mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166596 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			425 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			425 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file is a part of ThreadSanitizer, a race detector.
 | |
| //
 | |
| // The tool is under development, for the details about previous versions see
 | |
| // http://code.google.com/p/data-race-test
 | |
| //
 | |
| // The instrumentation phase is quite simple:
 | |
| //   - Insert calls to run-time library before every memory access.
 | |
| //      - Optimizations may apply to avoid instrumenting some of the accesses.
 | |
| //   - Insert calls at function entry/exit.
 | |
| // The rest is handled by the run-time library.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "tsan"
 | |
| 
 | |
| #include "BlackList.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/IRBuilder.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Metadata.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/DataLayout.h"
 | |
| #include "llvm/Transforms/Instrumentation.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/ModuleUtils.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<std::string>  ClBlackListFile("tsan-blacklist",
 | |
|        cl::desc("Blacklist file"), cl::Hidden);
 | |
| static cl::opt<bool>  ClInstrumentMemoryAccesses(
 | |
|     "tsan-instrument-memory-accesses", cl::init(true),
 | |
|     cl::desc("Instrument memory accesses"), cl::Hidden);
 | |
| static cl::opt<bool>  ClInstrumentFuncEntryExit(
 | |
|     "tsan-instrument-func-entry-exit", cl::init(true),
 | |
|     cl::desc("Instrument function entry and exit"), cl::Hidden);
 | |
| static cl::opt<bool>  ClInstrumentAtomics(
 | |
|     "tsan-instrument-atomics", cl::init(true),
 | |
|     cl::desc("Instrument atomics"), cl::Hidden);
 | |
| 
 | |
| STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
 | |
| STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
 | |
| STATISTIC(NumOmittedReadsBeforeWrite,
 | |
|           "Number of reads ignored due to following writes");
 | |
| STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
 | |
| STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
 | |
| STATISTIC(NumOmittedReadsFromConstantGlobals,
 | |
|           "Number of reads from constant globals");
 | |
| STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// ThreadSanitizer: instrument the code in module to find races.
 | |
| struct ThreadSanitizer : public FunctionPass {
 | |
|   ThreadSanitizer();
 | |
|   const char *getPassName() const;
 | |
|   bool runOnFunction(Function &F);
 | |
|   bool doInitialization(Module &M);
 | |
|   static char ID;  // Pass identification, replacement for typeid.
 | |
| 
 | |
|  private:
 | |
|   bool instrumentLoadOrStore(Instruction *I);
 | |
|   bool instrumentAtomic(Instruction *I);
 | |
|   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction*> &Local,
 | |
|                                       SmallVectorImpl<Instruction*> &All);
 | |
|   bool addrPointsToConstantData(Value *Addr);
 | |
|   int getMemoryAccessFuncIndex(Value *Addr);
 | |
| 
 | |
|   DataLayout *TD;
 | |
|   OwningPtr<BlackList> BL;
 | |
|   IntegerType *OrdTy;
 | |
|   // Callbacks to run-time library are computed in doInitialization.
 | |
|   Function *TsanFuncEntry;
 | |
|   Function *TsanFuncExit;
 | |
|   // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
 | |
|   static const size_t kNumberOfAccessSizes = 5;
 | |
|   Function *TsanRead[kNumberOfAccessSizes];
 | |
|   Function *TsanWrite[kNumberOfAccessSizes];
 | |
|   Function *TsanAtomicLoad[kNumberOfAccessSizes];
 | |
|   Function *TsanAtomicStore[kNumberOfAccessSizes];
 | |
|   Function *TsanVptrUpdate;
 | |
| };
 | |
| }  // namespace
 | |
| 
 | |
| char ThreadSanitizer::ID = 0;
 | |
| INITIALIZE_PASS(ThreadSanitizer, "tsan",
 | |
|     "ThreadSanitizer: detects data races.",
 | |
|     false, false)
 | |
| 
 | |
| const char *ThreadSanitizer::getPassName() const {
 | |
|   return "ThreadSanitizer";
 | |
| }
 | |
| 
 | |
| ThreadSanitizer::ThreadSanitizer()
 | |
|   : FunctionPass(ID),
 | |
|   TD(NULL) {
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createThreadSanitizerPass() {
 | |
|   return new ThreadSanitizer();
 | |
| }
 | |
| 
 | |
| static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
 | |
|   if (Function *F = dyn_cast<Function>(FuncOrBitcast))
 | |
|      return F;
 | |
|   FuncOrBitcast->dump();
 | |
|   report_fatal_error("ThreadSanitizer interface function redefined");
 | |
| }
 | |
| 
 | |
| bool ThreadSanitizer::doInitialization(Module &M) {
 | |
|   TD = getAnalysisIfAvailable<DataLayout>();
 | |
|   if (!TD)
 | |
|     return false;
 | |
|   BL.reset(new BlackList(ClBlackListFile));
 | |
| 
 | |
|   // Always insert a call to __tsan_init into the module's CTORs.
 | |
|   IRBuilder<> IRB(M.getContext());
 | |
|   Value *TsanInit = M.getOrInsertFunction("__tsan_init",
 | |
|                                           IRB.getVoidTy(), NULL);
 | |
|   appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
 | |
| 
 | |
|   // Initialize the callbacks.
 | |
|   TsanFuncEntry = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|       "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
 | |
|   TsanFuncExit = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|       "__tsan_func_exit", IRB.getVoidTy(), NULL));
 | |
|   OrdTy = IRB.getInt32Ty();
 | |
|   for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
 | |
|     const size_t ByteSize = 1 << i;
 | |
|     const size_t BitSize = ByteSize * 8;
 | |
|     SmallString<32> ReadName("__tsan_read" + itostr(ByteSize));
 | |
|     TsanRead[i] = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|         ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
 | |
| 
 | |
|     SmallString<32> WriteName("__tsan_write" + itostr(ByteSize));
 | |
|     TsanWrite[i] = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|         WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
 | |
| 
 | |
|     Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
 | |
|     Type *PtrTy = Ty->getPointerTo();
 | |
|     SmallString<32> AtomicLoadName("__tsan_atomic" + itostr(BitSize) +
 | |
|                                    "_load");
 | |
|     TsanAtomicLoad[i] = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|         AtomicLoadName, Ty, PtrTy, OrdTy, NULL));
 | |
| 
 | |
|     SmallString<32> AtomicStoreName("__tsan_atomic" + itostr(BitSize) +
 | |
|                                     "_store");
 | |
|     TsanAtomicStore[i] = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|         AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy,
 | |
|         NULL));
 | |
|   }
 | |
|   TsanVptrUpdate = checkInterfaceFunction(M.getOrInsertFunction(
 | |
|       "__tsan_vptr_update", IRB.getVoidTy(), IRB.getInt8PtrTy(),
 | |
|       IRB.getInt8PtrTy(), NULL));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isVtableAccess(Instruction *I) {
 | |
|   if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) {
 | |
|     if (Tag->getNumOperands() < 1) return false;
 | |
|     if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
 | |
|       if (Tag1->getString() == "vtable pointer") return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
 | |
|   // If this is a GEP, just analyze its pointer operand.
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
 | |
|     Addr = GEP->getPointerOperand();
 | |
| 
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
 | |
|     if (GV->isConstant()) {
 | |
|       // Reads from constant globals can not race with any writes.
 | |
|       NumOmittedReadsFromConstantGlobals++;
 | |
|       return true;
 | |
|     }
 | |
|   } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
 | |
|     if (isVtableAccess(L)) {
 | |
|       // Reads from a vtable pointer can not race with any writes.
 | |
|       NumOmittedReadsFromVtable++;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Instrumenting some of the accesses may be proven redundant.
 | |
| // Currently handled:
 | |
| //  - read-before-write (within same BB, no calls between)
 | |
| //
 | |
| // We do not handle some of the patterns that should not survive
 | |
| // after the classic compiler optimizations.
 | |
| // E.g. two reads from the same temp should be eliminated by CSE,
 | |
| // two writes should be eliminated by DSE, etc.
 | |
| //
 | |
| // 'Local' is a vector of insns within the same BB (no calls between).
 | |
| // 'All' is a vector of insns that will be instrumented.
 | |
| void ThreadSanitizer::chooseInstructionsToInstrument(
 | |
|     SmallVectorImpl<Instruction*> &Local,
 | |
|     SmallVectorImpl<Instruction*> &All) {
 | |
|   SmallSet<Value*, 8> WriteTargets;
 | |
|   // Iterate from the end.
 | |
|   for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(),
 | |
|        E = Local.rend(); It != E; ++It) {
 | |
|     Instruction *I = *It;
 | |
|     if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
 | |
|       WriteTargets.insert(Store->getPointerOperand());
 | |
|     } else {
 | |
|       LoadInst *Load = cast<LoadInst>(I);
 | |
|       Value *Addr = Load->getPointerOperand();
 | |
|       if (WriteTargets.count(Addr)) {
 | |
|         // We will write to this temp, so no reason to analyze the read.
 | |
|         NumOmittedReadsBeforeWrite++;
 | |
|         continue;
 | |
|       }
 | |
|       if (addrPointsToConstantData(Addr)) {
 | |
|         // Addr points to some constant data -- it can not race with any writes.
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     All.push_back(I);
 | |
|   }
 | |
|   Local.clear();
 | |
| }
 | |
| 
 | |
| static bool isAtomic(Instruction *I) {
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return LI->isAtomic() && LI->getSynchScope() == CrossThread;
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return SI->isAtomic() && SI->getSynchScope() == CrossThread;
 | |
|   if (isa<AtomicRMWInst>(I))
 | |
|     return true;
 | |
|   if (isa<AtomicCmpXchgInst>(I))
 | |
|     return true;
 | |
|   if (FenceInst *FI = dyn_cast<FenceInst>(I))
 | |
|     return FI->getSynchScope() == CrossThread;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ThreadSanitizer::runOnFunction(Function &F) {
 | |
|   if (!TD) return false;
 | |
|   if (BL->isIn(F)) return false;
 | |
|   SmallVector<Instruction*, 8> RetVec;
 | |
|   SmallVector<Instruction*, 8> AllLoadsAndStores;
 | |
|   SmallVector<Instruction*, 8> LocalLoadsAndStores;
 | |
|   SmallVector<Instruction*, 8> AtomicAccesses;
 | |
|   bool Res = false;
 | |
|   bool HasCalls = false;
 | |
| 
 | |
|   // Traverse all instructions, collect loads/stores/returns, check for calls.
 | |
|   for (Function::iterator FI = F.begin(), FE = F.end();
 | |
|        FI != FE; ++FI) {
 | |
|     BasicBlock &BB = *FI;
 | |
|     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
 | |
|          BI != BE; ++BI) {
 | |
|       if (isAtomic(BI))
 | |
|         AtomicAccesses.push_back(BI);
 | |
|       else if (isa<LoadInst>(BI) || isa<StoreInst>(BI))
 | |
|         LocalLoadsAndStores.push_back(BI);
 | |
|       else if (isa<ReturnInst>(BI))
 | |
|         RetVec.push_back(BI);
 | |
|       else if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
 | |
|         HasCalls = true;
 | |
|         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
 | |
|       }
 | |
|     }
 | |
|     chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
 | |
|   }
 | |
| 
 | |
|   // We have collected all loads and stores.
 | |
|   // FIXME: many of these accesses do not need to be checked for races
 | |
|   // (e.g. variables that do not escape, etc).
 | |
| 
 | |
|   // Instrument memory accesses.
 | |
|   if (ClInstrumentMemoryAccesses)
 | |
|     for (size_t i = 0, n = AllLoadsAndStores.size(); i < n; ++i) {
 | |
|       Res |= instrumentLoadOrStore(AllLoadsAndStores[i]);
 | |
|     }
 | |
| 
 | |
|   // Instrument atomic memory accesses.
 | |
|   if (ClInstrumentAtomics)
 | |
|     for (size_t i = 0, n = AtomicAccesses.size(); i < n; ++i) {
 | |
|       Res |= instrumentAtomic(AtomicAccesses[i]);
 | |
|     }
 | |
| 
 | |
|   // Instrument function entry/exit points if there were instrumented accesses.
 | |
|   if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
 | |
|     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
 | |
|     Value *ReturnAddress = IRB.CreateCall(
 | |
|         Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
 | |
|         IRB.getInt32(0));
 | |
|     IRB.CreateCall(TsanFuncEntry, ReturnAddress);
 | |
|     for (size_t i = 0, n = RetVec.size(); i < n; ++i) {
 | |
|       IRBuilder<> IRBRet(RetVec[i]);
 | |
|       IRBRet.CreateCall(TsanFuncExit);
 | |
|     }
 | |
|     Res = true;
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
 | |
|   IRBuilder<> IRB(I);
 | |
|   bool IsWrite = isa<StoreInst>(*I);
 | |
|   Value *Addr = IsWrite
 | |
|       ? cast<StoreInst>(I)->getPointerOperand()
 | |
|       : cast<LoadInst>(I)->getPointerOperand();
 | |
|   int Idx = getMemoryAccessFuncIndex(Addr);
 | |
|   if (Idx < 0)
 | |
|     return false;
 | |
|   if (IsWrite && isVtableAccess(I)) {
 | |
|     DEBUG(dbgs() << "  VPTR : " << *I << "\n");
 | |
|     Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
 | |
|     // StoredValue does not necessary have a pointer type.
 | |
|     if (isa<IntegerType>(StoredValue->getType()))
 | |
|       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
 | |
|     // Call TsanVptrUpdate.
 | |
|     IRB.CreateCall2(TsanVptrUpdate,
 | |
|                     IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
 | |
|                     IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy()));
 | |
|     NumInstrumentedVtableWrites++;
 | |
|     return true;
 | |
|   }
 | |
|   Value *OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
 | |
|   IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
 | |
|   if (IsWrite) NumInstrumentedWrites++;
 | |
|   else         NumInstrumentedReads++;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
 | |
|   uint32_t v = 0;
 | |
|   switch (ord) {
 | |
|     case NotAtomic:              assert(false);
 | |
|     case Unordered:              // Fall-through.
 | |
|     case Monotonic:              v = 1 << 0; break;
 | |
|     // case Consume:                v = 1 << 1; break;  // Not specified yet.
 | |
|     case Acquire:                v = 1 << 2; break;
 | |
|     case Release:                v = 1 << 3; break;
 | |
|     case AcquireRelease:         v = 1 << 4; break;
 | |
|     case SequentiallyConsistent: v = 1 << 5; break;
 | |
|   }
 | |
|   // +100500 is temporal to migrate to new enum values.
 | |
|   return IRB->getInt32(v + 100500);
 | |
| }
 | |
| 
 | |
| bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
 | |
|   IRBuilder<> IRB(I);
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|     Value *Addr = LI->getPointerOperand();
 | |
|     int Idx = getMemoryAccessFuncIndex(Addr);
 | |
|     if (Idx < 0)
 | |
|       return false;
 | |
|     const size_t ByteSize = 1 << Idx;
 | |
|     const size_t BitSize = ByteSize * 8;
 | |
|     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
 | |
|     Type *PtrTy = Ty->getPointerTo();
 | |
|     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
 | |
|                      createOrdering(&IRB, LI->getOrdering())};
 | |
|     CallInst *C = CallInst::Create(TsanAtomicLoad[Idx],
 | |
|                                    ArrayRef<Value*>(Args));
 | |
|     ReplaceInstWithInst(I, C);
 | |
| 
 | |
|   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|     Value *Addr = SI->getPointerOperand();
 | |
|     int Idx = getMemoryAccessFuncIndex(Addr);
 | |
|     if (Idx < 0)
 | |
|       return false;
 | |
|     const size_t ByteSize = 1 << Idx;
 | |
|     const size_t BitSize = ByteSize * 8;
 | |
|     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
 | |
|     Type *PtrTy = Ty->getPointerTo();
 | |
|     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
 | |
|                      IRB.CreateIntCast(SI->getValueOperand(), Ty, false),
 | |
|                      createOrdering(&IRB, SI->getOrdering())};
 | |
|     CallInst *C = CallInst::Create(TsanAtomicStore[Idx],
 | |
|                                    ArrayRef<Value*>(Args));
 | |
|     ReplaceInstWithInst(I, C);
 | |
|   } else if (isa<AtomicRMWInst>(I)) {
 | |
|     // FIXME: Not yet supported.
 | |
|   } else if (isa<AtomicCmpXchgInst>(I)) {
 | |
|     // FIXME: Not yet supported.
 | |
|   } else if (isa<FenceInst>(I)) {
 | |
|     // FIXME: Not yet supported.
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr) {
 | |
|   Type *OrigPtrTy = Addr->getType();
 | |
|   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
 | |
|   assert(OrigTy->isSized());
 | |
|   uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
 | |
|   if (TypeSize != 8  && TypeSize != 16 &&
 | |
|       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
 | |
|     NumAccessesWithBadSize++;
 | |
|     // Ignore all unusual sizes.
 | |
|     return -1;
 | |
|   }
 | |
|   size_t Idx = CountTrailingZeros_32(TypeSize / 8);
 | |
|   assert(Idx < kNumberOfAccessSizes);
 | |
|   return Idx;
 | |
| }
 |