |
| 
 | |
|   ReleaseSuccessors(SU);
 | |
|   SU->isScheduled = true;
 | |
|   AvailableQueue->ScheduledNode(SU);
 | |
| }
 | |
| 
 | |
| /// ListScheduleTopDown - The main loop of list scheduling for top-down
 | |
| /// schedulers.
 | |
| void ScheduleDAGRRList::ListScheduleTopDown() {
 | |
|   unsigned CurCycle = 0;
 | |
|   AvailableQueue->setCurCycle(CurCycle);
 | |
| 
 | |
|   // Release any successors of the special Entry node.
 | |
|   ReleaseSuccessors(&EntrySU);
 | |
| 
 | |
|   // All leaves to Available queue.
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     // It is available if it has no predecessors.
 | |
|     if (SUnits[i].Preds.empty()) {
 | |
|       AvailableQueue->push(&SUnits[i]);
 | |
|       SUnits[i].isAvailable = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // While Available queue is not empty, grab the node with the highest
 | |
|   // priority. If it is not ready put it back.  Schedule the node.
 | |
|   Sequence.reserve(SUnits.size());
 | |
|   while (!AvailableQueue->empty()) {
 | |
|     SUnit *CurSU = AvailableQueue->pop();
 | |
|     
 | |
|     if (CurSU)
 | |
|       ScheduleNodeTopDown(CurSU, CurCycle);
 | |
|     ++CurCycle;
 | |
|     AvailableQueue->setCurCycle(CurCycle);
 | |
|   }
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   VerifySchedule(isBottomUp);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                RegReductionPriorityQueue Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
 | |
| // to reduce register pressure.
 | |
| // 
 | |
| namespace {
 | |
|   template<class SF>
 | |
|   class RegReductionPriorityQueue;
 | |
|   
 | |
|   /// bu_ls_rr_sort - Priority function for bottom up register pressure
 | |
|   // reduction scheduler.
 | |
|   struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|     RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
 | |
|     bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
 | |
|     bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | |
|     
 | |
|     bool operator()(const SUnit* left, const SUnit* right) const;
 | |
|   };
 | |
| 
 | |
|   // td_ls_rr_sort - Priority function for top down register pressure reduction
 | |
|   // scheduler.
 | |
|   struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|     RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
 | |
|     td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
 | |
|     td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | |
|     
 | |
|     bool operator()(const SUnit* left, const SUnit* right) const;
 | |
|   };
 | |
| 
 | |
|   // src_ls_rr_sort - Priority function for source order scheduler.
 | |
|   struct src_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|     RegReductionPriorityQueue<src_ls_rr_sort> *SPQ;
 | |
|     src_ls_rr_sort(RegReductionPriorityQueue<src_ls_rr_sort> *spq)
 | |
|       : SPQ(spq) {}
 | |
|     src_ls_rr_sort(const src_ls_rr_sort &RHS)
 | |
|       : SPQ(RHS.SPQ) {}
 | |
|     
 | |
|     bool operator()(const SUnit* left, const SUnit* right) const;
 | |
|   };
 | |
| 
 | |
|   // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
 | |
|   struct hybrid_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|     RegReductionPriorityQueue<hybrid_ls_rr_sort> *SPQ;
 | |
|     hybrid_ls_rr_sort(RegReductionPriorityQueue<hybrid_ls_rr_sort> *spq)
 | |
|       : SPQ(spq) {}
 | |
|     hybrid_ls_rr_sort(const hybrid_ls_rr_sort &RHS)
 | |
|       : SPQ(RHS.SPQ) {}
 | |
| 
 | |
|     bool operator()(const SUnit* left, const SUnit* right) const;
 | |
|   };
 | |
| 
 | |
|   // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
 | |
|   // scheduler.
 | |
|   struct ilp_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|     RegReductionPriorityQueue<ilp_ls_rr_sort> *SPQ;
 | |
|     ilp_ls_rr_sort(RegReductionPriorityQueue<ilp_ls_rr_sort> *spq)
 | |
|       : SPQ(spq) {}
 | |
|     ilp_ls_rr_sort(const ilp_ls_rr_sort &RHS)
 | |
|       : SPQ(RHS.SPQ) {}
 | |
| 
 | |
|     bool operator()(const SUnit* left, const SUnit* right) const;
 | |
|   };
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
 | |
| /// Smaller number is the higher priority.
 | |
| static unsigned
 | |
| CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
 | |
|   unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
 | |
|   if (SethiUllmanNumber != 0)
 | |
|     return SethiUllmanNumber;
 | |
| 
 | |
|   unsigned Extra = 0;
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl()) continue;  // ignore chain preds
 | |
|     SUnit *PredSU = I->getSUnit();
 | |
|     unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
 | |
|     if (PredSethiUllman > SethiUllmanNumber) {
 | |
|       SethiUllmanNumber = PredSethiUllman;
 | |
|       Extra = 0;
 | |
|     } else if (PredSethiUllman == SethiUllmanNumber)
 | |
|       ++Extra;
 | |
|   }
 | |
| 
 | |
|   SethiUllmanNumber += Extra;
 | |
| 
 | |
|   if (SethiUllmanNumber == 0)
 | |
|     SethiUllmanNumber = 1;
 | |
|   
 | |
|   return SethiUllmanNumber;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   template<class SF>
 | |
|   class RegReductionPriorityQueue : public SchedulingPriorityQueue {
 | |
|     std::vector<SUnit*> Queue;
 | |
|     SF Picker;
 | |
|     unsigned CurQueueId;
 | |
|     bool TracksRegPressure;
 | |
| 
 | |
|   protected:
 | |
|     // SUnits - The SUnits for the current graph.
 | |
|     std::vector<SUnit> *SUnits;
 | |
| 
 | |
|     MachineFunction &MF;
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     const TargetLowering *TLI;
 | |
|     ScheduleDAGRRList *scheduleDAG;
 | |
| 
 | |
|     // SethiUllmanNumbers - The SethiUllman number for each node.
 | |
|     std::vector<unsigned> SethiUllmanNumbers;
 | |
| 
 | |
|     /// RegPressure - Tracking current reg pressure per register class.
 | |
|     ///
 | |
|     std::vector<unsigned> RegPressure;
 | |
| 
 | |
|     /// RegLimit - Tracking the number of allocatable registers per register
 | |
|     /// class.
 | |
|     std::vector<unsigned> RegLimit;
 | |
| 
 | |
|   public:
 | |
|     RegReductionPriorityQueue(MachineFunction &mf,
 | |
|                               bool tracksrp,
 | |
|                               const TargetInstrInfo *tii,
 | |
|                               const TargetRegisterInfo *tri,
 | |
|                               const TargetLowering *tli)
 | |
|       : Picker(this), CurQueueId(0), TracksRegPressure(tracksrp),
 | |
|         MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(NULL) {
 | |
|       if (TracksRegPressure) {
 | |
|         unsigned NumRC = TRI->getNumRegClasses();
 | |
|         RegLimit.resize(NumRC);
 | |
|         RegPressure.resize(NumRC);
 | |
|         std::fill(RegLimit.begin(), RegLimit.end(), 0);
 | |
|         std::fill(RegPressure.begin(), RegPressure.end(), 0);
 | |
|         for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
 | |
|                E = TRI->regclass_end(); I != E; ++I)
 | |
|           RegLimit[(*I)->getID()] = tli->getRegPressureLimit(*I, MF);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     void initNodes(std::vector<SUnit> &sunits) {
 | |
|       SUnits = &sunits;
 | |
|       // Add pseudo dependency edges for two-address nodes.
 | |
|       AddPseudoTwoAddrDeps();
 | |
|       // Reroute edges to nodes with multiple uses.
 | |
|       PrescheduleNodesWithMultipleUses();
 | |
|       // Calculate node priorities.
 | |
|       CalculateSethiUllmanNumbers();
 | |
|     }
 | |
| 
 | |
|     void addNode(const SUnit *SU) {
 | |
|       unsigned SUSize = SethiUllmanNumbers.size();
 | |
|       if (SUnits->size() > SUSize)
 | |
|         SethiUllmanNumbers.resize(SUSize*2, 0);
 | |
|       CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
 | |
|     }
 | |
| 
 | |
|     void updateNode(const SUnit *SU) {
 | |
|       SethiUllmanNumbers[SU->NodeNum] = 0;
 | |
|       CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
 | |
|     }
 | |
| 
 | |
|     void releaseState() {
 | |
|       SUnits = 0;
 | |
|       SethiUllmanNumbers.clear();
 | |
|       std::fill(RegPressure.begin(), RegPressure.end(), 0);
 | |
|     }
 | |
| 
 | |
|     unsigned getNodePriority(const SUnit *SU) const {
 | |
|       assert(SU->NodeNum < SethiUllmanNumbers.size());
 | |
|       unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
 | |
|       if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | |
|         // CopyToReg should be close to its uses to facilitate coalescing and
 | |
|         // avoid spilling.
 | |
|         return 0;
 | |
|       if (Opc == TargetOpcode::EXTRACT_SUBREG ||
 | |
|           Opc == TargetOpcode::SUBREG_TO_REG ||
 | |
|           Opc == TargetOpcode::INSERT_SUBREG)
 | |
|         // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
 | |
|         // close to their uses to facilitate coalescing.
 | |
|         return 0;
 | |
|       if (SU->NumSuccs == 0 && SU->NumPreds != 0)
 | |
|         // If SU does not have a register use, i.e. it doesn't produce a value
 | |
|         // that would be consumed (e.g. store), then it terminates a chain of
 | |
|         // computation.  Give it a large SethiUllman number so it will be
 | |
|         // scheduled right before its predecessors that it doesn't lengthen
 | |
|         // their live ranges.
 | |
|         return 0xffff;
 | |
|       if (SU->NumPreds == 0 && SU->NumSuccs != 0)
 | |
|         // If SU does not have a register def, schedule it close to its uses
 | |
|         // because it does not lengthen any live ranges.
 | |
|         return 0;
 | |
|       return SethiUllmanNumbers[SU->NodeNum];
 | |
|     }
 | |
| 
 | |
|     unsigned getNodeOrdering(const SUnit *SU) const {
 | |
|       return scheduleDAG->DAG->GetOrdering(SU->getNode());
 | |
|     }
 | |
| 
 | |
|     bool empty() const { return Queue.empty(); }
 | |
|     
 | |
|     void push(SUnit *U) {
 | |
|       assert(!U->NodeQueueId && "Node in the queue already");
 | |
|       U->NodeQueueId = ++CurQueueId;
 | |
|       Queue.push_back(U);
 | |
|     }
 | |
| 
 | |
|     SUnit *pop() {
 | |
|       if (empty()) return NULL;
 | |
|       std::vector<SUnit *>::iterator Best = Queue.begin();
 | |
|       for (std::vector<SUnit *>::iterator I = llvm::next(Queue.begin()),
 | |
|            E = Queue.end(); I != E; ++I)
 | |
|         if (Picker(*Best, *I))
 | |
|           Best = I;
 | |
|       SUnit *V = *Best;
 | |
|       if (Best != prior(Queue.end()))
 | |
|         std::swap(*Best, Queue.back());
 | |
|       Queue.pop_back();
 | |
|       V->NodeQueueId = 0;
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     void remove(SUnit *SU) {
 | |
|       assert(!Queue.empty() && "Queue is empty!");
 | |
|       assert(SU->NodeQueueId != 0 && "Not in queue!");
 | |
|       std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
 | |
|                                                    SU);
 | |
|       if (I != prior(Queue.end()))
 | |
|         std::swap(*I, Queue.back());
 | |
|       Queue.pop_back();
 | |
|       SU->NodeQueueId = 0;
 | |
|     }
 | |
| 
 | |
|     bool HighRegPressure(const SUnit *SU) const {
 | |
|       if (!TLI)
 | |
|         return false;
 | |
| 
 | |
|       for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
 | |
|            I != E; ++I) {
 | |
|         if (I->isCtrl())
 | |
|           continue;
 | |
|         SUnit *PredSU = I->getSUnit();
 | |
|         const SDNode *PN = PredSU->getNode();
 | |
|         if (!PN->isMachineOpcode()) {
 | |
|           if (PN->getOpcode() == ISD::CopyFromReg) {
 | |
|             EVT VT = PN->getValueType(0);
 | |
|             unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|             unsigned Cost = TLI->getRepRegClassCostFor(VT);
 | |
|             if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
 | |
|               return true;
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
|         unsigned POpc = PN->getMachineOpcode();
 | |
|         if (POpc == TargetOpcode::IMPLICIT_DEF)
 | |
|           continue;
 | |
|         if (POpc == TargetOpcode::EXTRACT_SUBREG) {
 | |
|           EVT VT = PN->getOperand(0).getValueType();
 | |
|           unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|           unsigned Cost = TLI->getRepRegClassCostFor(VT);
 | |
|           // Check if this increases register pressure of the specific register
 | |
|           // class to the point where it would cause spills.
 | |
|           if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
 | |
|             return true;
 | |
|           continue;            
 | |
|         } else if (POpc == TargetOpcode::INSERT_SUBREG ||
 | |
|                    POpc == TargetOpcode::SUBREG_TO_REG) {
 | |
|           EVT VT = PN->getValueType(0);
 | |
|           unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|           unsigned Cost = TLI->getRepRegClassCostFor(VT);
 | |
|           // Check if this increases register pressure of the specific register
 | |
|           // class to the point where it would cause spills.
 | |
|           if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
 | |
|             return true;
 | |
|           continue;
 | |
|         }
 | |
|         unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
 | |
|         for (unsigned i = 0; i != NumDefs; ++i) {
 | |
|           EVT VT = PN->getValueType(i);
 | |
|           unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|           if (RegPressure[RCId] >= RegLimit[RCId])
 | |
|             return true; // Reg pressure already high.
 | |
|           unsigned Cost = TLI->getRepRegClassCostFor(VT);
 | |
|           if (!PN->hasAnyUseOfValue(i))
 | |
|             continue;
 | |
|           // Check if this increases register pressure of the specific register
 | |
|           // class to the point where it would cause spills.
 | |
|           if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
 | |
|             return true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     void ScheduledNode(SUnit *SU) {
 | |
|       if (!TracksRegPressure)
 | |
|         return;
 | |
| 
 | |
|       const SDNode *N = SU->getNode();
 | |
|       if (!N->isMachineOpcode()) {
 | |
|         if (N->getOpcode() != ISD::CopyToReg)
 | |
|           return;
 | |
|       } else {
 | |
|         unsigned Opc = N->getMachineOpcode();
 | |
|         if (Opc == TargetOpcode::EXTRACT_SUBREG ||
 | |
|             Opc == TargetOpcode::INSERT_SUBREG ||
 | |
|             Opc == TargetOpcode::SUBREG_TO_REG ||
 | |
|             Opc == TargetOpcode::REG_SEQUENCE ||
 | |
|             Opc == TargetOpcode::IMPLICIT_DEF)
 | |
|           return;
 | |
|       }
 | |
| 
 | |
|       for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|            I != E; ++I) {
 | |
|         if (I->isCtrl())
 | |
|           continue;
 | |
|         SUnit *PredSU = I->getSUnit();
 | |
|         if (PredSU->NumSuccsLeft != PredSU->NumSuccs)
 | |
|           continue;
 | |
|         const SDNode *PN = PredSU->getNode();
 | |
|         if (!PN->isMachineOpcode()) {
 | |
|           if (PN->getOpcode() == ISD::CopyFromReg) {
 | |
|             EVT VT = PN->getValueType(0);
 | |
|             unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|             RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
|         unsigned POpc = PN->getMachineOpcode();
 | |
|         if (POpc == TargetOpcode::IMPLICIT_DEF)
 | |
|           continue;
 | |
|         if (POpc == TargetOpcode::EXTRACT_SUBREG) {
 | |
|           EVT VT = PN->getOperand(0).getValueType();
 | |
|           unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|           RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | |
|           continue;            
 | |
|         } else if (POpc == TargetOpcode::INSERT_SUBREG ||
 | |
|                    POpc == TargetOpcode::SUBREG_TO_REG) {
 | |
|           EVT VT = PN->getValueType(0);
 | |
|           unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|           RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | |
|           continue;
 | |
|         }
 | |
|         unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
 | |
|         for (unsigned i = 0; i != NumDefs; ++i) {
 | |
|           EVT VT = PN->getValueType(i);
 | |
|           if (!PN->hasAnyUseOfValue(i))
 | |
|             continue;
 | |
|           unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|           RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
 | |
|       // may transfer data dependencies to CopyToReg.
 | |
|       if (SU->NumSuccs && N->isMachineOpcode()) {
 | |
|         unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
 | |
|         for (unsigned i = 0; i != NumDefs; ++i) {
 | |
|           EVT VT = N->getValueType(i);
 | |
|           if (!N->hasAnyUseOfValue(i))
 | |
|             continue;
 | |
|           unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|           if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
 | |
|             // Register pressure tracking is imprecise. This can happen.
 | |
|             RegPressure[RCId] = 0;
 | |
|           else
 | |
|             RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       dumpRegPressure();
 | |
|     }
 | |
| 
 | |
|     void UnscheduledNode(SUnit *SU) {
 | |
|       if (!TracksRegPressure)
 | |
|         return;
 | |
| 
 | |
|       const SDNode *N = SU->getNode();
 | |
|       if (!N->isMachineOpcode()) {
 | |
|         if (N->getOpcode() != ISD::CopyToReg)
 | |
|           return;
 | |
|       } else {
 | |
|         unsigned Opc = N->getMachineOpcode();
 | |
|         if (Opc == TargetOpcode::EXTRACT_SUBREG ||
 | |
|             Opc == TargetOpcode::INSERT_SUBREG ||
 | |
|             Opc == TargetOpcode::SUBREG_TO_REG ||
 | |
|             Opc == TargetOpcode::REG_SEQUENCE ||
 | |
|             Opc == TargetOpcode::IMPLICIT_DEF)
 | |
|           return;
 | |
|       }
 | |
| 
 | |
|       for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|            I != E; ++I) {
 | |
|         if (I->isCtrl())
 | |
|           continue;
 | |
|         SUnit *PredSU = I->getSUnit();
 | |
|         if (PredSU->NumSuccsLeft != PredSU->NumSuccs)
 | |
|           continue;
 | |
|         const SDNode *PN = PredSU->getNode();
 | |
|         if (!PN->isMachineOpcode()) {
 | |
|           if (PN->getOpcode() == ISD::CopyFromReg) {
 | |
|             EVT VT = PN->getValueType(0);
 | |
|             unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|             RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
|         unsigned POpc = PN->getMachineOpcode();
 | |
|         if (POpc == TargetOpcode::IMPLICIT_DEF)
 | |
|           continue;
 | |
|         if (POpc == TargetOpcode::EXTRACT_SUBREG) {
 | |
|           EVT VT = PN->getOperand(0).getValueType();
 | |
|           unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|           RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | |
|           continue;            
 | |
|         } else if (POpc == TargetOpcode::INSERT_SUBREG ||
 | |
|                    POpc == TargetOpcode::SUBREG_TO_REG) {
 | |
|           EVT VT = PN->getValueType(0);
 | |
|           unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|           RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | |
|           continue;
 | |
|         }
 | |
|         unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
 | |
|         for (unsigned i = 0; i != NumDefs; ++i) {
 | |
|           EVT VT = PN->getValueType(i);
 | |
|           if (!PN->hasAnyUseOfValue(i))
 | |
|             continue;
 | |
|           unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|           if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
 | |
|             // Register pressure tracking is imprecise. This can happen.
 | |
|             RegPressure[RCId] = 0;
 | |
|           else
 | |
|             RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
 | |
|       // may transfer data dependencies to CopyToReg.
 | |
|       if (SU->NumSuccs && N->isMachineOpcode()) {
 | |
|         unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
 | |
|         for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
 | |
|           EVT VT = N->getValueType(i);
 | |
|           if (VT == MVT::Flag || VT == MVT::Other)
 | |
|             continue;
 | |
|           if (!N->hasAnyUseOfValue(i))
 | |
|             continue;
 | |
|           unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | |
|           RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       dumpRegPressure();
 | |
|     }
 | |
| 
 | |
|     void setScheduleDAG(ScheduleDAGRRList *scheduleDag) { 
 | |
|       scheduleDAG = scheduleDag; 
 | |
|     }
 | |
| 
 | |
|     void dumpRegPressure() const {
 | |
|       for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
 | |
|              E = TRI->regclass_end(); I != E; ++I) {
 | |
|         const TargetRegisterClass *RC = *I;
 | |
|         unsigned Id = RC->getID();
 | |
|         unsigned RP = RegPressure[Id];
 | |
|         if (!RP) continue;
 | |
|         DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
 | |
|               << '\n');
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   protected:
 | |
|     bool canClobber(const SUnit *SU, const SUnit *Op);
 | |
|     void AddPseudoTwoAddrDeps();
 | |
|     void PrescheduleNodesWithMultipleUses();
 | |
|     void CalculateSethiUllmanNumbers();
 | |
|   };
 | |
| 
 | |
|   typedef RegReductionPriorityQueue<bu_ls_rr_sort>
 | |
|     BURegReductionPriorityQueue;
 | |
| 
 | |
|   typedef RegReductionPriorityQueue<td_ls_rr_sort>
 | |
|     TDRegReductionPriorityQueue;
 | |
| 
 | |
|   typedef RegReductionPriorityQueue<src_ls_rr_sort>
 | |
|     SrcRegReductionPriorityQueue;
 | |
| 
 | |
|   typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
 | |
|     HybridBURRPriorityQueue;
 | |
| 
 | |
|   typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
 | |
|     ILPBURRPriorityQueue;
 | |
| }
 | |
| 
 | |
| /// closestSucc - Returns the scheduled cycle of the successor which is
 | |
| /// closest to the current cycle.
 | |
| static unsigned closestSucc(const SUnit *SU) {
 | |
|   unsigned MaxHeight = 0;
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl()) continue;  // ignore chain succs
 | |
|     unsigned Height = I->getSUnit()->getHeight();
 | |
|     // If there are bunch of CopyToRegs stacked up, they should be considered
 | |
|     // to be at the same position.
 | |
|     if (I->getSUnit()->getNode() &&
 | |
|         I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
 | |
|       Height = closestSucc(I->getSUnit())+1;
 | |
|     if (Height > MaxHeight)
 | |
|       MaxHeight = Height;
 | |
|   }
 | |
|   return MaxHeight;
 | |
| }
 | |
| 
 | |
| /// calcMaxScratches - Returns an cost estimate of the worse case requirement
 | |
| /// for scratch registers, i.e. number of data dependencies.
 | |
| static unsigned calcMaxScratches(const SUnit *SU) {
 | |
|   unsigned Scratches = 0;
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl()) continue;  // ignore chain preds
 | |
|     Scratches++;
 | |
|   }
 | |
|   return Scratches;
 | |
| }
 | |
| 
 | |
| template <typename RRSort>
 | |
| static bool BURRSort(const SUnit *left, const SUnit *right,
 | |
|                      const RegReductionPriorityQueue<RRSort> *SPQ) {
 | |
|   unsigned LPriority = SPQ->getNodePriority(left);
 | |
|   unsigned RPriority = SPQ->getNodePriority(right);
 | |
|   if (LPriority != RPriority)
 | |
|     return LPriority > RPriority;
 | |
| 
 | |
|   // Try schedule def + use closer when Sethi-Ullman numbers are the same.
 | |
|   // e.g.
 | |
|   // t1 = op t2, c1
 | |
|   // t3 = op t4, c2
 | |
|   //
 | |
|   // and the following instructions are both ready.
 | |
|   // t2 = op c3
 | |
|   // t4 = op c4
 | |
|   //
 | |
|   // Then schedule t2 = op first.
 | |
|   // i.e.
 | |
|   // t4 = op c4
 | |
|   // t2 = op c3
 | |
|   // t1 = op t2, c1
 | |
|   // t3 = op t4, c2
 | |
|   //
 | |
|   // This creates more short live intervals.
 | |
|   unsigned LDist = closestSucc(left);
 | |
|   unsigned RDist = closestSucc(right);
 | |
|   if (LDist != RDist)
 | |
|     return LDist < RDist;
 | |
| 
 | |
|   // How many registers becomes live when the node is scheduled.
 | |
|   unsigned LScratch = calcMaxScratches(left);
 | |
|   unsigned RScratch = calcMaxScratches(right);
 | |
|   if (LScratch != RScratch)
 | |
|     return LScratch > RScratch;
 | |
| 
 | |
|   if (left->getHeight() != right->getHeight())
 | |
|     return left->getHeight() > right->getHeight();
 | |
|   
 | |
|   if (left->getDepth() != right->getDepth())
 | |
|     return left->getDepth() < right->getDepth();
 | |
| 
 | |
|   assert(left->NodeQueueId && right->NodeQueueId && 
 | |
|          "NodeQueueId cannot be zero");
 | |
|   return (left->NodeQueueId > right->NodeQueueId);
 | |
| }
 | |
| 
 | |
| // Bottom up
 | |
| bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | |
|   return BURRSort(left, right, SPQ);
 | |
| }
 | |
| 
 | |
| // Source order, otherwise bottom up.
 | |
| bool src_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | |
|   unsigned LOrder = SPQ->getNodeOrdering(left);
 | |
|   unsigned ROrder = SPQ->getNodeOrdering(right);
 | |
| 
 | |
|   // Prefer an ordering where the lower the non-zero order number, the higher
 | |
|   // the preference.
 | |
|   if ((LOrder || ROrder) && LOrder != ROrder)
 | |
|     return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
 | |
| 
 | |
|   return BURRSort(left, right, SPQ);
 | |
| }
 | |
| 
 | |
| bool hybrid_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const{
 | |
|   bool LHigh = SPQ->HighRegPressure(left);
 | |
|   bool RHigh = SPQ->HighRegPressure(right);
 | |
|   // Avoid causing spills. If register pressure is high, schedule for
 | |
|   // register pressure reduction.
 | |
|   if (LHigh && !RHigh)
 | |
|     return true;
 | |
|   else if (!LHigh && RHigh)
 | |
|     return false;
 | |
|   else if (!LHigh && !RHigh) {
 | |
|     // Low register pressure situation, schedule for latency if possible.
 | |
|     bool LStall = left->SchedulingPref == Sched::Latency &&
 | |
|       SPQ->getCurCycle() < left->getHeight();
 | |
|     bool RStall = right->SchedulingPref == Sched::Latency &&
 | |
|       SPQ->getCurCycle() < right->getHeight();
 | |
|     // If scheduling one of the node will cause a pipeline stall, delay it.
 | |
|     // If scheduling either one of the node will cause a pipeline stall, sort
 | |
|     // them according to their height.
 | |
|     // If neither will cause a pipeline stall, try to reduce register pressure.
 | |
|     if (LStall) {
 | |
|       if (!RStall)
 | |
|         return true;
 | |
|       if (left->getHeight() != right->getHeight())
 | |
|         return left->getHeight() > right->getHeight();
 | |
|     } else if (RStall)
 | |
|       return false;
 | |
| 
 | |
|     // If either node is scheduling for latency, sort them by height and latency
 | |
|     // first.
 | |
|     if (left->SchedulingPref == Sched::Latency ||
 | |
|         right->SchedulingPref == Sched::Latency) {
 | |
|       if (left->getHeight() != right->getHeight())
 | |
|         return left->getHeight() > right->getHeight();
 | |
|       if (left->Latency != right->Latency)
 | |
|         return left->Latency > right->Latency;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return BURRSort(left, right, SPQ);
 | |
| }
 | |
| 
 | |
| bool ilp_ls_rr_sort::operator()(const SUnit *left,
 | |
|                                 const SUnit *right) const {
 | |
|   bool LHigh = SPQ->HighRegPressure(left);
 | |
|   bool RHigh = SPQ->HighRegPressure(right);
 | |
|   // Avoid causing spills. If register pressure is high, schedule for
 | |
|   // register pressure reduction.
 | |
|   if (LHigh && !RHigh)
 | |
|     return true;
 | |
|   else if (!LHigh && RHigh)
 | |
|     return false;
 | |
|   else if (!LHigh && !RHigh) {
 | |
|     // Low register pressure situation, schedule to maximize instruction level
 | |
|     // parallelism.
 | |
|     if (left->NumPreds > right->NumPreds)
 | |
|       return false;
 | |
|     else if (left->NumPreds < right->NumPreds)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return BURRSort(left, right, SPQ);
 | |
| }
 | |
| 
 | |
| template<class SF>
 | |
| bool
 | |
| RegReductionPriorityQueue<SF>::canClobber(const SUnit *SU, const SUnit *Op) {
 | |
|   if (SU->isTwoAddress) {
 | |
|     unsigned Opc = SU->getNode()->getMachineOpcode();
 | |
|     const TargetInstrDesc &TID = TII->get(Opc);
 | |
|     unsigned NumRes = TID.getNumDefs();
 | |
|     unsigned NumOps = TID.getNumOperands() - NumRes;
 | |
|     for (unsigned i = 0; i != NumOps; ++i) {
 | |
|       if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
 | |
|         SDNode *DU = SU->getNode()->getOperand(i).getNode();
 | |
|         if (DU->getNodeId() != -1 &&
 | |
|             Op->OrigNode == &(*SUnits)[DU->getNodeId()])
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// hasCopyToRegUse - Return true if SU has a value successor that is a
 | |
| /// CopyToReg node.
 | |
| static bool hasCopyToRegUse(const SUnit *SU) {
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl()) continue;
 | |
|     const SUnit *SuccSU = I->getSUnit();
 | |
|     if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
 | |
| /// physical register defs.
 | |
| static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
 | |
|                                   const TargetInstrInfo *TII,
 | |
|                                   const TargetRegisterInfo *TRI) {
 | |
|   SDNode *N = SuccSU->getNode();
 | |
|   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
 | |
|   const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
 | |
|   assert(ImpDefs && "Caller should check hasPhysRegDefs");
 | |
|   for (const SDNode *SUNode = SU->getNode(); SUNode;
 | |
|        SUNode = SUNode->getFlaggedNode()) {
 | |
|     if (!SUNode->isMachineOpcode())
 | |
|       continue;
 | |
|     const unsigned *SUImpDefs =
 | |
|       TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
 | |
|     if (!SUImpDefs)
 | |
|       return false;
 | |
|     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
 | |
|       EVT VT = N->getValueType(i);
 | |
|       if (VT == MVT::Flag || VT == MVT::Other)
 | |
|         continue;
 | |
|       if (!N->hasAnyUseOfValue(i))
 | |
|         continue;
 | |
|       unsigned Reg = ImpDefs[i - NumDefs];
 | |
|       for (;*SUImpDefs; ++SUImpDefs) {
 | |
|         unsigned SUReg = *SUImpDefs;
 | |
|         if (TRI->regsOverlap(Reg, SUReg))
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
 | |
| /// are not handled well by the general register pressure reduction
 | |
| /// heuristics. When presented with code like this:
 | |
| ///
 | |
| ///      N
 | |
| ///    / |
 | |
| ///   /  |
 | |
| ///  U  store
 | |
| ///  |
 | |
| /// ...
 | |
| ///
 | |
| /// the heuristics tend to push the store up, but since the
 | |
| /// operand of the store has another use (U), this would increase
 | |
| /// the length of that other use (the U->N edge).
 | |
| ///
 | |
| /// This function transforms code like the above to route U's
 | |
| /// dependence through the store when possible, like this:
 | |
| ///
 | |
| ///      N
 | |
| ///      ||
 | |
| ///      ||
 | |
| ///     store
 | |
| ///       |
 | |
| ///       U
 | |
| ///       |
 | |
| ///      ...
 | |
| ///
 | |
| /// This results in the store being scheduled immediately
 | |
| /// after N, which shortens the U->N live range, reducing
 | |
| /// register pressure.
 | |
| ///
 | |
| template<class SF>
 | |
| void RegReductionPriorityQueue<SF>::PrescheduleNodesWithMultipleUses() {
 | |
|   // Visit all the nodes in topological order, working top-down.
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
 | |
|     SUnit *SU = &(*SUnits)[i];
 | |
|     // For now, only look at nodes with no data successors, such as stores.
 | |
|     // These are especially important, due to the heuristics in
 | |
|     // getNodePriority for nodes with no data successors.
 | |
|     if (SU->NumSuccs != 0)
 | |
|       continue;
 | |
|     // For now, only look at nodes with exactly one data predecessor.
 | |
|     if (SU->NumPreds != 1)
 | |
|       continue;
 | |
|     // Avoid prescheduling copies to virtual registers, which don't behave
 | |
|     // like other nodes from the perspective of scheduling heuristics.
 | |
|     if (SDNode *N = SU->getNode())
 | |
|       if (N->getOpcode() == ISD::CopyToReg &&
 | |
|           TargetRegisterInfo::isVirtualRegister
 | |
|             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
 | |
|         continue;
 | |
| 
 | |
|     // Locate the single data predecessor.
 | |
|     SUnit *PredSU = 0;
 | |
|     for (SUnit::const_pred_iterator II = SU->Preds.begin(),
 | |
|          EE = SU->Preds.end(); II != EE; ++II)
 | |
|       if (!II->isCtrl()) {
 | |
|         PredSU = II->getSUnit();
 | |
|         break;
 | |
|       }
 | |
|     assert(PredSU);
 | |
| 
 | |
|     // Don't rewrite edges that carry physregs, because that requires additional
 | |
|     // support infrastructure.
 | |
|     if (PredSU->hasPhysRegDefs)
 | |
|       continue;
 | |
|     // Short-circuit the case where SU is PredSU's only data successor.
 | |
|     if (PredSU->NumSuccs == 1)
 | |
|       continue;
 | |
|     // Avoid prescheduling to copies from virtual registers, which don't behave
 | |
|     // like other nodes from the perspective of scheduling // heuristics.
 | |
|     if (SDNode *N = SU->getNode())
 | |
|       if (N->getOpcode() == ISD::CopyFromReg &&
 | |
|           TargetRegisterInfo::isVirtualRegister
 | |
|             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
 | |
|         continue;
 | |
| 
 | |
|     // Perform checks on the successors of PredSU.
 | |
|     for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
 | |
|          EE = PredSU->Succs.end(); II != EE; ++II) {
 | |
|       SUnit *PredSuccSU = II->getSUnit();
 | |
|       if (PredSuccSU == SU) continue;
 | |
|       // If PredSU has another successor with no data successors, for
 | |
|       // now don't attempt to choose either over the other.
 | |
|       if (PredSuccSU->NumSuccs == 0)
 | |
|         goto outer_loop_continue;
 | |
|       // Don't break physical register dependencies.
 | |
|       if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
 | |
|         if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
 | |
|           goto outer_loop_continue;
 | |
|       // Don't introduce graph cycles.
 | |
|       if (scheduleDAG->IsReachable(SU, PredSuccSU))
 | |
|         goto outer_loop_continue;
 | |
|     }
 | |
| 
 | |
|     // Ok, the transformation is safe and the heuristics suggest it is
 | |
|     // profitable. Update the graph.
 | |
|     DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
 | |
|                  << " next to PredSU #" << PredSU->NodeNum
 | |
|                  << " to guide scheduling in the presence of multiple uses\n");
 | |
|     for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
 | |
|       SDep Edge = PredSU->Succs[i];
 | |
|       assert(!Edge.isAssignedRegDep());
 | |
|       SUnit *SuccSU = Edge.getSUnit();
 | |
|       if (SuccSU != SU) {
 | |
|         Edge.setSUnit(PredSU);
 | |
|         scheduleDAG->RemovePred(SuccSU, Edge);
 | |
|         scheduleDAG->AddPred(SU, Edge);
 | |
|         Edge.setSUnit(SU);
 | |
|         scheduleDAG->AddPred(SuccSU, Edge);
 | |
|         --i;
 | |
|       }
 | |
|     }
 | |
|   outer_loop_continue:;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
 | |
| /// it as a def&use operand. Add a pseudo control edge from it to the other
 | |
| /// node (if it won't create a cycle) so the two-address one will be scheduled
 | |
| /// first (lower in the schedule). If both nodes are two-address, favor the
 | |
| /// one that has a CopyToReg use (more likely to be a loop induction update).
 | |
| /// If both are two-address, but one is commutable while the other is not
 | |
| /// commutable, favor the one that's not commutable.
 | |
| template<class SF>
 | |
| void RegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
 | |
|     SUnit *SU = &(*SUnits)[i];
 | |
|     if (!SU->isTwoAddress)
 | |
|       continue;
 | |
| 
 | |
|     SDNode *Node = SU->getNode();
 | |
|     if (!Node || !Node->isMachineOpcode() || SU->getNode()->getFlaggedNode())
 | |
|       continue;
 | |
| 
 | |
|     unsigned Opc = Node->getMachineOpcode();
 | |
|     const TargetInstrDesc &TID = TII->get(Opc);
 | |
|     unsigned NumRes = TID.getNumDefs();
 | |
|     unsigned NumOps = TID.getNumOperands() - NumRes;
 | |
|     for (unsigned j = 0; j != NumOps; ++j) {
 | |
|       if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
 | |
|         continue;
 | |
|       SDNode *DU = SU->getNode()->getOperand(j).getNode();
 | |
|       if (DU->getNodeId() == -1)
 | |
|         continue;
 | |
|       const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
 | |
|       if (!DUSU) continue;
 | |
|       for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
 | |
|            E = DUSU->Succs.end(); I != E; ++I) {
 | |
|         if (I->isCtrl()) continue;
 | |
|         SUnit *SuccSU = I->getSUnit();
 | |
|         if (SuccSU == SU)
 | |
|           continue;
 | |
|         // Be conservative. Ignore if nodes aren't at roughly the same
 | |
|         // depth and height.
 | |
|         if (SuccSU->getHeight() < SU->getHeight() &&
 | |
|             (SU->getHeight() - SuccSU->getHeight()) > 1)
 | |
|           continue;
 | |
|         // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
 | |
|         // constrains whatever is using the copy, instead of the copy
 | |
|         // itself. In the case that the copy is coalesced, this
 | |
|         // preserves the intent of the pseudo two-address heurietics.
 | |
|         while (SuccSU->Succs.size() == 1 &&
 | |
|                SuccSU->getNode()->isMachineOpcode() &&
 | |
|                SuccSU->getNode()->getMachineOpcode() ==
 | |
|                  TargetOpcode::COPY_TO_REGCLASS)
 | |
|           SuccSU = SuccSU->Succs.front().getSUnit();
 | |
|         // Don't constrain non-instruction nodes.
 | |
|         if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
 | |
|           continue;
 | |
|         // Don't constrain nodes with physical register defs if the
 | |
|         // predecessor can clobber them.
 | |
|         if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
 | |
|           if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
 | |
|             continue;
 | |
|         }
 | |
|         // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
 | |
|         // these may be coalesced away. We want them close to their uses.
 | |
|         unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
 | |
|         if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
 | |
|             SuccOpc == TargetOpcode::INSERT_SUBREG ||
 | |
|             SuccOpc == TargetOpcode::SUBREG_TO_REG)
 | |
|           continue;
 | |
|         if ((!canClobber(SuccSU, DUSU) ||
 | |
|              (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
 | |
|              (!SU->isCommutable && SuccSU->isCommutable)) &&
 | |
|             !scheduleDAG->IsReachable(SuccSU, SU)) {
 | |
|           DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
 | |
|                        << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
 | |
|           scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
 | |
|                                         /*Reg=*/0, /*isNormalMemory=*/false,
 | |
|                                         /*isMustAlias=*/false,
 | |
|                                         /*isArtificial=*/true));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
 | |
| /// scheduling units.
 | |
| template<class SF>
 | |
| void RegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
 | |
|   SethiUllmanNumbers.assign(SUnits->size(), 0);
 | |
|   
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | |
|     CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
 | |
| }
 | |
| 
 | |
| /// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
 | |
| /// predecessors of the successors of the SUnit SU. Stop when the provided
 | |
| /// limit is exceeded.
 | |
| static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU, 
 | |
|                                                     unsigned Limit) {
 | |
|   unsigned Sum = 0;
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     const SUnit *SuccSU = I->getSUnit();
 | |
|     for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
 | |
|          EE = SuccSU->Preds.end(); II != EE; ++II) {
 | |
|       SUnit *PredSU = II->getSUnit();
 | |
|       if (!PredSU->isScheduled)
 | |
|         if (++Sum > Limit)
 | |
|           return Sum;
 | |
|     }
 | |
|   }
 | |
|   return Sum;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Top down
 | |
| bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | |
|   unsigned LPriority = SPQ->getNodePriority(left);
 | |
|   unsigned RPriority = SPQ->getNodePriority(right);
 | |
|   bool LIsTarget = left->getNode() && left->getNode()->isMachineOpcode();
 | |
|   bool RIsTarget = right->getNode() && right->getNode()->isMachineOpcode();
 | |
|   bool LIsFloater = LIsTarget && left->NumPreds == 0;
 | |
|   bool RIsFloater = RIsTarget && right->NumPreds == 0;
 | |
|   unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
 | |
|   unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
 | |
| 
 | |
|   if (left->NumSuccs == 0 && right->NumSuccs != 0)
 | |
|     return false;
 | |
|   else if (left->NumSuccs != 0 && right->NumSuccs == 0)
 | |
|     return true;
 | |
| 
 | |
|   if (LIsFloater)
 | |
|     LBonus -= 2;
 | |
|   if (RIsFloater)
 | |
|     RBonus -= 2;
 | |
|   if (left->NumSuccs == 1)
 | |
|     LBonus += 2;
 | |
|   if (right->NumSuccs == 1)
 | |
|     RBonus += 2;
 | |
| 
 | |
|   if (LPriority+LBonus != RPriority+RBonus)
 | |
|     return LPriority+LBonus < RPriority+RBonus;
 | |
| 
 | |
|   if (left->getDepth() != right->getDepth())
 | |
|     return left->getDepth() < right->getDepth();
 | |
| 
 | |
|   if (left->NumSuccsLeft != right->NumSuccsLeft)
 | |
|     return left->NumSuccsLeft > right->NumSuccsLeft;
 | |
| 
 | |
|   assert(left->NodeQueueId && right->NodeQueueId && 
 | |
|          "NodeQueueId cannot be zero");
 | |
|   return (left->NodeQueueId > right->NodeQueueId);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Public Constructor Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| llvm::ScheduleDAGSDNodes *
 | |
| llvm::createBURRListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
 | |
|   const TargetMachine &TM = IS->TM;
 | |
|   const TargetInstrInfo *TII = TM.getInstrInfo();
 | |
|   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
 | |
|   
 | |
|   BURegReductionPriorityQueue *PQ =
 | |
|     new BURegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
 | |
|   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, false, PQ);
 | |
|   PQ->setScheduleDAG(SD);
 | |
|   return SD;  
 | |
| }
 | |
| 
 | |
| llvm::ScheduleDAGSDNodes *
 | |
| llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
 | |
|   const TargetMachine &TM = IS->TM;
 | |
|   const TargetInstrInfo *TII = TM.getInstrInfo();
 | |
|   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
 | |
|   
 | |
|   TDRegReductionPriorityQueue *PQ =
 | |
|     new TDRegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
 | |
|   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, false, PQ);
 | |
|   PQ->setScheduleDAG(SD);
 | |
|   return SD;
 | |
| }
 | |
| 
 | |
| llvm::ScheduleDAGSDNodes *
 | |
| llvm::createSourceListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
 | |
|   const TargetMachine &TM = IS->TM;
 | |
|   const TargetInstrInfo *TII = TM.getInstrInfo();
 | |
|   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
 | |
|   
 | |
|   SrcRegReductionPriorityQueue *PQ =
 | |
|     new SrcRegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
 | |
|   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, false, PQ);
 | |
|   PQ->setScheduleDAG(SD);
 | |
|   return SD;  
 | |
| }
 | |
| 
 | |
| llvm::ScheduleDAGSDNodes *
 | |
| llvm::createHybridListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
 | |
|   const TargetMachine &TM = IS->TM;
 | |
|   const TargetInstrInfo *TII = TM.getInstrInfo();
 | |
|   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
 | |
|   const TargetLowering *TLI = &IS->getTargetLowering();
 | |
|   
 | |
|   HybridBURRPriorityQueue *PQ =
 | |
|     new HybridBURRPriorityQueue(*IS->MF, true, TII, TRI, TLI);
 | |
|   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, true, PQ);
 | |
|   PQ->setScheduleDAG(SD);
 | |
|   return SD;  
 | |
| }
 | |
| 
 | |
| llvm::ScheduleDAGSDNodes *
 | |
| llvm::createILPListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
 | |
|   const TargetMachine &TM = IS->TM;
 | |
|   const TargetInstrInfo *TII = TM.getInstrInfo();
 | |
|   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
 | |
|   const TargetLowering *TLI = &IS->getTargetLowering();
 | |
|   
 | |
|   ILPBURRPriorityQueue *PQ =
 | |
|     new ILPBURRPriorityQueue(*IS->MF, true, TII, TRI, TLI);
 | |
|   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, true, PQ);
 | |
|   PQ->setScheduleDAG(SD);
 | |
|   return SD;  
 | |
| }
 |