mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166009 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			4233 lines
		
	
	
		
			150 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4233 lines
		
	
	
		
			150 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ObjCARC.cpp - ObjC ARC Optimization --------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines ObjC ARC optimizations. ARC stands for
 | |
| // Automatic Reference Counting and is a system for managing reference counts
 | |
| // for objects in Objective C.
 | |
| //
 | |
| // The optimizations performed include elimination of redundant, partially
 | |
| // redundant, and inconsequential reference count operations, elimination of
 | |
| // redundant weak pointer operations, pattern-matching and replacement of
 | |
| // low-level operations into higher-level operations, and numerous minor
 | |
| // simplifications.
 | |
| //
 | |
| // This file also defines a simple ARC-aware AliasAnalysis.
 | |
| //
 | |
| // WARNING: This file knows about certain library functions. It recognizes them
 | |
| // by name, and hardwires knowledge of their semantics.
 | |
| //
 | |
| // WARNING: This file knows about how certain Objective-C library functions are
 | |
| // used. Naive LLVM IR transformations which would otherwise be
 | |
| // behavior-preserving may break these assumptions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "objc-arc"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| // A handy option to enable/disable all optimizations in this file.
 | |
| static cl::opt<bool> EnableARCOpts("enable-objc-arc-opts", cl::init(true));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Misc. Utilities
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// MapVector - An associative container with fast insertion-order
 | |
|   /// (deterministic) iteration over its elements. Plus the special
 | |
|   /// blot operation.
 | |
|   template<class KeyT, class ValueT>
 | |
|   class MapVector {
 | |
|     /// Map - Map keys to indices in Vector.
 | |
|     typedef DenseMap<KeyT, size_t> MapTy;
 | |
|     MapTy Map;
 | |
| 
 | |
|     /// Vector - Keys and values.
 | |
|     typedef std::vector<std::pair<KeyT, ValueT> > VectorTy;
 | |
|     VectorTy Vector;
 | |
| 
 | |
|   public:
 | |
|     typedef typename VectorTy::iterator iterator;
 | |
|     typedef typename VectorTy::const_iterator const_iterator;
 | |
|     iterator begin() { return Vector.begin(); }
 | |
|     iterator end() { return Vector.end(); }
 | |
|     const_iterator begin() const { return Vector.begin(); }
 | |
|     const_iterator end() const { return Vector.end(); }
 | |
| 
 | |
| #ifdef XDEBUG
 | |
|     ~MapVector() {
 | |
|       assert(Vector.size() >= Map.size()); // May differ due to blotting.
 | |
|       for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
 | |
|            I != E; ++I) {
 | |
|         assert(I->second < Vector.size());
 | |
|         assert(Vector[I->second].first == I->first);
 | |
|       }
 | |
|       for (typename VectorTy::const_iterator I = Vector.begin(),
 | |
|            E = Vector.end(); I != E; ++I)
 | |
|         assert(!I->first ||
 | |
|                (Map.count(I->first) &&
 | |
|                 Map[I->first] == size_t(I - Vector.begin())));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     ValueT &operator[](const KeyT &Arg) {
 | |
|       std::pair<typename MapTy::iterator, bool> Pair =
 | |
|         Map.insert(std::make_pair(Arg, size_t(0)));
 | |
|       if (Pair.second) {
 | |
|         size_t Num = Vector.size();
 | |
|         Pair.first->second = Num;
 | |
|         Vector.push_back(std::make_pair(Arg, ValueT()));
 | |
|         return Vector[Num].second;
 | |
|       }
 | |
|       return Vector[Pair.first->second].second;
 | |
|     }
 | |
| 
 | |
|     std::pair<iterator, bool>
 | |
|     insert(const std::pair<KeyT, ValueT> &InsertPair) {
 | |
|       std::pair<typename MapTy::iterator, bool> Pair =
 | |
|         Map.insert(std::make_pair(InsertPair.first, size_t(0)));
 | |
|       if (Pair.second) {
 | |
|         size_t Num = Vector.size();
 | |
|         Pair.first->second = Num;
 | |
|         Vector.push_back(InsertPair);
 | |
|         return std::make_pair(Vector.begin() + Num, true);
 | |
|       }
 | |
|       return std::make_pair(Vector.begin() + Pair.first->second, false);
 | |
|     }
 | |
| 
 | |
|     const_iterator find(const KeyT &Key) const {
 | |
|       typename MapTy::const_iterator It = Map.find(Key);
 | |
|       if (It == Map.end()) return Vector.end();
 | |
|       return Vector.begin() + It->second;
 | |
|     }
 | |
| 
 | |
|     /// blot - This is similar to erase, but instead of removing the element
 | |
|     /// from the vector, it just zeros out the key in the vector. This leaves
 | |
|     /// iterators intact, but clients must be prepared for zeroed-out keys when
 | |
|     /// iterating.
 | |
|     void blot(const KeyT &Key) {
 | |
|       typename MapTy::iterator It = Map.find(Key);
 | |
|       if (It == Map.end()) return;
 | |
|       Vector[It->second].first = KeyT();
 | |
|       Map.erase(It);
 | |
|     }
 | |
| 
 | |
|     void clear() {
 | |
|       Map.clear();
 | |
|       Vector.clear();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ARC Utilities.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| 
 | |
| namespace {
 | |
|   /// InstructionClass - A simple classification for instructions.
 | |
|   enum InstructionClass {
 | |
|     IC_Retain,              ///< objc_retain
 | |
|     IC_RetainRV,            ///< objc_retainAutoreleasedReturnValue
 | |
|     IC_RetainBlock,         ///< objc_retainBlock
 | |
|     IC_Release,             ///< objc_release
 | |
|     IC_Autorelease,         ///< objc_autorelease
 | |
|     IC_AutoreleaseRV,       ///< objc_autoreleaseReturnValue
 | |
|     IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush
 | |
|     IC_AutoreleasepoolPop,  ///< objc_autoreleasePoolPop
 | |
|     IC_NoopCast,            ///< objc_retainedObject, etc.
 | |
|     IC_FusedRetainAutorelease, ///< objc_retainAutorelease
 | |
|     IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue
 | |
|     IC_LoadWeakRetained,    ///< objc_loadWeakRetained (primitive)
 | |
|     IC_StoreWeak,           ///< objc_storeWeak (primitive)
 | |
|     IC_InitWeak,            ///< objc_initWeak (derived)
 | |
|     IC_LoadWeak,            ///< objc_loadWeak (derived)
 | |
|     IC_MoveWeak,            ///< objc_moveWeak (derived)
 | |
|     IC_CopyWeak,            ///< objc_copyWeak (derived)
 | |
|     IC_DestroyWeak,         ///< objc_destroyWeak (derived)
 | |
|     IC_StoreStrong,         ///< objc_storeStrong (derived)
 | |
|     IC_CallOrUser,          ///< could call objc_release and/or "use" pointers
 | |
|     IC_Call,                ///< could call objc_release
 | |
|     IC_User,                ///< could "use" a pointer
 | |
|     IC_None                 ///< anything else
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// IsPotentialUse - Test whether the given value is possible a
 | |
| /// reference-counted pointer.
 | |
| static bool IsPotentialUse(const Value *Op) {
 | |
|   // Pointers to static or stack storage are not reference-counted pointers.
 | |
|   if (isa<Constant>(Op) || isa<AllocaInst>(Op))
 | |
|     return false;
 | |
|   // Special arguments are not reference-counted.
 | |
|   if (const Argument *Arg = dyn_cast<Argument>(Op))
 | |
|     if (Arg->hasByValAttr() ||
 | |
|         Arg->hasNestAttr() ||
 | |
|         Arg->hasStructRetAttr())
 | |
|       return false;
 | |
|   // Only consider values with pointer types.
 | |
|   // It seemes intuitive to exclude function pointer types as well, since
 | |
|   // functions are never reference-counted, however clang occasionally
 | |
|   // bitcasts reference-counted pointers to function-pointer type
 | |
|   // temporarily.
 | |
|   PointerType *Ty = dyn_cast<PointerType>(Op->getType());
 | |
|   if (!Ty)
 | |
|     return false;
 | |
|   // Conservatively assume anything else is a potential use.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// GetCallSiteClass - Helper for GetInstructionClass. Determines what kind
 | |
| /// of construct CS is.
 | |
| static InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
 | |
|   for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
 | |
|        I != E; ++I)
 | |
|     if (IsPotentialUse(*I))
 | |
|       return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser;
 | |
| 
 | |
|   return CS.onlyReadsMemory() ? IC_None : IC_Call;
 | |
| }
 | |
| 
 | |
| /// GetFunctionClass - Determine if F is one of the special known Functions.
 | |
| /// If it isn't, return IC_CallOrUser.
 | |
| static InstructionClass GetFunctionClass(const Function *F) {
 | |
|   Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
 | |
| 
 | |
|   // No arguments.
 | |
|   if (AI == AE)
 | |
|     return StringSwitch<InstructionClass>(F->getName())
 | |
|       .Case("objc_autoreleasePoolPush",  IC_AutoreleasepoolPush)
 | |
|       .Default(IC_CallOrUser);
 | |
| 
 | |
|   // One argument.
 | |
|   const Argument *A0 = AI++;
 | |
|   if (AI == AE)
 | |
|     // Argument is a pointer.
 | |
|     if (PointerType *PTy = dyn_cast<PointerType>(A0->getType())) {
 | |
|       Type *ETy = PTy->getElementType();
 | |
|       // Argument is i8*.
 | |
|       if (ETy->isIntegerTy(8))
 | |
|         return StringSwitch<InstructionClass>(F->getName())
 | |
|           .Case("objc_retain",                IC_Retain)
 | |
|           .Case("objc_retainAutoreleasedReturnValue", IC_RetainRV)
 | |
|           .Case("objc_retainBlock",           IC_RetainBlock)
 | |
|           .Case("objc_release",               IC_Release)
 | |
|           .Case("objc_autorelease",           IC_Autorelease)
 | |
|           .Case("objc_autoreleaseReturnValue", IC_AutoreleaseRV)
 | |
|           .Case("objc_autoreleasePoolPop",    IC_AutoreleasepoolPop)
 | |
|           .Case("objc_retainedObject",        IC_NoopCast)
 | |
|           .Case("objc_unretainedObject",      IC_NoopCast)
 | |
|           .Case("objc_unretainedPointer",     IC_NoopCast)
 | |
|           .Case("objc_retain_autorelease",    IC_FusedRetainAutorelease)
 | |
|           .Case("objc_retainAutorelease",     IC_FusedRetainAutorelease)
 | |
|           .Case("objc_retainAutoreleaseReturnValue",IC_FusedRetainAutoreleaseRV)
 | |
|           .Default(IC_CallOrUser);
 | |
| 
 | |
|       // Argument is i8**
 | |
|       if (PointerType *Pte = dyn_cast<PointerType>(ETy))
 | |
|         if (Pte->getElementType()->isIntegerTy(8))
 | |
|           return StringSwitch<InstructionClass>(F->getName())
 | |
|             .Case("objc_loadWeakRetained",      IC_LoadWeakRetained)
 | |
|             .Case("objc_loadWeak",              IC_LoadWeak)
 | |
|             .Case("objc_destroyWeak",           IC_DestroyWeak)
 | |
|             .Default(IC_CallOrUser);
 | |
|     }
 | |
| 
 | |
|   // Two arguments, first is i8**.
 | |
|   const Argument *A1 = AI++;
 | |
|   if (AI == AE)
 | |
|     if (PointerType *PTy = dyn_cast<PointerType>(A0->getType()))
 | |
|       if (PointerType *Pte = dyn_cast<PointerType>(PTy->getElementType()))
 | |
|         if (Pte->getElementType()->isIntegerTy(8))
 | |
|           if (PointerType *PTy1 = dyn_cast<PointerType>(A1->getType())) {
 | |
|             Type *ETy1 = PTy1->getElementType();
 | |
|             // Second argument is i8*
 | |
|             if (ETy1->isIntegerTy(8))
 | |
|               return StringSwitch<InstructionClass>(F->getName())
 | |
|                      .Case("objc_storeWeak",             IC_StoreWeak)
 | |
|                      .Case("objc_initWeak",              IC_InitWeak)
 | |
|                      .Case("objc_storeStrong",           IC_StoreStrong)
 | |
|                      .Default(IC_CallOrUser);
 | |
|             // Second argument is i8**.
 | |
|             if (PointerType *Pte1 = dyn_cast<PointerType>(ETy1))
 | |
|               if (Pte1->getElementType()->isIntegerTy(8))
 | |
|                 return StringSwitch<InstructionClass>(F->getName())
 | |
|                        .Case("objc_moveWeak",              IC_MoveWeak)
 | |
|                        .Case("objc_copyWeak",              IC_CopyWeak)
 | |
|                        .Default(IC_CallOrUser);
 | |
|           }
 | |
| 
 | |
|   // Anything else.
 | |
|   return IC_CallOrUser;
 | |
| }
 | |
| 
 | |
| /// GetInstructionClass - Determine what kind of construct V is.
 | |
| static InstructionClass GetInstructionClass(const Value *V) {
 | |
|   if (const Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     // Any instruction other than bitcast and gep with a pointer operand have a
 | |
|     // use of an objc pointer. Bitcasts, GEPs, Selects, PHIs transfer a pointer
 | |
|     // to a subsequent use, rather than using it themselves, in this sense.
 | |
|     // As a short cut, several other opcodes are known to have no pointer
 | |
|     // operands of interest. And ret is never followed by a release, so it's
 | |
|     // not interesting to examine.
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::Call: {
 | |
|       const CallInst *CI = cast<CallInst>(I);
 | |
|       // Check for calls to special functions.
 | |
|       if (const Function *F = CI->getCalledFunction()) {
 | |
|         InstructionClass Class = GetFunctionClass(F);
 | |
|         if (Class != IC_CallOrUser)
 | |
|           return Class;
 | |
| 
 | |
|         // None of the intrinsic functions do objc_release. For intrinsics, the
 | |
|         // only question is whether or not they may be users.
 | |
|         switch (F->getIntrinsicID()) {
 | |
|         case Intrinsic::returnaddress: case Intrinsic::frameaddress:
 | |
|         case Intrinsic::stacksave: case Intrinsic::stackrestore:
 | |
|         case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend:
 | |
|         case Intrinsic::objectsize: case Intrinsic::prefetch:
 | |
|         case Intrinsic::stackprotector:
 | |
|         case Intrinsic::eh_return_i32: case Intrinsic::eh_return_i64:
 | |
|         case Intrinsic::eh_typeid_for: case Intrinsic::eh_dwarf_cfa:
 | |
|         case Intrinsic::eh_sjlj_lsda: case Intrinsic::eh_sjlj_functioncontext:
 | |
|         case Intrinsic::init_trampoline: case Intrinsic::adjust_trampoline:
 | |
|         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
 | |
|         case Intrinsic::invariant_start: case Intrinsic::invariant_end:
 | |
|         // Don't let dbg info affect our results.
 | |
|         case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
 | |
|           // Short cut: Some intrinsics obviously don't use ObjC pointers.
 | |
|           return IC_None;
 | |
|         default:
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       return GetCallSiteClass(CI);
 | |
|     }
 | |
|     case Instruction::Invoke:
 | |
|       return GetCallSiteClass(cast<InvokeInst>(I));
 | |
|     case Instruction::BitCast:
 | |
|     case Instruction::GetElementPtr:
 | |
|     case Instruction::Select: case Instruction::PHI:
 | |
|     case Instruction::Ret: case Instruction::Br:
 | |
|     case Instruction::Switch: case Instruction::IndirectBr:
 | |
|     case Instruction::Alloca: case Instruction::VAArg:
 | |
|     case Instruction::Add: case Instruction::FAdd:
 | |
|     case Instruction::Sub: case Instruction::FSub:
 | |
|     case Instruction::Mul: case Instruction::FMul:
 | |
|     case Instruction::SDiv: case Instruction::UDiv: case Instruction::FDiv:
 | |
|     case Instruction::SRem: case Instruction::URem: case Instruction::FRem:
 | |
|     case Instruction::Shl: case Instruction::LShr: case Instruction::AShr:
 | |
|     case Instruction::And: case Instruction::Or: case Instruction::Xor:
 | |
|     case Instruction::SExt: case Instruction::ZExt: case Instruction::Trunc:
 | |
|     case Instruction::IntToPtr: case Instruction::FCmp:
 | |
|     case Instruction::FPTrunc: case Instruction::FPExt:
 | |
|     case Instruction::FPToUI: case Instruction::FPToSI:
 | |
|     case Instruction::UIToFP: case Instruction::SIToFP:
 | |
|     case Instruction::InsertElement: case Instruction::ExtractElement:
 | |
|     case Instruction::ShuffleVector:
 | |
|     case Instruction::ExtractValue:
 | |
|       break;
 | |
|     case Instruction::ICmp:
 | |
|       // Comparing a pointer with null, or any other constant, isn't an
 | |
|       // interesting use, because we don't care what the pointer points to, or
 | |
|       // about the values of any other dynamic reference-counted pointers.
 | |
|       if (IsPotentialUse(I->getOperand(1)))
 | |
|         return IC_User;
 | |
|       break;
 | |
|     default:
 | |
|       // For anything else, check all the operands.
 | |
|       // Note that this includes both operands of a Store: while the first
 | |
|       // operand isn't actually being dereferenced, it is being stored to
 | |
|       // memory where we can no longer track who might read it and dereference
 | |
|       // it, so we have to consider it potentially used.
 | |
|       for (User::const_op_iterator OI = I->op_begin(), OE = I->op_end();
 | |
|            OI != OE; ++OI)
 | |
|         if (IsPotentialUse(*OI))
 | |
|           return IC_User;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, it's totally inert for ARC purposes.
 | |
|   return IC_None;
 | |
| }
 | |
| 
 | |
| /// GetBasicInstructionClass - Determine what kind of construct V is. This is
 | |
| /// similar to GetInstructionClass except that it only detects objc runtine
 | |
| /// calls. This allows it to be faster.
 | |
| static InstructionClass GetBasicInstructionClass(const Value *V) {
 | |
|   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
 | |
|     if (const Function *F = CI->getCalledFunction())
 | |
|       return GetFunctionClass(F);
 | |
|     // Otherwise, be conservative.
 | |
|     return IC_CallOrUser;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, be conservative.
 | |
|   return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User;
 | |
| }
 | |
| 
 | |
| /// IsRetain - Test if the given class is objc_retain or
 | |
| /// equivalent.
 | |
| static bool IsRetain(InstructionClass Class) {
 | |
|   return Class == IC_Retain ||
 | |
|          Class == IC_RetainRV;
 | |
| }
 | |
| 
 | |
| /// IsAutorelease - Test if the given class is objc_autorelease or
 | |
| /// equivalent.
 | |
| static bool IsAutorelease(InstructionClass Class) {
 | |
|   return Class == IC_Autorelease ||
 | |
|          Class == IC_AutoreleaseRV;
 | |
| }
 | |
| 
 | |
| /// IsForwarding - Test if the given class represents instructions which return
 | |
| /// their argument verbatim.
 | |
| static bool IsForwarding(InstructionClass Class) {
 | |
|   // objc_retainBlock technically doesn't always return its argument
 | |
|   // verbatim, but it doesn't matter for our purposes here.
 | |
|   return Class == IC_Retain ||
 | |
|          Class == IC_RetainRV ||
 | |
|          Class == IC_Autorelease ||
 | |
|          Class == IC_AutoreleaseRV ||
 | |
|          Class == IC_RetainBlock ||
 | |
|          Class == IC_NoopCast;
 | |
| }
 | |
| 
 | |
| /// IsNoopOnNull - Test if the given class represents instructions which do
 | |
| /// nothing if passed a null pointer.
 | |
| static bool IsNoopOnNull(InstructionClass Class) {
 | |
|   return Class == IC_Retain ||
 | |
|          Class == IC_RetainRV ||
 | |
|          Class == IC_Release ||
 | |
|          Class == IC_Autorelease ||
 | |
|          Class == IC_AutoreleaseRV ||
 | |
|          Class == IC_RetainBlock;
 | |
| }
 | |
| 
 | |
| /// IsAlwaysTail - Test if the given class represents instructions which are
 | |
| /// always safe to mark with the "tail" keyword.
 | |
| static bool IsAlwaysTail(InstructionClass Class) {
 | |
|   // IC_RetainBlock may be given a stack argument.
 | |
|   return Class == IC_Retain ||
 | |
|          Class == IC_RetainRV ||
 | |
|          Class == IC_Autorelease ||
 | |
|          Class == IC_AutoreleaseRV;
 | |
| }
 | |
| 
 | |
| /// IsNoThrow - Test if the given class represents instructions which are always
 | |
| /// safe to mark with the nounwind attribute..
 | |
| static bool IsNoThrow(InstructionClass Class) {
 | |
|   // objc_retainBlock is not nounwind because it calls user copy constructors
 | |
|   // which could theoretically throw.
 | |
|   return Class == IC_Retain ||
 | |
|          Class == IC_RetainRV ||
 | |
|          Class == IC_Release ||
 | |
|          Class == IC_Autorelease ||
 | |
|          Class == IC_AutoreleaseRV ||
 | |
|          Class == IC_AutoreleasepoolPush ||
 | |
|          Class == IC_AutoreleasepoolPop;
 | |
| }
 | |
| 
 | |
| /// EraseInstruction - Erase the given instruction. Many ObjC calls return their
 | |
| /// argument verbatim, so if it's such a call and the return value has users,
 | |
| /// replace them with the argument value.
 | |
| static void EraseInstruction(Instruction *CI) {
 | |
|   Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
 | |
| 
 | |
|   bool Unused = CI->use_empty();
 | |
| 
 | |
|   if (!Unused) {
 | |
|     // Replace the return value with the argument.
 | |
|     assert(IsForwarding(GetBasicInstructionClass(CI)) &&
 | |
|            "Can't delete non-forwarding instruction with users!");
 | |
|     CI->replaceAllUsesWith(OldArg);
 | |
|   }
 | |
| 
 | |
|   CI->eraseFromParent();
 | |
| 
 | |
|   if (Unused)
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(OldArg);
 | |
| }
 | |
| 
 | |
| /// GetUnderlyingObjCPtr - This is a wrapper around getUnderlyingObject which
 | |
| /// also knows how to look through objc_retain and objc_autorelease calls, which
 | |
| /// we know to return their argument verbatim.
 | |
| static const Value *GetUnderlyingObjCPtr(const Value *V) {
 | |
|   for (;;) {
 | |
|     V = GetUnderlyingObject(V);
 | |
|     if (!IsForwarding(GetBasicInstructionClass(V)))
 | |
|       break;
 | |
|     V = cast<CallInst>(V)->getArgOperand(0);
 | |
|   }
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// StripPointerCastsAndObjCCalls - This is a wrapper around
 | |
| /// Value::stripPointerCasts which also knows how to look through objc_retain
 | |
| /// and objc_autorelease calls, which we know to return their argument verbatim.
 | |
| static const Value *StripPointerCastsAndObjCCalls(const Value *V) {
 | |
|   for (;;) {
 | |
|     V = V->stripPointerCasts();
 | |
|     if (!IsForwarding(GetBasicInstructionClass(V)))
 | |
|       break;
 | |
|     V = cast<CallInst>(V)->getArgOperand(0);
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// StripPointerCastsAndObjCCalls - This is a wrapper around
 | |
| /// Value::stripPointerCasts which also knows how to look through objc_retain
 | |
| /// and objc_autorelease calls, which we know to return their argument verbatim.
 | |
| static Value *StripPointerCastsAndObjCCalls(Value *V) {
 | |
|   for (;;) {
 | |
|     V = V->stripPointerCasts();
 | |
|     if (!IsForwarding(GetBasicInstructionClass(V)))
 | |
|       break;
 | |
|     V = cast<CallInst>(V)->getArgOperand(0);
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// GetObjCArg - Assuming the given instruction is one of the special calls such
 | |
| /// as objc_retain or objc_release, return the argument value, stripped of no-op
 | |
| /// casts and forwarding calls.
 | |
| static Value *GetObjCArg(Value *Inst) {
 | |
|   return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
 | |
| }
 | |
| 
 | |
| /// IsObjCIdentifiedObject - This is similar to AliasAnalysis'
 | |
| /// isObjCIdentifiedObject, except that it uses special knowledge of
 | |
| /// ObjC conventions...
 | |
| static bool IsObjCIdentifiedObject(const Value *V) {
 | |
|   // Assume that call results and arguments have their own "provenance".
 | |
|   // Constants (including GlobalVariables) and Allocas are never
 | |
|   // reference-counted.
 | |
|   if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
 | |
|       isa<Argument>(V) || isa<Constant>(V) ||
 | |
|       isa<AllocaInst>(V))
 | |
|     return true;
 | |
| 
 | |
|   if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
 | |
|     const Value *Pointer =
 | |
|       StripPointerCastsAndObjCCalls(LI->getPointerOperand());
 | |
|     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
 | |
|       // A constant pointer can't be pointing to an object on the heap. It may
 | |
|       // be reference-counted, but it won't be deleted.
 | |
|       if (GV->isConstant())
 | |
|         return true;
 | |
|       StringRef Name = GV->getName();
 | |
|       // These special variables are known to hold values which are not
 | |
|       // reference-counted pointers.
 | |
|       if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
 | |
|           Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
 | |
|           Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
 | |
|           Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
 | |
|           Name.startswith("\01l_objc_msgSend_fixup_"))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FindSingleUseIdentifiedObject - This is similar to
 | |
| /// StripPointerCastsAndObjCCalls but it stops as soon as it finds a value
 | |
| /// with multiple uses.
 | |
| static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
 | |
|   if (Arg->hasOneUse()) {
 | |
|     if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
 | |
|       return FindSingleUseIdentifiedObject(BC->getOperand(0));
 | |
|     if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
 | |
|       if (GEP->hasAllZeroIndices())
 | |
|         return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
 | |
|     if (IsForwarding(GetBasicInstructionClass(Arg)))
 | |
|       return FindSingleUseIdentifiedObject(
 | |
|                cast<CallInst>(Arg)->getArgOperand(0));
 | |
|     if (!IsObjCIdentifiedObject(Arg))
 | |
|       return 0;
 | |
|     return Arg;
 | |
|   }
 | |
| 
 | |
|   // If we found an identifiable object but it has multiple uses, but they are
 | |
|   // trivial uses, we can still consider this to be a single-use value.
 | |
|   if (IsObjCIdentifiedObject(Arg)) {
 | |
|     for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       const User *U = *UI;
 | |
|       if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg)
 | |
|          return 0;
 | |
|     }
 | |
| 
 | |
|     return Arg;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// ModuleHasARC - Test if the given module looks interesting to run ARC
 | |
| /// optimization on.
 | |
| static bool ModuleHasARC(const Module &M) {
 | |
|   return
 | |
|     M.getNamedValue("objc_retain") ||
 | |
|     M.getNamedValue("objc_release") ||
 | |
|     M.getNamedValue("objc_autorelease") ||
 | |
|     M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
 | |
|     M.getNamedValue("objc_retainBlock") ||
 | |
|     M.getNamedValue("objc_autoreleaseReturnValue") ||
 | |
|     M.getNamedValue("objc_autoreleasePoolPush") ||
 | |
|     M.getNamedValue("objc_loadWeakRetained") ||
 | |
|     M.getNamedValue("objc_loadWeak") ||
 | |
|     M.getNamedValue("objc_destroyWeak") ||
 | |
|     M.getNamedValue("objc_storeWeak") ||
 | |
|     M.getNamedValue("objc_initWeak") ||
 | |
|     M.getNamedValue("objc_moveWeak") ||
 | |
|     M.getNamedValue("objc_copyWeak") ||
 | |
|     M.getNamedValue("objc_retainedObject") ||
 | |
|     M.getNamedValue("objc_unretainedObject") ||
 | |
|     M.getNamedValue("objc_unretainedPointer");
 | |
| }
 | |
| 
 | |
| /// DoesObjCBlockEscape - Test whether the given pointer, which is an
 | |
| /// Objective C block pointer, does not "escape". This differs from regular
 | |
| /// escape analysis in that a use as an argument to a call is not considered
 | |
| /// an escape.
 | |
| static bool DoesObjCBlockEscape(const Value *BlockPtr) {
 | |
|   // Walk the def-use chains.
 | |
|   SmallVector<const Value *, 4> Worklist;
 | |
|   Worklist.push_back(BlockPtr);
 | |
|   do {
 | |
|     const Value *V = Worklist.pop_back_val();
 | |
|     for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       const User *UUser = *UI;
 | |
|       // Special - Use by a call (callee or argument) is not considered
 | |
|       // to be an escape.
 | |
|       switch (GetBasicInstructionClass(UUser)) {
 | |
|       case IC_StoreWeak:
 | |
|       case IC_InitWeak:
 | |
|       case IC_StoreStrong:
 | |
|       case IC_Autorelease:
 | |
|       case IC_AutoreleaseRV:
 | |
|         // These special functions make copies of their pointer arguments.
 | |
|         return true;
 | |
|       case IC_User:
 | |
|       case IC_None:
 | |
|         // Use by an instruction which copies the value is an escape if the
 | |
|         // result is an escape.
 | |
|         if (isa<BitCastInst>(UUser) || isa<GetElementPtrInst>(UUser) ||
 | |
|             isa<PHINode>(UUser) || isa<SelectInst>(UUser)) {
 | |
|           Worklist.push_back(UUser);
 | |
|           continue;
 | |
|         }
 | |
|         // Use by a load is not an escape.
 | |
|         if (isa<LoadInst>(UUser))
 | |
|           continue;
 | |
|         // Use by a store is not an escape if the use is the address.
 | |
|         if (const StoreInst *SI = dyn_cast<StoreInst>(UUser))
 | |
|           if (V != SI->getValueOperand())
 | |
|             continue;
 | |
|         break;
 | |
|       default:
 | |
|         // Regular calls and other stuff are not considered escapes.
 | |
|         continue;
 | |
|       }
 | |
|       // Otherwise, conservatively assume an escape.
 | |
|       return true;
 | |
|     }
 | |
|   } while (!Worklist.empty());
 | |
| 
 | |
|   // No escapes found.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ARC AliasAnalysis.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/Passes.h"
 | |
| 
 | |
| namespace {
 | |
|   /// ObjCARCAliasAnalysis - This is a simple alias analysis
 | |
|   /// implementation that uses knowledge of ARC constructs to answer queries.
 | |
|   ///
 | |
|   /// TODO: This class could be generalized to know about other ObjC-specific
 | |
|   /// tricks. Such as knowing that ivars in the non-fragile ABI are non-aliasing
 | |
|   /// even though their offsets are dynamic.
 | |
|   class ObjCARCAliasAnalysis : public ImmutablePass,
 | |
|                                public AliasAnalysis {
 | |
|   public:
 | |
|     static char ID; // Class identification, replacement for typeinfo
 | |
|     ObjCARCAliasAnalysis() : ImmutablePass(ID) {
 | |
|       initializeObjCARCAliasAnalysisPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     virtual void initializePass() {
 | |
|       InitializeAliasAnalysis(this);
 | |
|     }
 | |
| 
 | |
|     /// getAdjustedAnalysisPointer - This method is used when a pass implements
 | |
|     /// an analysis interface through multiple inheritance.  If needed, it
 | |
|     /// should override this to adjust the this pointer as needed for the
 | |
|     /// specified pass info.
 | |
|     virtual void *getAdjustedAnalysisPointer(const void *PI) {
 | |
|       if (PI == &AliasAnalysis::ID)
 | |
|         return static_cast<AliasAnalysis *>(this);
 | |
|       return this;
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
|     virtual AliasResult alias(const Location &LocA, const Location &LocB);
 | |
|     virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
 | |
|     virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
 | |
|     virtual ModRefBehavior getModRefBehavior(const Function *F);
 | |
|     virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
 | |
|                                        const Location &Loc);
 | |
|     virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
 | |
|                                        ImmutableCallSite CS2);
 | |
|   };
 | |
| }  // End of anonymous namespace
 | |
| 
 | |
| // Register this pass...
 | |
| char ObjCARCAliasAnalysis::ID = 0;
 | |
| INITIALIZE_AG_PASS(ObjCARCAliasAnalysis, AliasAnalysis, "objc-arc-aa",
 | |
|                    "ObjC-ARC-Based Alias Analysis", false, true, false)
 | |
| 
 | |
| ImmutablePass *llvm::createObjCARCAliasAnalysisPass() {
 | |
|   return new ObjCARCAliasAnalysis();
 | |
| }
 | |
| 
 | |
| void
 | |
| ObjCARCAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AliasAnalysis::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::AliasResult
 | |
| ObjCARCAliasAnalysis::alias(const Location &LocA, const Location &LocB) {
 | |
|   if (!EnableARCOpts)
 | |
|     return AliasAnalysis::alias(LocA, LocB);
 | |
| 
 | |
|   // First, strip off no-ops, including ObjC-specific no-ops, and try making a
 | |
|   // precise alias query.
 | |
|   const Value *SA = StripPointerCastsAndObjCCalls(LocA.Ptr);
 | |
|   const Value *SB = StripPointerCastsAndObjCCalls(LocB.Ptr);
 | |
|   AliasResult Result =
 | |
|     AliasAnalysis::alias(Location(SA, LocA.Size, LocA.TBAATag),
 | |
|                          Location(SB, LocB.Size, LocB.TBAATag));
 | |
|   if (Result != MayAlias)
 | |
|     return Result;
 | |
| 
 | |
|   // If that failed, climb to the underlying object, including climbing through
 | |
|   // ObjC-specific no-ops, and try making an imprecise alias query.
 | |
|   const Value *UA = GetUnderlyingObjCPtr(SA);
 | |
|   const Value *UB = GetUnderlyingObjCPtr(SB);
 | |
|   if (UA != SA || UB != SB) {
 | |
|     Result = AliasAnalysis::alias(Location(UA), Location(UB));
 | |
|     // We can't use MustAlias or PartialAlias results here because
 | |
|     // GetUnderlyingObjCPtr may return an offsetted pointer value.
 | |
|     if (Result == NoAlias)
 | |
|       return NoAlias;
 | |
|   }
 | |
| 
 | |
|   // If that failed, fail. We don't need to chain here, since that's covered
 | |
|   // by the earlier precise query.
 | |
|   return MayAlias;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ObjCARCAliasAnalysis::pointsToConstantMemory(const Location &Loc,
 | |
|                                              bool OrLocal) {
 | |
|   if (!EnableARCOpts)
 | |
|     return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
 | |
| 
 | |
|   // First, strip off no-ops, including ObjC-specific no-ops, and try making
 | |
|   // a precise alias query.
 | |
|   const Value *S = StripPointerCastsAndObjCCalls(Loc.Ptr);
 | |
|   if (AliasAnalysis::pointsToConstantMemory(Location(S, Loc.Size, Loc.TBAATag),
 | |
|                                             OrLocal))
 | |
|     return true;
 | |
| 
 | |
|   // If that failed, climb to the underlying object, including climbing through
 | |
|   // ObjC-specific no-ops, and try making an imprecise alias query.
 | |
|   const Value *U = GetUnderlyingObjCPtr(S);
 | |
|   if (U != S)
 | |
|     return AliasAnalysis::pointsToConstantMemory(Location(U), OrLocal);
 | |
| 
 | |
|   // If that failed, fail. We don't need to chain here, since that's covered
 | |
|   // by the earlier precise query.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefBehavior
 | |
| ObjCARCAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
 | |
|   // We have nothing to do. Just chain to the next AliasAnalysis.
 | |
|   return AliasAnalysis::getModRefBehavior(CS);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefBehavior
 | |
| ObjCARCAliasAnalysis::getModRefBehavior(const Function *F) {
 | |
|   if (!EnableARCOpts)
 | |
|     return AliasAnalysis::getModRefBehavior(F);
 | |
| 
 | |
|   switch (GetFunctionClass(F)) {
 | |
|   case IC_NoopCast:
 | |
|     return DoesNotAccessMemory;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return AliasAnalysis::getModRefBehavior(F);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefResult
 | |
| ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS, const Location &Loc) {
 | |
|   if (!EnableARCOpts)
 | |
|     return AliasAnalysis::getModRefInfo(CS, Loc);
 | |
| 
 | |
|   switch (GetBasicInstructionClass(CS.getInstruction())) {
 | |
|   case IC_Retain:
 | |
|   case IC_RetainRV:
 | |
|   case IC_Autorelease:
 | |
|   case IC_AutoreleaseRV:
 | |
|   case IC_NoopCast:
 | |
|   case IC_AutoreleasepoolPush:
 | |
|   case IC_FusedRetainAutorelease:
 | |
|   case IC_FusedRetainAutoreleaseRV:
 | |
|     // These functions don't access any memory visible to the compiler.
 | |
|     // Note that this doesn't include objc_retainBlock, because it updates
 | |
|     // pointers when it copies block data.
 | |
|     return NoModRef;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return AliasAnalysis::getModRefInfo(CS, Loc);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefResult
 | |
| ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
 | |
|                                     ImmutableCallSite CS2) {
 | |
|   // TODO: Theoretically we could check for dependencies between objc_* calls
 | |
|   // and OnlyAccessesArgumentPointees calls or other well-behaved calls.
 | |
|   return AliasAnalysis::getModRefInfo(CS1, CS2);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ARC expansion.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Support/InstIterator.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| 
 | |
| namespace {
 | |
|   /// ObjCARCExpand - Early ARC transformations.
 | |
|   class ObjCARCExpand : public FunctionPass {
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
|     virtual bool doInitialization(Module &M);
 | |
|     virtual bool runOnFunction(Function &F);
 | |
| 
 | |
|     /// Run - A flag indicating whether this optimization pass should run.
 | |
|     bool Run;
 | |
| 
 | |
|   public:
 | |
|     static char ID;
 | |
|     ObjCARCExpand() : FunctionPass(ID) {
 | |
|       initializeObjCARCExpandPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char ObjCARCExpand::ID = 0;
 | |
| INITIALIZE_PASS(ObjCARCExpand,
 | |
|                 "objc-arc-expand", "ObjC ARC expansion", false, false)
 | |
| 
 | |
| Pass *llvm::createObjCARCExpandPass() {
 | |
|   return new ObjCARCExpand();
 | |
| }
 | |
| 
 | |
| void ObjCARCExpand::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
| }
 | |
| 
 | |
| bool ObjCARCExpand::doInitialization(Module &M) {
 | |
|   Run = ModuleHasARC(M);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ObjCARCExpand::runOnFunction(Function &F) {
 | |
|   if (!EnableARCOpts)
 | |
|     return false;
 | |
| 
 | |
|   // If nothing in the Module uses ARC, don't do anything.
 | |
|   if (!Run)
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
 | |
|     Instruction *Inst = &*I;
 | |
| 
 | |
|     switch (GetBasicInstructionClass(Inst)) {
 | |
|     case IC_Retain:
 | |
|     case IC_RetainRV:
 | |
|     case IC_Autorelease:
 | |
|     case IC_AutoreleaseRV:
 | |
|     case IC_FusedRetainAutorelease:
 | |
|     case IC_FusedRetainAutoreleaseRV:
 | |
|       // These calls return their argument verbatim, as a low-level
 | |
|       // optimization. However, this makes high-level optimizations
 | |
|       // harder. Undo any uses of this optimization that the front-end
 | |
|       // emitted here. We'll redo them in the contract pass.
 | |
|       Changed = true;
 | |
|       Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0));
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ARC autorelease pool elimination.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| 
 | |
| namespace {
 | |
|   /// ObjCARCAPElim - Autorelease pool elimination.
 | |
|   class ObjCARCAPElim : public ModulePass {
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
|     virtual bool runOnModule(Module &M);
 | |
| 
 | |
|     static bool MayAutorelease(ImmutableCallSite CS, unsigned Depth = 0);
 | |
|     static bool OptimizeBB(BasicBlock *BB);
 | |
| 
 | |
|   public:
 | |
|     static char ID;
 | |
|     ObjCARCAPElim() : ModulePass(ID) {
 | |
|       initializeObjCARCAPElimPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char ObjCARCAPElim::ID = 0;
 | |
| INITIALIZE_PASS(ObjCARCAPElim,
 | |
|                 "objc-arc-apelim",
 | |
|                 "ObjC ARC autorelease pool elimination",
 | |
|                 false, false)
 | |
| 
 | |
| Pass *llvm::createObjCARCAPElimPass() {
 | |
|   return new ObjCARCAPElim();
 | |
| }
 | |
| 
 | |
| void ObjCARCAPElim::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
| }
 | |
| 
 | |
| /// MayAutorelease - Interprocedurally determine if calls made by the
 | |
| /// given call site can possibly produce autoreleases.
 | |
| bool ObjCARCAPElim::MayAutorelease(ImmutableCallSite CS, unsigned Depth) {
 | |
|   if (const Function *Callee = CS.getCalledFunction()) {
 | |
|     if (Callee->isDeclaration() || Callee->mayBeOverridden())
 | |
|       return true;
 | |
|     for (Function::const_iterator I = Callee->begin(), E = Callee->end();
 | |
|          I != E; ++I) {
 | |
|       const BasicBlock *BB = I;
 | |
|       for (BasicBlock::const_iterator J = BB->begin(), F = BB->end();
 | |
|            J != F; ++J)
 | |
|         if (ImmutableCallSite JCS = ImmutableCallSite(J))
 | |
|           // This recursion depth limit is arbitrary. It's just great
 | |
|           // enough to cover known interesting testcases.
 | |
|           if (Depth < 3 &&
 | |
|               !JCS.onlyReadsMemory() &&
 | |
|               MayAutorelease(JCS, Depth + 1))
 | |
|             return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ObjCARCAPElim::OptimizeBB(BasicBlock *BB) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   Instruction *Push = 0;
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
 | |
|     Instruction *Inst = I++;
 | |
|     switch (GetBasicInstructionClass(Inst)) {
 | |
|     case IC_AutoreleasepoolPush:
 | |
|       Push = Inst;
 | |
|       break;
 | |
|     case IC_AutoreleasepoolPop:
 | |
|       // If this pop matches a push and nothing in between can autorelease,
 | |
|       // zap the pair.
 | |
|       if (Push && cast<CallInst>(Inst)->getArgOperand(0) == Push) {
 | |
|         Changed = true;
 | |
|         Inst->eraseFromParent();
 | |
|         Push->eraseFromParent();
 | |
|       }
 | |
|       Push = 0;
 | |
|       break;
 | |
|     case IC_CallOrUser:
 | |
|       if (MayAutorelease(ImmutableCallSite(Inst)))
 | |
|         Push = 0;
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool ObjCARCAPElim::runOnModule(Module &M) {
 | |
|   if (!EnableARCOpts)
 | |
|     return false;
 | |
| 
 | |
|   // If nothing in the Module uses ARC, don't do anything.
 | |
|   if (!ModuleHasARC(M))
 | |
|     return false;
 | |
| 
 | |
|   // Find the llvm.global_ctors variable, as the first step in
 | |
|   // identifying the global constructors. In theory, unnecessary autorelease
 | |
|   // pools could occur anywhere, but in practice it's pretty rare. Global
 | |
|   // ctors are a place where autorelease pools get inserted automatically,
 | |
|   // so it's pretty common for them to be unnecessary, and it's pretty
 | |
|   // profitable to eliminate them.
 | |
|   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
 | |
|   if (!GV)
 | |
|     return false;
 | |
| 
 | |
|   assert(GV->hasDefinitiveInitializer() &&
 | |
|          "llvm.global_ctors is uncooperative!");
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Dig the constructor functions out of GV's initializer.
 | |
|   ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
 | |
|   for (User::op_iterator OI = Init->op_begin(), OE = Init->op_end();
 | |
|        OI != OE; ++OI) {
 | |
|     Value *Op = *OI;
 | |
|     // llvm.global_ctors is an array of pairs where the second members
 | |
|     // are constructor functions.
 | |
|     Function *F = dyn_cast<Function>(cast<ConstantStruct>(Op)->getOperand(1));
 | |
|     // If the user used a constructor function with the wrong signature and
 | |
|     // it got bitcasted or whatever, look the other way.
 | |
|     if (!F)
 | |
|       continue;
 | |
|     // Only look at function definitions.
 | |
|     if (F->isDeclaration())
 | |
|       continue;
 | |
|     // Only look at functions with one basic block.
 | |
|     if (llvm::next(F->begin()) != F->end())
 | |
|       continue;
 | |
|     // Ok, a single-block constructor function definition. Try to optimize it.
 | |
|     Changed |= OptimizeBB(F->begin());
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ARC optimization.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // TODO: On code like this:
 | |
| //
 | |
| // objc_retain(%x)
 | |
| // stuff_that_cannot_release()
 | |
| // objc_autorelease(%x)
 | |
| // stuff_that_cannot_release()
 | |
| // objc_retain(%x)
 | |
| // stuff_that_cannot_release()
 | |
| // objc_autorelease(%x)
 | |
| //
 | |
| // The second retain and autorelease can be deleted.
 | |
| 
 | |
| // TODO: It should be possible to delete
 | |
| // objc_autoreleasePoolPush and objc_autoreleasePoolPop
 | |
| // pairs if nothing is actually autoreleased between them. Also, autorelease
 | |
| // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
 | |
| // after inlining) can be turned into plain release calls.
 | |
| 
 | |
| // TODO: Critical-edge splitting. If the optimial insertion point is
 | |
| // a critical edge, the current algorithm has to fail, because it doesn't
 | |
| // know how to split edges. It should be possible to make the optimizer
 | |
| // think in terms of edges, rather than blocks, and then split critical
 | |
| // edges on demand.
 | |
| 
 | |
| // TODO: OptimizeSequences could generalized to be Interprocedural.
 | |
| 
 | |
| // TODO: Recognize that a bunch of other objc runtime calls have
 | |
| // non-escaping arguments and non-releasing arguments, and may be
 | |
| // non-autoreleasing.
 | |
| 
 | |
| // TODO: Sink autorelease calls as far as possible. Unfortunately we
 | |
| // usually can't sink them past other calls, which would be the main
 | |
| // case where it would be useful.
 | |
| 
 | |
| // TODO: The pointer returned from objc_loadWeakRetained is retained.
 | |
| 
 | |
| // TODO: Delete release+retain pairs (rare).
 | |
| 
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| 
 | |
| STATISTIC(NumNoops,       "Number of no-op objc calls eliminated");
 | |
| STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
 | |
| STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
 | |
| STATISTIC(NumRets,        "Number of return value forwarding "
 | |
|                           "retain+autoreleaes eliminated");
 | |
| STATISTIC(NumRRs,         "Number of retain+release paths eliminated");
 | |
| STATISTIC(NumPeeps,       "Number of calls peephole-optimized");
 | |
| 
 | |
| namespace {
 | |
|   /// ProvenanceAnalysis - This is similar to BasicAliasAnalysis, and it
 | |
|   /// uses many of the same techniques, except it uses special ObjC-specific
 | |
|   /// reasoning about pointer relationships.
 | |
|   class ProvenanceAnalysis {
 | |
|     AliasAnalysis *AA;
 | |
| 
 | |
|     typedef std::pair<const Value *, const Value *> ValuePairTy;
 | |
|     typedef DenseMap<ValuePairTy, bool> CachedResultsTy;
 | |
|     CachedResultsTy CachedResults;
 | |
| 
 | |
|     bool relatedCheck(const Value *A, const Value *B);
 | |
|     bool relatedSelect(const SelectInst *A, const Value *B);
 | |
|     bool relatedPHI(const PHINode *A, const Value *B);
 | |
| 
 | |
|     void operator=(const ProvenanceAnalysis &) LLVM_DELETED_FUNCTION;
 | |
|     ProvenanceAnalysis(const ProvenanceAnalysis &) LLVM_DELETED_FUNCTION;
 | |
| 
 | |
|   public:
 | |
|     ProvenanceAnalysis() {}
 | |
| 
 | |
|     void setAA(AliasAnalysis *aa) { AA = aa; }
 | |
| 
 | |
|     AliasAnalysis *getAA() const { return AA; }
 | |
| 
 | |
|     bool related(const Value *A, const Value *B);
 | |
| 
 | |
|     void clear() {
 | |
|       CachedResults.clear();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| bool ProvenanceAnalysis::relatedSelect(const SelectInst *A, const Value *B) {
 | |
|   // If the values are Selects with the same condition, we can do a more precise
 | |
|   // check: just check for relations between the values on corresponding arms.
 | |
|   if (const SelectInst *SB = dyn_cast<SelectInst>(B))
 | |
|     if (A->getCondition() == SB->getCondition())
 | |
|       return related(A->getTrueValue(), SB->getTrueValue()) ||
 | |
|              related(A->getFalseValue(), SB->getFalseValue());
 | |
| 
 | |
|   // Check both arms of the Select node individually.
 | |
|   return related(A->getTrueValue(), B) ||
 | |
|          related(A->getFalseValue(), B);
 | |
| }
 | |
| 
 | |
| bool ProvenanceAnalysis::relatedPHI(const PHINode *A, const Value *B) {
 | |
|   // If the values are PHIs in the same block, we can do a more precise as well
 | |
|   // as efficient check: just check for relations between the values on
 | |
|   // corresponding edges.
 | |
|   if (const PHINode *PNB = dyn_cast<PHINode>(B))
 | |
|     if (PNB->getParent() == A->getParent()) {
 | |
|       for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i)
 | |
|         if (related(A->getIncomingValue(i),
 | |
|                     PNB->getIncomingValueForBlock(A->getIncomingBlock(i))))
 | |
|           return true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|   // Check each unique source of the PHI node against B.
 | |
|   SmallPtrSet<const Value *, 4> UniqueSrc;
 | |
|   for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) {
 | |
|     const Value *PV1 = A->getIncomingValue(i);
 | |
|     if (UniqueSrc.insert(PV1) && related(PV1, B))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // All of the arms checked out.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isStoredObjCPointer - Test if the value of P, or any value covered by its
 | |
| /// provenance, is ever stored within the function (not counting callees).
 | |
| static bool isStoredObjCPointer(const Value *P) {
 | |
|   SmallPtrSet<const Value *, 8> Visited;
 | |
|   SmallVector<const Value *, 8> Worklist;
 | |
|   Worklist.push_back(P);
 | |
|   Visited.insert(P);
 | |
|   do {
 | |
|     P = Worklist.pop_back_val();
 | |
|     for (Value::const_use_iterator UI = P->use_begin(), UE = P->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       const User *Ur = *UI;
 | |
|       if (isa<StoreInst>(Ur)) {
 | |
|         if (UI.getOperandNo() == 0)
 | |
|           // The pointer is stored.
 | |
|           return true;
 | |
|         // The pointed is stored through.
 | |
|         continue;
 | |
|       }
 | |
|       if (isa<CallInst>(Ur))
 | |
|         // The pointer is passed as an argument, ignore this.
 | |
|         continue;
 | |
|       if (isa<PtrToIntInst>(P))
 | |
|         // Assume the worst.
 | |
|         return true;
 | |
|       if (Visited.insert(Ur))
 | |
|         Worklist.push_back(Ur);
 | |
|     }
 | |
|   } while (!Worklist.empty());
 | |
| 
 | |
|   // Everything checked out.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ProvenanceAnalysis::relatedCheck(const Value *A, const Value *B) {
 | |
|   // Skip past provenance pass-throughs.
 | |
|   A = GetUnderlyingObjCPtr(A);
 | |
|   B = GetUnderlyingObjCPtr(B);
 | |
| 
 | |
|   // Quick check.
 | |
|   if (A == B)
 | |
|     return true;
 | |
| 
 | |
|   // Ask regular AliasAnalysis, for a first approximation.
 | |
|   switch (AA->alias(A, B)) {
 | |
|   case AliasAnalysis::NoAlias:
 | |
|     return false;
 | |
|   case AliasAnalysis::MustAlias:
 | |
|   case AliasAnalysis::PartialAlias:
 | |
|     return true;
 | |
|   case AliasAnalysis::MayAlias:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   bool AIsIdentified = IsObjCIdentifiedObject(A);
 | |
|   bool BIsIdentified = IsObjCIdentifiedObject(B);
 | |
| 
 | |
|   // An ObjC-Identified object can't alias a load if it is never locally stored.
 | |
|   if (AIsIdentified) {
 | |
|     // Check for an obvious escape.
 | |
|     if (isa<LoadInst>(B))
 | |
|       return isStoredObjCPointer(A);
 | |
|     if (BIsIdentified) {
 | |
|       // Check for an obvious escape.
 | |
|       if (isa<LoadInst>(A))
 | |
|         return isStoredObjCPointer(B);
 | |
|       // Both pointers are identified and escapes aren't an evident problem.
 | |
|       return false;
 | |
|     }
 | |
|   } else if (BIsIdentified) {
 | |
|     // Check for an obvious escape.
 | |
|     if (isa<LoadInst>(A))
 | |
|       return isStoredObjCPointer(B);
 | |
|   }
 | |
| 
 | |
|    // Special handling for PHI and Select.
 | |
|   if (const PHINode *PN = dyn_cast<PHINode>(A))
 | |
|     return relatedPHI(PN, B);
 | |
|   if (const PHINode *PN = dyn_cast<PHINode>(B))
 | |
|     return relatedPHI(PN, A);
 | |
|   if (const SelectInst *S = dyn_cast<SelectInst>(A))
 | |
|     return relatedSelect(S, B);
 | |
|   if (const SelectInst *S = dyn_cast<SelectInst>(B))
 | |
|     return relatedSelect(S, A);
 | |
| 
 | |
|   // Conservative.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ProvenanceAnalysis::related(const Value *A, const Value *B) {
 | |
|   // Begin by inserting a conservative value into the map. If the insertion
 | |
|   // fails, we have the answer already. If it succeeds, leave it there until we
 | |
|   // compute the real answer to guard against recursive queries.
 | |
|   if (A > B) std::swap(A, B);
 | |
|   std::pair<CachedResultsTy::iterator, bool> Pair =
 | |
|     CachedResults.insert(std::make_pair(ValuePairTy(A, B), true));
 | |
|   if (!Pair.second)
 | |
|     return Pair.first->second;
 | |
| 
 | |
|   bool Result = relatedCheck(A, B);
 | |
|   CachedResults[ValuePairTy(A, B)] = Result;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   // Sequence - A sequence of states that a pointer may go through in which an
 | |
|   // objc_retain and objc_release are actually needed.
 | |
|   enum Sequence {
 | |
|     S_None,
 | |
|     S_Retain,         ///< objc_retain(x)
 | |
|     S_CanRelease,     ///< foo(x) -- x could possibly see a ref count decrement
 | |
|     S_Use,            ///< any use of x
 | |
|     S_Stop,           ///< like S_Release, but code motion is stopped
 | |
|     S_Release,        ///< objc_release(x)
 | |
|     S_MovableRelease  ///< objc_release(x), !clang.imprecise_release
 | |
|   };
 | |
| }
 | |
| 
 | |
| static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) {
 | |
|   // The easy cases.
 | |
|   if (A == B)
 | |
|     return A;
 | |
|   if (A == S_None || B == S_None)
 | |
|     return S_None;
 | |
| 
 | |
|   if (A > B) std::swap(A, B);
 | |
|   if (TopDown) {
 | |
|     // Choose the side which is further along in the sequence.
 | |
|     if ((A == S_Retain || A == S_CanRelease) &&
 | |
|         (B == S_CanRelease || B == S_Use))
 | |
|       return B;
 | |
|   } else {
 | |
|     // Choose the side which is further along in the sequence.
 | |
|     if ((A == S_Use || A == S_CanRelease) &&
 | |
|         (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease))
 | |
|       return A;
 | |
|     // If both sides are releases, choose the more conservative one.
 | |
|     if (A == S_Stop && (B == S_Release || B == S_MovableRelease))
 | |
|       return A;
 | |
|     if (A == S_Release && B == S_MovableRelease)
 | |
|       return A;
 | |
|   }
 | |
| 
 | |
|   return S_None;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// RRInfo - Unidirectional information about either a
 | |
|   /// retain-decrement-use-release sequence or release-use-decrement-retain
 | |
|   /// reverese sequence.
 | |
|   struct RRInfo {
 | |
|     /// KnownSafe - After an objc_retain, the reference count of the referenced
 | |
|     /// object is known to be positive. Similarly, before an objc_release, the
 | |
|     /// reference count of the referenced object is known to be positive. If
 | |
|     /// there are retain-release pairs in code regions where the retain count
 | |
|     /// is known to be positive, they can be eliminated, regardless of any side
 | |
|     /// effects between them.
 | |
|     ///
 | |
|     /// Also, a retain+release pair nested within another retain+release
 | |
|     /// pair all on the known same pointer value can be eliminated, regardless
 | |
|     /// of any intervening side effects.
 | |
|     ///
 | |
|     /// KnownSafe is true when either of these conditions is satisfied.
 | |
|     bool KnownSafe;
 | |
| 
 | |
|     /// IsRetainBlock - True if the Calls are objc_retainBlock calls (as
 | |
|     /// opposed to objc_retain calls).
 | |
|     bool IsRetainBlock;
 | |
| 
 | |
|     /// IsTailCallRelease - True of the objc_release calls are all marked
 | |
|     /// with the "tail" keyword.
 | |
|     bool IsTailCallRelease;
 | |
| 
 | |
|     /// ReleaseMetadata - If the Calls are objc_release calls and they all have
 | |
|     /// a clang.imprecise_release tag, this is the metadata tag.
 | |
|     MDNode *ReleaseMetadata;
 | |
| 
 | |
|     /// Calls - For a top-down sequence, the set of objc_retains or
 | |
|     /// objc_retainBlocks. For bottom-up, the set of objc_releases.
 | |
|     SmallPtrSet<Instruction *, 2> Calls;
 | |
| 
 | |
|     /// ReverseInsertPts - The set of optimal insert positions for
 | |
|     /// moving calls in the opposite sequence.
 | |
|     SmallPtrSet<Instruction *, 2> ReverseInsertPts;
 | |
| 
 | |
|     RRInfo() :
 | |
|       KnownSafe(false), IsRetainBlock(false),
 | |
|       IsTailCallRelease(false),
 | |
|       ReleaseMetadata(0) {}
 | |
| 
 | |
|     void clear();
 | |
|   };
 | |
| }
 | |
| 
 | |
| void RRInfo::clear() {
 | |
|   KnownSafe = false;
 | |
|   IsRetainBlock = false;
 | |
|   IsTailCallRelease = false;
 | |
|   ReleaseMetadata = 0;
 | |
|   Calls.clear();
 | |
|   ReverseInsertPts.clear();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// PtrState - This class summarizes several per-pointer runtime properties
 | |
|   /// which are propogated through the flow graph.
 | |
|   class PtrState {
 | |
|     /// KnownPositiveRefCount - True if the reference count is known to
 | |
|     /// be incremented.
 | |
|     bool KnownPositiveRefCount;
 | |
| 
 | |
|     /// Partial - True of we've seen an opportunity for partial RR elimination,
 | |
|     /// such as pushing calls into a CFG triangle or into one side of a
 | |
|     /// CFG diamond.
 | |
|     bool Partial;
 | |
| 
 | |
|     /// Seq - The current position in the sequence.
 | |
|     Sequence Seq : 8;
 | |
| 
 | |
|   public:
 | |
|     /// RRI - Unidirectional information about the current sequence.
 | |
|     /// TODO: Encapsulate this better.
 | |
|     RRInfo RRI;
 | |
| 
 | |
|     PtrState() : KnownPositiveRefCount(false), Partial(false),
 | |
|                  Seq(S_None) {}
 | |
| 
 | |
|     void SetKnownPositiveRefCount() {
 | |
|       KnownPositiveRefCount = true;
 | |
|     }
 | |
| 
 | |
|     void ClearRefCount() {
 | |
|       KnownPositiveRefCount = false;
 | |
|     }
 | |
| 
 | |
|     bool IsKnownIncremented() const {
 | |
|       return KnownPositiveRefCount;
 | |
|     }
 | |
| 
 | |
|     void SetSeq(Sequence NewSeq) {
 | |
|       Seq = NewSeq;
 | |
|     }
 | |
| 
 | |
|     Sequence GetSeq() const {
 | |
|       return Seq;
 | |
|     }
 | |
| 
 | |
|     void ClearSequenceProgress() {
 | |
|       ResetSequenceProgress(S_None);
 | |
|     }
 | |
| 
 | |
|     void ResetSequenceProgress(Sequence NewSeq) {
 | |
|       Seq = NewSeq;
 | |
|       Partial = false;
 | |
|       RRI.clear();
 | |
|     }
 | |
| 
 | |
|     void Merge(const PtrState &Other, bool TopDown);
 | |
|   };
 | |
| }
 | |
| 
 | |
| void
 | |
| PtrState::Merge(const PtrState &Other, bool TopDown) {
 | |
|   Seq = MergeSeqs(Seq, Other.Seq, TopDown);
 | |
|   KnownPositiveRefCount = KnownPositiveRefCount && Other.KnownPositiveRefCount;
 | |
| 
 | |
|   // We can't merge a plain objc_retain with an objc_retainBlock.
 | |
|   if (RRI.IsRetainBlock != Other.RRI.IsRetainBlock)
 | |
|     Seq = S_None;
 | |
| 
 | |
|   // If we're not in a sequence (anymore), drop all associated state.
 | |
|   if (Seq == S_None) {
 | |
|     Partial = false;
 | |
|     RRI.clear();
 | |
|   } else if (Partial || Other.Partial) {
 | |
|     // If we're doing a merge on a path that's previously seen a partial
 | |
|     // merge, conservatively drop the sequence, to avoid doing partial
 | |
|     // RR elimination. If the branch predicates for the two merge differ,
 | |
|     // mixing them is unsafe.
 | |
|     ClearSequenceProgress();
 | |
|   } else {
 | |
|     // Conservatively merge the ReleaseMetadata information.
 | |
|     if (RRI.ReleaseMetadata != Other.RRI.ReleaseMetadata)
 | |
|       RRI.ReleaseMetadata = 0;
 | |
| 
 | |
|     RRI.KnownSafe = RRI.KnownSafe && Other.RRI.KnownSafe;
 | |
|     RRI.IsTailCallRelease = RRI.IsTailCallRelease &&
 | |
|                             Other.RRI.IsTailCallRelease;
 | |
|     RRI.Calls.insert(Other.RRI.Calls.begin(), Other.RRI.Calls.end());
 | |
| 
 | |
|     // Merge the insert point sets. If there are any differences,
 | |
|     // that makes this a partial merge.
 | |
|     Partial = RRI.ReverseInsertPts.size() != Other.RRI.ReverseInsertPts.size();
 | |
|     for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|          I = Other.RRI.ReverseInsertPts.begin(),
 | |
|          E = Other.RRI.ReverseInsertPts.end(); I != E; ++I)
 | |
|       Partial |= RRI.ReverseInsertPts.insert(*I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// BBState - Per-BasicBlock state.
 | |
|   class BBState {
 | |
|     /// TopDownPathCount - The number of unique control paths from the entry
 | |
|     /// which can reach this block.
 | |
|     unsigned TopDownPathCount;
 | |
| 
 | |
|     /// BottomUpPathCount - The number of unique control paths to exits
 | |
|     /// from this block.
 | |
|     unsigned BottomUpPathCount;
 | |
| 
 | |
|     /// MapTy - A type for PerPtrTopDown and PerPtrBottomUp.
 | |
|     typedef MapVector<const Value *, PtrState> MapTy;
 | |
| 
 | |
|     /// PerPtrTopDown - The top-down traversal uses this to record information
 | |
|     /// known about a pointer at the bottom of each block.
 | |
|     MapTy PerPtrTopDown;
 | |
| 
 | |
|     /// PerPtrBottomUp - The bottom-up traversal uses this to record information
 | |
|     /// known about a pointer at the top of each block.
 | |
|     MapTy PerPtrBottomUp;
 | |
| 
 | |
|     /// Preds, Succs - Effective successors and predecessors of the current
 | |
|     /// block (this ignores ignorable edges and ignored backedges).
 | |
|     SmallVector<BasicBlock *, 2> Preds;
 | |
|     SmallVector<BasicBlock *, 2> Succs;
 | |
| 
 | |
|   public:
 | |
|     BBState() : TopDownPathCount(0), BottomUpPathCount(0) {}
 | |
| 
 | |
|     typedef MapTy::iterator ptr_iterator;
 | |
|     typedef MapTy::const_iterator ptr_const_iterator;
 | |
| 
 | |
|     ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
 | |
|     ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
 | |
|     ptr_const_iterator top_down_ptr_begin() const {
 | |
|       return PerPtrTopDown.begin();
 | |
|     }
 | |
|     ptr_const_iterator top_down_ptr_end() const {
 | |
|       return PerPtrTopDown.end();
 | |
|     }
 | |
| 
 | |
|     ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); }
 | |
|     ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
 | |
|     ptr_const_iterator bottom_up_ptr_begin() const {
 | |
|       return PerPtrBottomUp.begin();
 | |
|     }
 | |
|     ptr_const_iterator bottom_up_ptr_end() const {
 | |
|       return PerPtrBottomUp.end();
 | |
|     }
 | |
| 
 | |
|     /// SetAsEntry - Mark this block as being an entry block, which has one
 | |
|     /// path from the entry by definition.
 | |
|     void SetAsEntry() { TopDownPathCount = 1; }
 | |
| 
 | |
|     /// SetAsExit - Mark this block as being an exit block, which has one
 | |
|     /// path to an exit by definition.
 | |
|     void SetAsExit()  { BottomUpPathCount = 1; }
 | |
| 
 | |
|     PtrState &getPtrTopDownState(const Value *Arg) {
 | |
|       return PerPtrTopDown[Arg];
 | |
|     }
 | |
| 
 | |
|     PtrState &getPtrBottomUpState(const Value *Arg) {
 | |
|       return PerPtrBottomUp[Arg];
 | |
|     }
 | |
| 
 | |
|     void clearBottomUpPointers() {
 | |
|       PerPtrBottomUp.clear();
 | |
|     }
 | |
| 
 | |
|     void clearTopDownPointers() {
 | |
|       PerPtrTopDown.clear();
 | |
|     }
 | |
| 
 | |
|     void InitFromPred(const BBState &Other);
 | |
|     void InitFromSucc(const BBState &Other);
 | |
|     void MergePred(const BBState &Other);
 | |
|     void MergeSucc(const BBState &Other);
 | |
| 
 | |
|     /// GetAllPathCount - Return the number of possible unique paths from an
 | |
|     /// entry to an exit which pass through this block. This is only valid
 | |
|     /// after both the top-down and bottom-up traversals are complete.
 | |
|     unsigned GetAllPathCount() const {
 | |
|       assert(TopDownPathCount != 0);
 | |
|       assert(BottomUpPathCount != 0);
 | |
|       return TopDownPathCount * BottomUpPathCount;
 | |
|     }
 | |
| 
 | |
|     // Specialized CFG utilities.
 | |
|     typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator;
 | |
|     edge_iterator pred_begin() { return Preds.begin(); }
 | |
|     edge_iterator pred_end() { return Preds.end(); }
 | |
|     edge_iterator succ_begin() { return Succs.begin(); }
 | |
|     edge_iterator succ_end() { return Succs.end(); }
 | |
| 
 | |
|     void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
 | |
|     void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
 | |
| 
 | |
|     bool isExit() const { return Succs.empty(); }
 | |
|   };
 | |
| }
 | |
| 
 | |
| void BBState::InitFromPred(const BBState &Other) {
 | |
|   PerPtrTopDown = Other.PerPtrTopDown;
 | |
|   TopDownPathCount = Other.TopDownPathCount;
 | |
| }
 | |
| 
 | |
| void BBState::InitFromSucc(const BBState &Other) {
 | |
|   PerPtrBottomUp = Other.PerPtrBottomUp;
 | |
|   BottomUpPathCount = Other.BottomUpPathCount;
 | |
| }
 | |
| 
 | |
| /// MergePred - The top-down traversal uses this to merge information about
 | |
| /// predecessors to form the initial state for a new block.
 | |
| void BBState::MergePred(const BBState &Other) {
 | |
|   // Other.TopDownPathCount can be 0, in which case it is either dead or a
 | |
|   // loop backedge. Loop backedges are special.
 | |
|   TopDownPathCount += Other.TopDownPathCount;
 | |
| 
 | |
|   // Check for overflow. If we have overflow, fall back to conservative behavior.
 | |
|   if (TopDownPathCount < Other.TopDownPathCount) {
 | |
|     clearTopDownPointers();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // For each entry in the other set, if our set has an entry with the same key,
 | |
|   // merge the entries. Otherwise, copy the entry and merge it with an empty
 | |
|   // entry.
 | |
|   for (ptr_const_iterator MI = Other.top_down_ptr_begin(),
 | |
|        ME = Other.top_down_ptr_end(); MI != ME; ++MI) {
 | |
|     std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI);
 | |
|     Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
 | |
|                              /*TopDown=*/true);
 | |
|   }
 | |
| 
 | |
|   // For each entry in our set, if the other set doesn't have an entry with the
 | |
|   // same key, force it to merge with an empty entry.
 | |
|   for (ptr_iterator MI = top_down_ptr_begin(),
 | |
|        ME = top_down_ptr_end(); MI != ME; ++MI)
 | |
|     if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
 | |
|       MI->second.Merge(PtrState(), /*TopDown=*/true);
 | |
| }
 | |
| 
 | |
| /// MergeSucc - The bottom-up traversal uses this to merge information about
 | |
| /// successors to form the initial state for a new block.
 | |
| void BBState::MergeSucc(const BBState &Other) {
 | |
|   // Other.BottomUpPathCount can be 0, in which case it is either dead or a
 | |
|   // loop backedge. Loop backedges are special.
 | |
|   BottomUpPathCount += Other.BottomUpPathCount;
 | |
| 
 | |
|   // Check for overflow. If we have overflow, fall back to conservative behavior.
 | |
|   if (BottomUpPathCount < Other.BottomUpPathCount) {
 | |
|     clearBottomUpPointers();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // For each entry in the other set, if our set has an entry with the
 | |
|   // same key, merge the entries. Otherwise, copy the entry and merge
 | |
|   // it with an empty entry.
 | |
|   for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(),
 | |
|        ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) {
 | |
|     std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI);
 | |
|     Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
 | |
|                              /*TopDown=*/false);
 | |
|   }
 | |
| 
 | |
|   // For each entry in our set, if the other set doesn't have an entry
 | |
|   // with the same key, force it to merge with an empty entry.
 | |
|   for (ptr_iterator MI = bottom_up_ptr_begin(),
 | |
|        ME = bottom_up_ptr_end(); MI != ME; ++MI)
 | |
|     if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
 | |
|       MI->second.Merge(PtrState(), /*TopDown=*/false);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// ObjCARCOpt - The main ARC optimization pass.
 | |
|   class ObjCARCOpt : public FunctionPass {
 | |
|     bool Changed;
 | |
|     ProvenanceAnalysis PA;
 | |
| 
 | |
|     /// Run - A flag indicating whether this optimization pass should run.
 | |
|     bool Run;
 | |
| 
 | |
|     /// RetainRVCallee, etc. - Declarations for ObjC runtime
 | |
|     /// functions, for use in creating calls to them. These are initialized
 | |
|     /// lazily to avoid cluttering up the Module with unused declarations.
 | |
|     Constant *RetainRVCallee, *AutoreleaseRVCallee, *ReleaseCallee,
 | |
|              *RetainCallee, *RetainBlockCallee, *AutoreleaseCallee;
 | |
| 
 | |
|     /// UsedInThisFunciton - Flags which determine whether each of the
 | |
|     /// interesting runtine functions is in fact used in the current function.
 | |
|     unsigned UsedInThisFunction;
 | |
| 
 | |
|     /// ImpreciseReleaseMDKind - The Metadata Kind for clang.imprecise_release
 | |
|     /// metadata.
 | |
|     unsigned ImpreciseReleaseMDKind;
 | |
| 
 | |
|     /// CopyOnEscapeMDKind - The Metadata Kind for clang.arc.copy_on_escape
 | |
|     /// metadata.
 | |
|     unsigned CopyOnEscapeMDKind;
 | |
| 
 | |
|     /// NoObjCARCExceptionsMDKind - The Metadata Kind for
 | |
|     /// clang.arc.no_objc_arc_exceptions metadata.
 | |
|     unsigned NoObjCARCExceptionsMDKind;
 | |
| 
 | |
|     Constant *getRetainRVCallee(Module *M);
 | |
|     Constant *getAutoreleaseRVCallee(Module *M);
 | |
|     Constant *getReleaseCallee(Module *M);
 | |
|     Constant *getRetainCallee(Module *M);
 | |
|     Constant *getRetainBlockCallee(Module *M);
 | |
|     Constant *getAutoreleaseCallee(Module *M);
 | |
| 
 | |
|     bool IsRetainBlockOptimizable(const Instruction *Inst);
 | |
| 
 | |
|     void OptimizeRetainCall(Function &F, Instruction *Retain);
 | |
|     bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
 | |
|     void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV);
 | |
|     void OptimizeIndividualCalls(Function &F);
 | |
| 
 | |
|     void CheckForCFGHazards(const BasicBlock *BB,
 | |
|                             DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                             BBState &MyStates) const;
 | |
|     bool VisitInstructionBottomUp(Instruction *Inst,
 | |
|                                   BasicBlock *BB,
 | |
|                                   MapVector<Value *, RRInfo> &Retains,
 | |
|                                   BBState &MyStates);
 | |
|     bool VisitBottomUp(BasicBlock *BB,
 | |
|                        DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                        MapVector<Value *, RRInfo> &Retains);
 | |
|     bool VisitInstructionTopDown(Instruction *Inst,
 | |
|                                  DenseMap<Value *, RRInfo> &Releases,
 | |
|                                  BBState &MyStates);
 | |
|     bool VisitTopDown(BasicBlock *BB,
 | |
|                       DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                       DenseMap<Value *, RRInfo> &Releases);
 | |
|     bool Visit(Function &F,
 | |
|                DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                MapVector<Value *, RRInfo> &Retains,
 | |
|                DenseMap<Value *, RRInfo> &Releases);
 | |
| 
 | |
|     void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
 | |
|                    MapVector<Value *, RRInfo> &Retains,
 | |
|                    DenseMap<Value *, RRInfo> &Releases,
 | |
|                    SmallVectorImpl<Instruction *> &DeadInsts,
 | |
|                    Module *M);
 | |
| 
 | |
|     bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                               MapVector<Value *, RRInfo> &Retains,
 | |
|                               DenseMap<Value *, RRInfo> &Releases,
 | |
|                               Module *M);
 | |
| 
 | |
|     void OptimizeWeakCalls(Function &F);
 | |
| 
 | |
|     bool OptimizeSequences(Function &F);
 | |
| 
 | |
|     void OptimizeReturns(Function &F);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
|     virtual bool doInitialization(Module &M);
 | |
|     virtual bool runOnFunction(Function &F);
 | |
|     virtual void releaseMemory();
 | |
| 
 | |
|   public:
 | |
|     static char ID;
 | |
|     ObjCARCOpt() : FunctionPass(ID) {
 | |
|       initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char ObjCARCOpt::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(ObjCARCOpt,
 | |
|                       "objc-arc", "ObjC ARC optimization", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
 | |
| INITIALIZE_PASS_END(ObjCARCOpt,
 | |
|                     "objc-arc", "ObjC ARC optimization", false, false)
 | |
| 
 | |
| Pass *llvm::createObjCARCOptPass() {
 | |
|   return new ObjCARCOpt();
 | |
| }
 | |
| 
 | |
| void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<ObjCARCAliasAnalysis>();
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   // ARC optimization doesn't currently split critical edges.
 | |
|   AU.setPreservesCFG();
 | |
| }
 | |
| 
 | |
| bool ObjCARCOpt::IsRetainBlockOptimizable(const Instruction *Inst) {
 | |
|   // Without the magic metadata tag, we have to assume this might be an
 | |
|   // objc_retainBlock call inserted to convert a block pointer to an id,
 | |
|   // in which case it really is needed.
 | |
|   if (!Inst->getMetadata(CopyOnEscapeMDKind))
 | |
|     return false;
 | |
| 
 | |
|   // If the pointer "escapes" (not including being used in a call),
 | |
|   // the copy may be needed.
 | |
|   if (DoesObjCBlockEscape(Inst))
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, it's not needed.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Constant *ObjCARCOpt::getRetainRVCallee(Module *M) {
 | |
|   if (!RetainRVCallee) {
 | |
|     LLVMContext &C = M->getContext();
 | |
|     Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
 | |
|     Type *Params[] = { I8X };
 | |
|     FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
 | |
|     AttrListPtr Attributes =
 | |
|       AttrListPtr().addAttr(M->getContext(), AttrListPtr::FunctionIndex,
 | |
|                             Attributes::get(C, Attributes::NoUnwind));
 | |
|     RetainRVCallee =
 | |
|       M->getOrInsertFunction("objc_retainAutoreleasedReturnValue", FTy,
 | |
|                              Attributes);
 | |
|   }
 | |
|   return RetainRVCallee;
 | |
| }
 | |
| 
 | |
| Constant *ObjCARCOpt::getAutoreleaseRVCallee(Module *M) {
 | |
|   if (!AutoreleaseRVCallee) {
 | |
|     LLVMContext &C = M->getContext();
 | |
|     Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
 | |
|     Type *Params[] = { I8X };
 | |
|     FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
 | |
|     AttrListPtr Attributes =
 | |
|       AttrListPtr().addAttr(M->getContext(), AttrListPtr::FunctionIndex,
 | |
|                             Attributes::get(C, Attributes::NoUnwind));
 | |
|     AutoreleaseRVCallee =
 | |
|       M->getOrInsertFunction("objc_autoreleaseReturnValue", FTy,
 | |
|                              Attributes);
 | |
|   }
 | |
|   return AutoreleaseRVCallee;
 | |
| }
 | |
| 
 | |
| Constant *ObjCARCOpt::getReleaseCallee(Module *M) {
 | |
|   if (!ReleaseCallee) {
 | |
|     LLVMContext &C = M->getContext();
 | |
|     Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
 | |
|     AttrListPtr Attributes =
 | |
|       AttrListPtr().addAttr(M->getContext(), AttrListPtr::FunctionIndex,
 | |
|                             Attributes::get(C, Attributes::NoUnwind));
 | |
|     ReleaseCallee =
 | |
|       M->getOrInsertFunction(
 | |
|         "objc_release",
 | |
|         FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
 | |
|         Attributes);
 | |
|   }
 | |
|   return ReleaseCallee;
 | |
| }
 | |
| 
 | |
| Constant *ObjCARCOpt::getRetainCallee(Module *M) {
 | |
|   if (!RetainCallee) {
 | |
|     LLVMContext &C = M->getContext();
 | |
|     Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
 | |
|     AttrListPtr Attributes =
 | |
|       AttrListPtr().addAttr(M->getContext(), AttrListPtr::FunctionIndex,
 | |
|                             Attributes::get(C, Attributes::NoUnwind));
 | |
|     RetainCallee =
 | |
|       M->getOrInsertFunction(
 | |
|         "objc_retain",
 | |
|         FunctionType::get(Params[0], Params, /*isVarArg=*/false),
 | |
|         Attributes);
 | |
|   }
 | |
|   return RetainCallee;
 | |
| }
 | |
| 
 | |
| Constant *ObjCARCOpt::getRetainBlockCallee(Module *M) {
 | |
|   if (!RetainBlockCallee) {
 | |
|     LLVMContext &C = M->getContext();
 | |
|     Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
 | |
|     // objc_retainBlock is not nounwind because it calls user copy constructors
 | |
|     // which could theoretically throw.
 | |
|     RetainBlockCallee =
 | |
|       M->getOrInsertFunction(
 | |
|         "objc_retainBlock",
 | |
|         FunctionType::get(Params[0], Params, /*isVarArg=*/false),
 | |
|         AttrListPtr());
 | |
|   }
 | |
|   return RetainBlockCallee;
 | |
| }
 | |
| 
 | |
| Constant *ObjCARCOpt::getAutoreleaseCallee(Module *M) {
 | |
|   if (!AutoreleaseCallee) {
 | |
|     LLVMContext &C = M->getContext();
 | |
|     Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) };
 | |
|     AttrListPtr Attributes =
 | |
|       AttrListPtr().addAttr(M->getContext(), AttrListPtr::FunctionIndex,
 | |
|                             Attributes::get(C, Attributes::NoUnwind));
 | |
|     AutoreleaseCallee =
 | |
|       M->getOrInsertFunction(
 | |
|         "objc_autorelease",
 | |
|         FunctionType::get(Params[0], Params, /*isVarArg=*/false),
 | |
|         Attributes);
 | |
|   }
 | |
|   return AutoreleaseCallee;
 | |
| }
 | |
| 
 | |
| /// IsPotentialUse - Test whether the given value is possible a
 | |
| /// reference-counted pointer, including tests which utilize AliasAnalysis.
 | |
| static bool IsPotentialUse(const Value *Op, AliasAnalysis &AA) {
 | |
|   // First make the rudimentary check.
 | |
|   if (!IsPotentialUse(Op))
 | |
|     return false;
 | |
| 
 | |
|   // Objects in constant memory are not reference-counted.
 | |
|   if (AA.pointsToConstantMemory(Op))
 | |
|     return false;
 | |
| 
 | |
|   // Pointers in constant memory are not pointing to reference-counted objects.
 | |
|   if (const LoadInst *LI = dyn_cast<LoadInst>(Op))
 | |
|     if (AA.pointsToConstantMemory(LI->getPointerOperand()))
 | |
|       return false;
 | |
| 
 | |
|   // Otherwise assume the worst.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// CanAlterRefCount - Test whether the given instruction can result in a
 | |
| /// reference count modification (positive or negative) for the pointer's
 | |
| /// object.
 | |
| static bool
 | |
| CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
 | |
|                  ProvenanceAnalysis &PA, InstructionClass Class) {
 | |
|   switch (Class) {
 | |
|   case IC_Autorelease:
 | |
|   case IC_AutoreleaseRV:
 | |
|   case IC_User:
 | |
|     // These operations never directly modify a reference count.
 | |
|     return false;
 | |
|   default: break;
 | |
|   }
 | |
| 
 | |
|   ImmutableCallSite CS = static_cast<const Value *>(Inst);
 | |
|   assert(CS && "Only calls can alter reference counts!");
 | |
| 
 | |
|   // See if AliasAnalysis can help us with the call.
 | |
|   AliasAnalysis::ModRefBehavior MRB = PA.getAA()->getModRefBehavior(CS);
 | |
|   if (AliasAnalysis::onlyReadsMemory(MRB))
 | |
|     return false;
 | |
|   if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
 | |
|     for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
 | |
|          I != E; ++I) {
 | |
|       const Value *Op = *I;
 | |
|       if (IsPotentialUse(Op, *PA.getAA()) && PA.related(Ptr, Op))
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Assume the worst.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// CanUse - Test whether the given instruction can "use" the given pointer's
 | |
| /// object in a way that requires the reference count to be positive.
 | |
| static bool
 | |
| CanUse(const Instruction *Inst, const Value *Ptr, ProvenanceAnalysis &PA,
 | |
|        InstructionClass Class) {
 | |
|   // IC_Call operations (as opposed to IC_CallOrUser) never "use" objc pointers.
 | |
|   if (Class == IC_Call)
 | |
|     return false;
 | |
| 
 | |
|   // Consider various instructions which may have pointer arguments which are
 | |
|   // not "uses".
 | |
|   if (const ICmpInst *ICI = dyn_cast<ICmpInst>(Inst)) {
 | |
|     // Comparing a pointer with null, or any other constant, isn't really a use,
 | |
|     // because we don't care what the pointer points to, or about the values
 | |
|     // of any other dynamic reference-counted pointers.
 | |
|     if (!IsPotentialUse(ICI->getOperand(1), *PA.getAA()))
 | |
|       return false;
 | |
|   } else if (ImmutableCallSite CS = static_cast<const Value *>(Inst)) {
 | |
|     // For calls, just check the arguments (and not the callee operand).
 | |
|     for (ImmutableCallSite::arg_iterator OI = CS.arg_begin(),
 | |
|          OE = CS.arg_end(); OI != OE; ++OI) {
 | |
|       const Value *Op = *OI;
 | |
|       if (IsPotentialUse(Op, *PA.getAA()) && PA.related(Ptr, Op))
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   } else if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | |
|     // Special-case stores, because we don't care about the stored value, just
 | |
|     // the store address.
 | |
|     const Value *Op = GetUnderlyingObjCPtr(SI->getPointerOperand());
 | |
|     // If we can't tell what the underlying object was, assume there is a
 | |
|     // dependence.
 | |
|     return IsPotentialUse(Op, *PA.getAA()) && PA.related(Op, Ptr);
 | |
|   }
 | |
| 
 | |
|   // Check each operand for a match.
 | |
|   for (User::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end();
 | |
|        OI != OE; ++OI) {
 | |
|     const Value *Op = *OI;
 | |
|     if (IsPotentialUse(Op, *PA.getAA()) && PA.related(Ptr, Op))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CanInterruptRV - Test whether the given instruction can autorelease
 | |
| /// any pointer or cause an autoreleasepool pop.
 | |
| static bool
 | |
| CanInterruptRV(InstructionClass Class) {
 | |
|   switch (Class) {
 | |
|   case IC_AutoreleasepoolPop:
 | |
|   case IC_CallOrUser:
 | |
|   case IC_Call:
 | |
|   case IC_Autorelease:
 | |
|   case IC_AutoreleaseRV:
 | |
|   case IC_FusedRetainAutorelease:
 | |
|   case IC_FusedRetainAutoreleaseRV:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// DependenceKind - There are several kinds of dependence-like concepts in
 | |
|   /// use here.
 | |
|   enum DependenceKind {
 | |
|     NeedsPositiveRetainCount,
 | |
|     AutoreleasePoolBoundary,
 | |
|     CanChangeRetainCount,
 | |
|     RetainAutoreleaseDep,       ///< Blocks objc_retainAutorelease.
 | |
|     RetainAutoreleaseRVDep,     ///< Blocks objc_retainAutoreleaseReturnValue.
 | |
|     RetainRVDep                 ///< Blocks objc_retainAutoreleasedReturnValue.
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// Depends - Test if there can be dependencies on Inst through Arg. This
 | |
| /// function only tests dependencies relevant for removing pairs of calls.
 | |
| static bool
 | |
| Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg,
 | |
|         ProvenanceAnalysis &PA) {
 | |
|   // If we've reached the definition of Arg, stop.
 | |
|   if (Inst == Arg)
 | |
|     return true;
 | |
| 
 | |
|   switch (Flavor) {
 | |
|   case NeedsPositiveRetainCount: {
 | |
|     InstructionClass Class = GetInstructionClass(Inst);
 | |
|     switch (Class) {
 | |
|     case IC_AutoreleasepoolPop:
 | |
|     case IC_AutoreleasepoolPush:
 | |
|     case IC_None:
 | |
|       return false;
 | |
|     default:
 | |
|       return CanUse(Inst, Arg, PA, Class);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case AutoreleasePoolBoundary: {
 | |
|     InstructionClass Class = GetInstructionClass(Inst);
 | |
|     switch (Class) {
 | |
|     case IC_AutoreleasepoolPop:
 | |
|     case IC_AutoreleasepoolPush:
 | |
|       // These mark the end and begin of an autorelease pool scope.
 | |
|       return true;
 | |
|     default:
 | |
|       // Nothing else does this.
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case CanChangeRetainCount: {
 | |
|     InstructionClass Class = GetInstructionClass(Inst);
 | |
|     switch (Class) {
 | |
|     case IC_AutoreleasepoolPop:
 | |
|       // Conservatively assume this can decrement any count.
 | |
|       return true;
 | |
|     case IC_AutoreleasepoolPush:
 | |
|     case IC_None:
 | |
|       return false;
 | |
|     default:
 | |
|       return CanAlterRefCount(Inst, Arg, PA, Class);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case RetainAutoreleaseDep:
 | |
|     switch (GetBasicInstructionClass(Inst)) {
 | |
|     case IC_AutoreleasepoolPop:
 | |
|     case IC_AutoreleasepoolPush:
 | |
|       // Don't merge an objc_autorelease with an objc_retain inside a different
 | |
|       // autoreleasepool scope.
 | |
|       return true;
 | |
|     case IC_Retain:
 | |
|     case IC_RetainRV:
 | |
|       // Check for a retain of the same pointer for merging.
 | |
|       return GetObjCArg(Inst) == Arg;
 | |
|     default:
 | |
|       // Nothing else matters for objc_retainAutorelease formation.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|   case RetainAutoreleaseRVDep: {
 | |
|     InstructionClass Class = GetBasicInstructionClass(Inst);
 | |
|     switch (Class) {
 | |
|     case IC_Retain:
 | |
|     case IC_RetainRV:
 | |
|       // Check for a retain of the same pointer for merging.
 | |
|       return GetObjCArg(Inst) == Arg;
 | |
|     default:
 | |
|       // Anything that can autorelease interrupts
 | |
|       // retainAutoreleaseReturnValue formation.
 | |
|       return CanInterruptRV(Class);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case RetainRVDep:
 | |
|     return CanInterruptRV(GetBasicInstructionClass(Inst));
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid dependence flavor");
 | |
| }
 | |
| 
 | |
| /// FindDependencies - Walk up the CFG from StartPos (which is in StartBB) and
 | |
| /// find local and non-local dependencies on Arg.
 | |
| /// TODO: Cache results?
 | |
| static void
 | |
| FindDependencies(DependenceKind Flavor,
 | |
|                  const Value *Arg,
 | |
|                  BasicBlock *StartBB, Instruction *StartInst,
 | |
|                  SmallPtrSet<Instruction *, 4> &DependingInstructions,
 | |
|                  SmallPtrSet<const BasicBlock *, 4> &Visited,
 | |
|                  ProvenanceAnalysis &PA) {
 | |
|   BasicBlock::iterator StartPos = StartInst;
 | |
| 
 | |
|   SmallVector<std::pair<BasicBlock *, BasicBlock::iterator>, 4> Worklist;
 | |
|   Worklist.push_back(std::make_pair(StartBB, StartPos));
 | |
|   do {
 | |
|     std::pair<BasicBlock *, BasicBlock::iterator> Pair =
 | |
|       Worklist.pop_back_val();
 | |
|     BasicBlock *LocalStartBB = Pair.first;
 | |
|     BasicBlock::iterator LocalStartPos = Pair.second;
 | |
|     BasicBlock::iterator StartBBBegin = LocalStartBB->begin();
 | |
|     for (;;) {
 | |
|       if (LocalStartPos == StartBBBegin) {
 | |
|         pred_iterator PI(LocalStartBB), PE(LocalStartBB, false);
 | |
|         if (PI == PE)
 | |
|           // If we've reached the function entry, produce a null dependence.
 | |
|           DependingInstructions.insert(0);
 | |
|         else
 | |
|           // Add the predecessors to the worklist.
 | |
|           do {
 | |
|             BasicBlock *PredBB = *PI;
 | |
|             if (Visited.insert(PredBB))
 | |
|               Worklist.push_back(std::make_pair(PredBB, PredBB->end()));
 | |
|           } while (++PI != PE);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       Instruction *Inst = --LocalStartPos;
 | |
|       if (Depends(Flavor, Inst, Arg, PA)) {
 | |
|         DependingInstructions.insert(Inst);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   } while (!Worklist.empty());
 | |
| 
 | |
|   // Determine whether the original StartBB post-dominates all of the blocks we
 | |
|   // visited. If not, insert a sentinal indicating that most optimizations are
 | |
|   // not safe.
 | |
|   for (SmallPtrSet<const BasicBlock *, 4>::const_iterator I = Visited.begin(),
 | |
|        E = Visited.end(); I != E; ++I) {
 | |
|     const BasicBlock *BB = *I;
 | |
|     if (BB == StartBB)
 | |
|       continue;
 | |
|     const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
 | |
|     for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) {
 | |
|       const BasicBlock *Succ = *SI;
 | |
|       if (Succ != StartBB && !Visited.count(Succ)) {
 | |
|         DependingInstructions.insert(reinterpret_cast<Instruction *>(-1));
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isNullOrUndef(const Value *V) {
 | |
|   return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
 | |
| }
 | |
| 
 | |
| static bool isNoopInstruction(const Instruction *I) {
 | |
|   return isa<BitCastInst>(I) ||
 | |
|          (isa<GetElementPtrInst>(I) &&
 | |
|           cast<GetElementPtrInst>(I)->hasAllZeroIndices());
 | |
| }
 | |
| 
 | |
| /// OptimizeRetainCall - Turn objc_retain into
 | |
| /// objc_retainAutoreleasedReturnValue if the operand is a return value.
 | |
| void
 | |
| ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) {
 | |
|   ImmutableCallSite CS(GetObjCArg(Retain));
 | |
|   const Instruction *Call = CS.getInstruction();
 | |
|   if (!Call) return;
 | |
|   if (Call->getParent() != Retain->getParent()) return;
 | |
| 
 | |
|   // Check that the call is next to the retain.
 | |
|   BasicBlock::const_iterator I = Call;
 | |
|   ++I;
 | |
|   while (isNoopInstruction(I)) ++I;
 | |
|   if (&*I != Retain)
 | |
|     return;
 | |
| 
 | |
|   // Turn it to an objc_retainAutoreleasedReturnValue..
 | |
|   Changed = true;
 | |
|   ++NumPeeps;
 | |
|   cast<CallInst>(Retain)->setCalledFunction(getRetainRVCallee(F.getParent()));
 | |
| }
 | |
| 
 | |
| /// OptimizeRetainRVCall - Turn objc_retainAutoreleasedReturnValue into
 | |
| /// objc_retain if the operand is not a return value.  Or, if it can be paired
 | |
| /// with an objc_autoreleaseReturnValue, delete the pair and return true.
 | |
| bool
 | |
| ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
 | |
|   // Check for the argument being from an immediately preceding call or invoke.
 | |
|   const Value *Arg = GetObjCArg(RetainRV);
 | |
|   ImmutableCallSite CS(Arg);
 | |
|   if (const Instruction *Call = CS.getInstruction()) {
 | |
|     if (Call->getParent() == RetainRV->getParent()) {
 | |
|       BasicBlock::const_iterator I = Call;
 | |
|       ++I;
 | |
|       while (isNoopInstruction(I)) ++I;
 | |
|       if (&*I == RetainRV)
 | |
|         return false;
 | |
|     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | |
|       BasicBlock *RetainRVParent = RetainRV->getParent();
 | |
|       if (II->getNormalDest() == RetainRVParent) {
 | |
|         BasicBlock::const_iterator I = RetainRVParent->begin();
 | |
|         while (isNoopInstruction(I)) ++I;
 | |
|         if (&*I == RetainRV)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for being preceded by an objc_autoreleaseReturnValue on the same
 | |
|   // pointer. In this case, we can delete the pair.
 | |
|   BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
 | |
|   if (I != Begin) {
 | |
|     do --I; while (I != Begin && isNoopInstruction(I));
 | |
|     if (GetBasicInstructionClass(I) == IC_AutoreleaseRV &&
 | |
|         GetObjCArg(I) == Arg) {
 | |
|       Changed = true;
 | |
|       ++NumPeeps;
 | |
|       EraseInstruction(I);
 | |
|       EraseInstruction(RetainRV);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Turn it to a plain objc_retain.
 | |
|   Changed = true;
 | |
|   ++NumPeeps;
 | |
|   cast<CallInst>(RetainRV)->setCalledFunction(getRetainCallee(F.getParent()));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// OptimizeAutoreleaseRVCall - Turn objc_autoreleaseReturnValue into
 | |
| /// objc_autorelease if the result is not used as a return value.
 | |
| void
 | |
| ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV) {
 | |
|   // Check for a return of the pointer value.
 | |
|   const Value *Ptr = GetObjCArg(AutoreleaseRV);
 | |
|   SmallVector<const Value *, 2> Users;
 | |
|   Users.push_back(Ptr);
 | |
|   do {
 | |
|     Ptr = Users.pop_back_val();
 | |
|     for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       const User *I = *UI;
 | |
|       if (isa<ReturnInst>(I) || GetBasicInstructionClass(I) == IC_RetainRV)
 | |
|         return;
 | |
|       if (isa<BitCastInst>(I))
 | |
|         Users.push_back(I);
 | |
|     }
 | |
|   } while (!Users.empty());
 | |
| 
 | |
|   Changed = true;
 | |
|   ++NumPeeps;
 | |
|   cast<CallInst>(AutoreleaseRV)->
 | |
|     setCalledFunction(getAutoreleaseCallee(F.getParent()));
 | |
| }
 | |
| 
 | |
| /// OptimizeIndividualCalls - Visit each call, one at a time, and make
 | |
| /// simplifications without doing any additional analysis.
 | |
| void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
 | |
|   // Reset all the flags in preparation for recomputing them.
 | |
|   UsedInThisFunction = 0;
 | |
| 
 | |
|   // Visit all objc_* calls in F.
 | |
|   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | |
|     Instruction *Inst = &*I++;
 | |
|     InstructionClass Class = GetBasicInstructionClass(Inst);
 | |
| 
 | |
|     switch (Class) {
 | |
|     default: break;
 | |
| 
 | |
|     // Delete no-op casts. These function calls have special semantics, but
 | |
|     // the semantics are entirely implemented via lowering in the front-end,
 | |
|     // so by the time they reach the optimizer, they are just no-op calls
 | |
|     // which return their argument.
 | |
|     //
 | |
|     // There are gray areas here, as the ability to cast reference-counted
 | |
|     // pointers to raw void* and back allows code to break ARC assumptions,
 | |
|     // however these are currently considered to be unimportant.
 | |
|     case IC_NoopCast:
 | |
|       Changed = true;
 | |
|       ++NumNoops;
 | |
|       EraseInstruction(Inst);
 | |
|       continue;
 | |
| 
 | |
|     // If the pointer-to-weak-pointer is null, it's undefined behavior.
 | |
|     case IC_StoreWeak:
 | |
|     case IC_LoadWeak:
 | |
|     case IC_LoadWeakRetained:
 | |
|     case IC_InitWeak:
 | |
|     case IC_DestroyWeak: {
 | |
|       CallInst *CI = cast<CallInst>(Inst);
 | |
|       if (isNullOrUndef(CI->getArgOperand(0))) {
 | |
|         Changed = true;
 | |
|         Type *Ty = CI->getArgOperand(0)->getType();
 | |
|         new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
 | |
|                       Constant::getNullValue(Ty),
 | |
|                       CI);
 | |
|         CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
 | |
|         CI->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case IC_CopyWeak:
 | |
|     case IC_MoveWeak: {
 | |
|       CallInst *CI = cast<CallInst>(Inst);
 | |
|       if (isNullOrUndef(CI->getArgOperand(0)) ||
 | |
|           isNullOrUndef(CI->getArgOperand(1))) {
 | |
|         Changed = true;
 | |
|         Type *Ty = CI->getArgOperand(0)->getType();
 | |
|         new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
 | |
|                       Constant::getNullValue(Ty),
 | |
|                       CI);
 | |
|         CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
 | |
|         CI->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case IC_Retain:
 | |
|       OptimizeRetainCall(F, Inst);
 | |
|       break;
 | |
|     case IC_RetainRV:
 | |
|       if (OptimizeRetainRVCall(F, Inst))
 | |
|         continue;
 | |
|       break;
 | |
|     case IC_AutoreleaseRV:
 | |
|       OptimizeAutoreleaseRVCall(F, Inst);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
 | |
|     if (IsAutorelease(Class) && Inst->use_empty()) {
 | |
|       CallInst *Call = cast<CallInst>(Inst);
 | |
|       const Value *Arg = Call->getArgOperand(0);
 | |
|       Arg = FindSingleUseIdentifiedObject(Arg);
 | |
|       if (Arg) {
 | |
|         Changed = true;
 | |
|         ++NumAutoreleases;
 | |
| 
 | |
|         // Create the declaration lazily.
 | |
|         LLVMContext &C = Inst->getContext();
 | |
|         CallInst *NewCall =
 | |
|           CallInst::Create(getReleaseCallee(F.getParent()),
 | |
|                            Call->getArgOperand(0), "", Call);
 | |
|         NewCall->setMetadata(ImpreciseReleaseMDKind,
 | |
|                              MDNode::get(C, ArrayRef<Value *>()));
 | |
|         EraseInstruction(Call);
 | |
|         Inst = NewCall;
 | |
|         Class = IC_Release;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // For functions which can never be passed stack arguments, add
 | |
|     // a tail keyword.
 | |
|     if (IsAlwaysTail(Class)) {
 | |
|       Changed = true;
 | |
|       cast<CallInst>(Inst)->setTailCall();
 | |
|     }
 | |
| 
 | |
|     // Set nounwind as needed.
 | |
|     if (IsNoThrow(Class)) {
 | |
|       Changed = true;
 | |
|       cast<CallInst>(Inst)->setDoesNotThrow();
 | |
|     }
 | |
| 
 | |
|     if (!IsNoopOnNull(Class)) {
 | |
|       UsedInThisFunction |= 1 << Class;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const Value *Arg = GetObjCArg(Inst);
 | |
| 
 | |
|     // ARC calls with null are no-ops. Delete them.
 | |
|     if (isNullOrUndef(Arg)) {
 | |
|       Changed = true;
 | |
|       ++NumNoops;
 | |
|       EraseInstruction(Inst);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Keep track of which of retain, release, autorelease, and retain_block
 | |
|     // are actually present in this function.
 | |
|     UsedInThisFunction |= 1 << Class;
 | |
| 
 | |
|     // If Arg is a PHI, and one or more incoming values to the
 | |
|     // PHI are null, and the call is control-equivalent to the PHI, and there
 | |
|     // are no relevant side effects between the PHI and the call, the call
 | |
|     // could be pushed up to just those paths with non-null incoming values.
 | |
|     // For now, don't bother splitting critical edges for this.
 | |
|     SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
 | |
|     Worklist.push_back(std::make_pair(Inst, Arg));
 | |
|     do {
 | |
|       std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
 | |
|       Inst = Pair.first;
 | |
|       Arg = Pair.second;
 | |
| 
 | |
|       const PHINode *PN = dyn_cast<PHINode>(Arg);
 | |
|       if (!PN) continue;
 | |
| 
 | |
|       // Determine if the PHI has any null operands, or any incoming
 | |
|       // critical edges.
 | |
|       bool HasNull = false;
 | |
|       bool HasCriticalEdges = false;
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|         Value *Incoming =
 | |
|           StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
 | |
|         if (isNullOrUndef(Incoming))
 | |
|           HasNull = true;
 | |
|         else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
 | |
|                    .getNumSuccessors() != 1) {
 | |
|           HasCriticalEdges = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       // If we have null operands and no critical edges, optimize.
 | |
|       if (!HasCriticalEdges && HasNull) {
 | |
|         SmallPtrSet<Instruction *, 4> DependingInstructions;
 | |
|         SmallPtrSet<const BasicBlock *, 4> Visited;
 | |
| 
 | |
|         // Check that there is nothing that cares about the reference
 | |
|         // count between the call and the phi.
 | |
|         switch (Class) {
 | |
|         case IC_Retain:
 | |
|         case IC_RetainBlock:
 | |
|           // These can always be moved up.
 | |
|           break;
 | |
|         case IC_Release:
 | |
|           // These can't be moved across things that care about the retain
 | |
|           // count.
 | |
|           FindDependencies(NeedsPositiveRetainCount, Arg,
 | |
|                            Inst->getParent(), Inst,
 | |
|                            DependingInstructions, Visited, PA);
 | |
|           break;
 | |
|         case IC_Autorelease:
 | |
|           // These can't be moved across autorelease pool scope boundaries.
 | |
|           FindDependencies(AutoreleasePoolBoundary, Arg,
 | |
|                            Inst->getParent(), Inst,
 | |
|                            DependingInstructions, Visited, PA);
 | |
|           break;
 | |
|         case IC_RetainRV:
 | |
|         case IC_AutoreleaseRV:
 | |
|           // Don't move these; the RV optimization depends on the autoreleaseRV
 | |
|           // being tail called, and the retainRV being immediately after a call
 | |
|           // (which might still happen if we get lucky with codegen layout, but
 | |
|           // it's not worth taking the chance).
 | |
|           continue;
 | |
|         default:
 | |
|           llvm_unreachable("Invalid dependence flavor");
 | |
|         }
 | |
| 
 | |
|         if (DependingInstructions.size() == 1 &&
 | |
|             *DependingInstructions.begin() == PN) {
 | |
|           Changed = true;
 | |
|           ++NumPartialNoops;
 | |
|           // Clone the call into each predecessor that has a non-null value.
 | |
|           CallInst *CInst = cast<CallInst>(Inst);
 | |
|           Type *ParamTy = CInst->getArgOperand(0)->getType();
 | |
|           for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|             Value *Incoming =
 | |
|               StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
 | |
|             if (!isNullOrUndef(Incoming)) {
 | |
|               CallInst *Clone = cast<CallInst>(CInst->clone());
 | |
|               Value *Op = PN->getIncomingValue(i);
 | |
|               Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
 | |
|               if (Op->getType() != ParamTy)
 | |
|                 Op = new BitCastInst(Op, ParamTy, "", InsertPos);
 | |
|               Clone->setArgOperand(0, Op);
 | |
|               Clone->insertBefore(InsertPos);
 | |
|               Worklist.push_back(std::make_pair(Clone, Incoming));
 | |
|             }
 | |
|           }
 | |
|           // Erase the original call.
 | |
|           EraseInstruction(CInst);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     } while (!Worklist.empty());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckForCFGHazards - Check for critical edges, loop boundaries, irreducible
 | |
| /// control flow, or other CFG structures where moving code across the edge
 | |
| /// would result in it being executed more.
 | |
| void
 | |
| ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
 | |
|                                DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                                BBState &MyStates) const {
 | |
|   // If any top-down local-use or possible-dec has a succ which is earlier in
 | |
|   // the sequence, forget it.
 | |
|   for (BBState::ptr_iterator I = MyStates.top_down_ptr_begin(),
 | |
|        E = MyStates.top_down_ptr_end(); I != E; ++I)
 | |
|     switch (I->second.GetSeq()) {
 | |
|     default: break;
 | |
|     case S_Use: {
 | |
|       const Value *Arg = I->first;
 | |
|       const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
 | |
|       bool SomeSuccHasSame = false;
 | |
|       bool AllSuccsHaveSame = true;
 | |
|       PtrState &S = I->second;
 | |
|       succ_const_iterator SI(TI), SE(TI, false);
 | |
| 
 | |
|       // If the terminator is an invoke marked with the
 | |
|       // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be
 | |
|       // ignored, for ARC purposes.
 | |
|       if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind))
 | |
|         --SE;
 | |
| 
 | |
|       for (; SI != SE; ++SI) {
 | |
|         Sequence SuccSSeq = S_None;
 | |
|         bool SuccSRRIKnownSafe = false;
 | |
|         // If VisitBottomUp has pointer information for this successor, take
 | |
|         // what we know about it.
 | |
|         DenseMap<const BasicBlock *, BBState>::iterator BBI =
 | |
|           BBStates.find(*SI);
 | |
|         assert(BBI != BBStates.end());
 | |
|         const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
 | |
|         SuccSSeq = SuccS.GetSeq();
 | |
|         SuccSRRIKnownSafe = SuccS.RRI.KnownSafe;
 | |
|         switch (SuccSSeq) {
 | |
|         case S_None:
 | |
|         case S_CanRelease: {
 | |
|           if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) {
 | |
|             S.ClearSequenceProgress();
 | |
|             break;
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
|         case S_Use:
 | |
|           SomeSuccHasSame = true;
 | |
|           break;
 | |
|         case S_Stop:
 | |
|         case S_Release:
 | |
|         case S_MovableRelease:
 | |
|           if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe)
 | |
|             AllSuccsHaveSame = false;
 | |
|           break;
 | |
|         case S_Retain:
 | |
|           llvm_unreachable("bottom-up pointer in retain state!");
 | |
|         }
 | |
|       }
 | |
|       // If the state at the other end of any of the successor edges
 | |
|       // matches the current state, require all edges to match. This
 | |
|       // guards against loops in the middle of a sequence.
 | |
|       if (SomeSuccHasSame && !AllSuccsHaveSame)
 | |
|         S.ClearSequenceProgress();
 | |
|       break;
 | |
|     }
 | |
|     case S_CanRelease: {
 | |
|       const Value *Arg = I->first;
 | |
|       const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
 | |
|       bool SomeSuccHasSame = false;
 | |
|       bool AllSuccsHaveSame = true;
 | |
|       PtrState &S = I->second;
 | |
|       succ_const_iterator SI(TI), SE(TI, false);
 | |
| 
 | |
|       // If the terminator is an invoke marked with the
 | |
|       // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be
 | |
|       // ignored, for ARC purposes.
 | |
|       if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind))
 | |
|         --SE;
 | |
| 
 | |
|       for (; SI != SE; ++SI) {
 | |
|         Sequence SuccSSeq = S_None;
 | |
|         bool SuccSRRIKnownSafe = false;
 | |
|         // If VisitBottomUp has pointer information for this successor, take
 | |
|         // what we know about it.
 | |
|         DenseMap<const BasicBlock *, BBState>::iterator BBI =
 | |
|           BBStates.find(*SI);
 | |
|         assert(BBI != BBStates.end());
 | |
|         const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
 | |
|         SuccSSeq = SuccS.GetSeq();
 | |
|         SuccSRRIKnownSafe = SuccS.RRI.KnownSafe;
 | |
|         switch (SuccSSeq) {
 | |
|         case S_None: {
 | |
|           if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) {
 | |
|             S.ClearSequenceProgress();
 | |
|             break;
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
|         case S_CanRelease:
 | |
|           SomeSuccHasSame = true;
 | |
|           break;
 | |
|         case S_Stop:
 | |
|         case S_Release:
 | |
|         case S_MovableRelease:
 | |
|         case S_Use:
 | |
|           if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe)
 | |
|             AllSuccsHaveSame = false;
 | |
|           break;
 | |
|         case S_Retain:
 | |
|           llvm_unreachable("bottom-up pointer in retain state!");
 | |
|         }
 | |
|       }
 | |
|       // If the state at the other end of any of the successor edges
 | |
|       // matches the current state, require all edges to match. This
 | |
|       // guards against loops in the middle of a sequence.
 | |
|       if (SomeSuccHasSame && !AllSuccsHaveSame)
 | |
|         S.ClearSequenceProgress();
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool
 | |
| ObjCARCOpt::VisitInstructionBottomUp(Instruction *Inst,
 | |
|                                      BasicBlock *BB,
 | |
|                                      MapVector<Value *, RRInfo> &Retains,
 | |
|                                      BBState &MyStates) {
 | |
|   bool NestingDetected = false;
 | |
|   InstructionClass Class = GetInstructionClass(Inst);
 | |
|   const Value *Arg = 0;
 | |
| 
 | |
|   switch (Class) {
 | |
|   case IC_Release: {
 | |
|     Arg = GetObjCArg(Inst);
 | |
| 
 | |
|     PtrState &S = MyStates.getPtrBottomUpState(Arg);
 | |
| 
 | |
|     // If we see two releases in a row on the same pointer. If so, make
 | |
|     // a note, and we'll cicle back to revisit it after we've
 | |
|     // hopefully eliminated the second release, which may allow us to
 | |
|     // eliminate the first release too.
 | |
|     // Theoretically we could implement removal of nested retain+release
 | |
|     // pairs by making PtrState hold a stack of states, but this is
 | |
|     // simple and avoids adding overhead for the non-nested case.
 | |
|     if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease)
 | |
|       NestingDetected = true;
 | |
| 
 | |
|     MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
 | |
|     S.ResetSequenceProgress(ReleaseMetadata ? S_MovableRelease : S_Release);
 | |
|     S.RRI.ReleaseMetadata = ReleaseMetadata;
 | |
|     S.RRI.KnownSafe = S.IsKnownIncremented();
 | |
|     S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
 | |
|     S.RRI.Calls.insert(Inst);
 | |
| 
 | |
|     S.SetKnownPositiveRefCount();
 | |
|     break;
 | |
|   }
 | |
|   case IC_RetainBlock:
 | |
|     // An objc_retainBlock call with just a use may need to be kept,
 | |
|     // because it may be copying a block from the stack to the heap.
 | |
|     if (!IsRetainBlockOptimizable(Inst))
 | |
|       break;
 | |
|     // FALLTHROUGH
 | |
|   case IC_Retain:
 | |
|   case IC_RetainRV: {
 | |
|     Arg = GetObjCArg(Inst);
 | |
| 
 | |
|     PtrState &S = MyStates.getPtrBottomUpState(Arg);
 | |
|     S.SetKnownPositiveRefCount();
 | |
| 
 | |
|     switch (S.GetSeq()) {
 | |
|     case S_Stop:
 | |
|     case S_Release:
 | |
|     case S_MovableRelease:
 | |
|     case S_Use:
 | |
|       S.RRI.ReverseInsertPts.clear();
 | |
|       // FALL THROUGH
 | |
|     case S_CanRelease:
 | |
|       // Don't do retain+release tracking for IC_RetainRV, because it's
 | |
|       // better to let it remain as the first instruction after a call.
 | |
|       if (Class != IC_RetainRV) {
 | |
|         S.RRI.IsRetainBlock = Class == IC_RetainBlock;
 | |
|         Retains[Inst] = S.RRI;
 | |
|       }
 | |
|       S.ClearSequenceProgress();
 | |
|       break;
 | |
|     case S_None:
 | |
|       break;
 | |
|     case S_Retain:
 | |
|       llvm_unreachable("bottom-up pointer in retain state!");
 | |
|     }
 | |
|     return NestingDetected;
 | |
|   }
 | |
|   case IC_AutoreleasepoolPop:
 | |
|     // Conservatively, clear MyStates for all known pointers.
 | |
|     MyStates.clearBottomUpPointers();
 | |
|     return NestingDetected;
 | |
|   case IC_AutoreleasepoolPush:
 | |
|   case IC_None:
 | |
|     // These are irrelevant.
 | |
|     return NestingDetected;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Consider any other possible effects of this instruction on each
 | |
|   // pointer being tracked.
 | |
|   for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(),
 | |
|        ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) {
 | |
|     const Value *Ptr = MI->first;
 | |
|     if (Ptr == Arg)
 | |
|       continue; // Handled above.
 | |
|     PtrState &S = MI->second;
 | |
|     Sequence Seq = S.GetSeq();
 | |
| 
 | |
|     // Check for possible releases.
 | |
|     if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
 | |
|       S.ClearRefCount();
 | |
|       switch (Seq) {
 | |
|       case S_Use:
 | |
|         S.SetSeq(S_CanRelease);
 | |
|         continue;
 | |
|       case S_CanRelease:
 | |
|       case S_Release:
 | |
|       case S_MovableRelease:
 | |
|       case S_Stop:
 | |
|       case S_None:
 | |
|         break;
 | |
|       case S_Retain:
 | |
|         llvm_unreachable("bottom-up pointer in retain state!");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check for possible direct uses.
 | |
|     switch (Seq) {
 | |
|     case S_Release:
 | |
|     case S_MovableRelease:
 | |
|       if (CanUse(Inst, Ptr, PA, Class)) {
 | |
|         assert(S.RRI.ReverseInsertPts.empty());
 | |
|         // If this is an invoke instruction, we're scanning it as part of
 | |
|         // one of its successor blocks, since we can't insert code after it
 | |
|         // in its own block, and we don't want to split critical edges.
 | |
|         if (isa<InvokeInst>(Inst))
 | |
|           S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt());
 | |
|         else
 | |
|           S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst)));
 | |
|         S.SetSeq(S_Use);
 | |
|       } else if (Seq == S_Release &&
 | |
|                  (Class == IC_User || Class == IC_CallOrUser)) {
 | |
|         // Non-movable releases depend on any possible objc pointer use.
 | |
|         S.SetSeq(S_Stop);
 | |
|         assert(S.RRI.ReverseInsertPts.empty());
 | |
|         // As above; handle invoke specially.
 | |
|         if (isa<InvokeInst>(Inst))
 | |
|           S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt());
 | |
|         else
 | |
|           S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst)));
 | |
|       }
 | |
|       break;
 | |
|     case S_Stop:
 | |
|       if (CanUse(Inst, Ptr, PA, Class))
 | |
|         S.SetSeq(S_Use);
 | |
|       break;
 | |
|     case S_CanRelease:
 | |
|     case S_Use:
 | |
|     case S_None:
 | |
|       break;
 | |
|     case S_Retain:
 | |
|       llvm_unreachable("bottom-up pointer in retain state!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return NestingDetected;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
 | |
|                           DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                           MapVector<Value *, RRInfo> &Retains) {
 | |
|   bool NestingDetected = false;
 | |
|   BBState &MyStates = BBStates[BB];
 | |
| 
 | |
|   // Merge the states from each successor to compute the initial state
 | |
|   // for the current block.
 | |
|   BBState::edge_iterator SI(MyStates.succ_begin()),
 | |
|                          SE(MyStates.succ_end());
 | |
|   if (SI != SE) {
 | |
|     const BasicBlock *Succ = *SI;
 | |
|     DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
 | |
|     assert(I != BBStates.end());
 | |
|     MyStates.InitFromSucc(I->second);
 | |
|     ++SI;
 | |
|     for (; SI != SE; ++SI) {
 | |
|       Succ = *SI;
 | |
|       I = BBStates.find(Succ);
 | |
|       assert(I != BBStates.end());
 | |
|       MyStates.MergeSucc(I->second);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Visit all the instructions, bottom-up.
 | |
|   for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
 | |
|     Instruction *Inst = llvm::prior(I);
 | |
| 
 | |
|     // Invoke instructions are visited as part of their successors (below).
 | |
|     if (isa<InvokeInst>(Inst))
 | |
|       continue;
 | |
| 
 | |
|     NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
 | |
|   }
 | |
| 
 | |
|   // If there's a predecessor with an invoke, visit the invoke as if it were
 | |
|   // part of this block, since we can't insert code after an invoke in its own
 | |
|   // block, and we don't want to split critical edges.
 | |
|   for (BBState::edge_iterator PI(MyStates.pred_begin()),
 | |
|        PE(MyStates.pred_end()); PI != PE; ++PI) {
 | |
|     BasicBlock *Pred = *PI;
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
 | |
|       NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
 | |
|   }
 | |
| 
 | |
|   return NestingDetected;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
 | |
|                                     DenseMap<Value *, RRInfo> &Releases,
 | |
|                                     BBState &MyStates) {
 | |
|   bool NestingDetected = false;
 | |
|   InstructionClass Class = GetInstructionClass(Inst);
 | |
|   const Value *Arg = 0;
 | |
| 
 | |
|   switch (Class) {
 | |
|   case IC_RetainBlock:
 | |
|     // An objc_retainBlock call with just a use may need to be kept,
 | |
|     // because it may be copying a block from the stack to the heap.
 | |
|     if (!IsRetainBlockOptimizable(Inst))
 | |
|       break;
 | |
|     // FALLTHROUGH
 | |
|   case IC_Retain:
 | |
|   case IC_RetainRV: {
 | |
|     Arg = GetObjCArg(Inst);
 | |
| 
 | |
|     PtrState &S = MyStates.getPtrTopDownState(Arg);
 | |
| 
 | |
|     // Don't do retain+release tracking for IC_RetainRV, because it's
 | |
|     // better to let it remain as the first instruction after a call.
 | |
|     if (Class != IC_RetainRV) {
 | |
|       // If we see two retains in a row on the same pointer. If so, make
 | |
|       // a note, and we'll cicle back to revisit it after we've
 | |
|       // hopefully eliminated the second retain, which may allow us to
 | |
|       // eliminate the first retain too.
 | |
|       // Theoretically we could implement removal of nested retain+release
 | |
|       // pairs by making PtrState hold a stack of states, but this is
 | |
|       // simple and avoids adding overhead for the non-nested case.
 | |
|       if (S.GetSeq() == S_Retain)
 | |
|         NestingDetected = true;
 | |
| 
 | |
|       S.ResetSequenceProgress(S_Retain);
 | |
|       S.RRI.IsRetainBlock = Class == IC_RetainBlock;
 | |
|       S.RRI.KnownSafe = S.IsKnownIncremented();
 | |
|       S.RRI.Calls.insert(Inst);
 | |
|     }
 | |
| 
 | |
|     S.SetKnownPositiveRefCount();
 | |
| 
 | |
|     // A retain can be a potential use; procede to the generic checking
 | |
|     // code below.
 | |
|     break;
 | |
|   }
 | |
|   case IC_Release: {
 | |
|     Arg = GetObjCArg(Inst);
 | |
| 
 | |
|     PtrState &S = MyStates.getPtrTopDownState(Arg);
 | |
|     S.ClearRefCount();
 | |
| 
 | |
|     switch (S.GetSeq()) {
 | |
|     case S_Retain:
 | |
|     case S_CanRelease:
 | |
|       S.RRI.ReverseInsertPts.clear();
 | |
|       // FALL THROUGH
 | |
|     case S_Use:
 | |
|       S.RRI.ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
 | |
|       S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
 | |
|       Releases[Inst] = S.RRI;
 | |
|       S.ClearSequenceProgress();
 | |
|       break;
 | |
|     case S_None:
 | |
|       break;
 | |
|     case S_Stop:
 | |
|     case S_Release:
 | |
|     case S_MovableRelease:
 | |
|       llvm_unreachable("top-down pointer in release state!");
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case IC_AutoreleasepoolPop:
 | |
|     // Conservatively, clear MyStates for all known pointers.
 | |
|     MyStates.clearTopDownPointers();
 | |
|     return NestingDetected;
 | |
|   case IC_AutoreleasepoolPush:
 | |
|   case IC_None:
 | |
|     // These are irrelevant.
 | |
|     return NestingDetected;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Consider any other possible effects of this instruction on each
 | |
|   // pointer being tracked.
 | |
|   for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(),
 | |
|        ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) {
 | |
|     const Value *Ptr = MI->first;
 | |
|     if (Ptr == Arg)
 | |
|       continue; // Handled above.
 | |
|     PtrState &S = MI->second;
 | |
|     Sequence Seq = S.GetSeq();
 | |
| 
 | |
|     // Check for possible releases.
 | |
|     if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
 | |
|       S.ClearRefCount();
 | |
|       switch (Seq) {
 | |
|       case S_Retain:
 | |
|         S.SetSeq(S_CanRelease);
 | |
|         assert(S.RRI.ReverseInsertPts.empty());
 | |
|         S.RRI.ReverseInsertPts.insert(Inst);
 | |
| 
 | |
|         // One call can't cause a transition from S_Retain to S_CanRelease
 | |
|         // and S_CanRelease to S_Use. If we've made the first transition,
 | |
|         // we're done.
 | |
|         continue;
 | |
|       case S_Use:
 | |
|       case S_CanRelease:
 | |
|       case S_None:
 | |
|         break;
 | |
|       case S_Stop:
 | |
|       case S_Release:
 | |
|       case S_MovableRelease:
 | |
|         llvm_unreachable("top-down pointer in release state!");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check for possible direct uses.
 | |
|     switch (Seq) {
 | |
|     case S_CanRelease:
 | |
|       if (CanUse(Inst, Ptr, PA, Class))
 | |
|         S.SetSeq(S_Use);
 | |
|       break;
 | |
|     case S_Retain:
 | |
|     case S_Use:
 | |
|     case S_None:
 | |
|       break;
 | |
|     case S_Stop:
 | |
|     case S_Release:
 | |
|     case S_MovableRelease:
 | |
|       llvm_unreachable("top-down pointer in release state!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return NestingDetected;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ObjCARCOpt::VisitTopDown(BasicBlock *BB,
 | |
|                          DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                          DenseMap<Value *, RRInfo> &Releases) {
 | |
|   bool NestingDetected = false;
 | |
|   BBState &MyStates = BBStates[BB];
 | |
| 
 | |
|   // Merge the states from each predecessor to compute the initial state
 | |
|   // for the current block.
 | |
|   BBState::edge_iterator PI(MyStates.pred_begin()),
 | |
|                          PE(MyStates.pred_end());
 | |
|   if (PI != PE) {
 | |
|     const BasicBlock *Pred = *PI;
 | |
|     DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
 | |
|     assert(I != BBStates.end());
 | |
|     MyStates.InitFromPred(I->second);
 | |
|     ++PI;
 | |
|     for (; PI != PE; ++PI) {
 | |
|       Pred = *PI;
 | |
|       I = BBStates.find(Pred);
 | |
|       assert(I != BBStates.end());
 | |
|       MyStates.MergePred(I->second);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Visit all the instructions, top-down.
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
|     Instruction *Inst = I;
 | |
|     NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates);
 | |
|   }
 | |
| 
 | |
|   CheckForCFGHazards(BB, BBStates, MyStates);
 | |
|   return NestingDetected;
 | |
| }
 | |
| 
 | |
| static void
 | |
| ComputePostOrders(Function &F,
 | |
|                   SmallVectorImpl<BasicBlock *> &PostOrder,
 | |
|                   SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
 | |
|                   unsigned NoObjCARCExceptionsMDKind,
 | |
|                   DenseMap<const BasicBlock *, BBState> &BBStates) {
 | |
|   /// Visited - The visited set, for doing DFS walks.
 | |
|   SmallPtrSet<BasicBlock *, 16> Visited;
 | |
| 
 | |
|   // Do DFS, computing the PostOrder.
 | |
|   SmallPtrSet<BasicBlock *, 16> OnStack;
 | |
|   SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
 | |
| 
 | |
|   // Functions always have exactly one entry block, and we don't have
 | |
|   // any other block that we treat like an entry block.
 | |
|   BasicBlock *EntryBB = &F.getEntryBlock();
 | |
|   BBState &MyStates = BBStates[EntryBB];
 | |
|   MyStates.SetAsEntry();
 | |
|   TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back());
 | |
|   SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
 | |
|   Visited.insert(EntryBB);
 | |
|   OnStack.insert(EntryBB);
 | |
|   do {
 | |
|   dfs_next_succ:
 | |
|     BasicBlock *CurrBB = SuccStack.back().first;
 | |
|     TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back());
 | |
|     succ_iterator SE(TI, false);
 | |
| 
 | |
|     // If the terminator is an invoke marked with the
 | |
|     // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be
 | |
|     // ignored, for ARC purposes.
 | |
|     if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind))
 | |
|       --SE;
 | |
| 
 | |
|     while (SuccStack.back().second != SE) {
 | |
|       BasicBlock *SuccBB = *SuccStack.back().second++;
 | |
|       if (Visited.insert(SuccBB)) {
 | |
|         TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back());
 | |
|         SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI)));
 | |
|         BBStates[CurrBB].addSucc(SuccBB);
 | |
|         BBState &SuccStates = BBStates[SuccBB];
 | |
|         SuccStates.addPred(CurrBB);
 | |
|         OnStack.insert(SuccBB);
 | |
|         goto dfs_next_succ;
 | |
|       }
 | |
| 
 | |
|       if (!OnStack.count(SuccBB)) {
 | |
|         BBStates[CurrBB].addSucc(SuccBB);
 | |
|         BBStates[SuccBB].addPred(CurrBB);
 | |
|       }
 | |
|     }
 | |
|     OnStack.erase(CurrBB);
 | |
|     PostOrder.push_back(CurrBB);
 | |
|     SuccStack.pop_back();
 | |
|   } while (!SuccStack.empty());
 | |
| 
 | |
|   Visited.clear();
 | |
| 
 | |
|   // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
 | |
|   // Functions may have many exits, and there also blocks which we treat
 | |
|   // as exits due to ignored edges.
 | |
|   SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | |
|     BasicBlock *ExitBB = I;
 | |
|     BBState &MyStates = BBStates[ExitBB];
 | |
|     if (!MyStates.isExit())
 | |
|       continue;
 | |
| 
 | |
|     MyStates.SetAsExit();
 | |
| 
 | |
|     PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin()));
 | |
|     Visited.insert(ExitBB);
 | |
|     while (!PredStack.empty()) {
 | |
|     reverse_dfs_next_succ:
 | |
|       BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
 | |
|       while (PredStack.back().second != PE) {
 | |
|         BasicBlock *BB = *PredStack.back().second++;
 | |
|         if (Visited.insert(BB)) {
 | |
|           PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
 | |
|           goto reverse_dfs_next_succ;
 | |
|         }
 | |
|       }
 | |
|       ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Visit - Visit the function both top-down and bottom-up.
 | |
| bool
 | |
| ObjCARCOpt::Visit(Function &F,
 | |
|                   DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                   MapVector<Value *, RRInfo> &Retains,
 | |
|                   DenseMap<Value *, RRInfo> &Releases) {
 | |
| 
 | |
|   // Use reverse-postorder traversals, because we magically know that loops
 | |
|   // will be well behaved, i.e. they won't repeatedly call retain on a single
 | |
|   // pointer without doing a release. We can't use the ReversePostOrderTraversal
 | |
|   // class here because we want the reverse-CFG postorder to consider each
 | |
|   // function exit point, and we want to ignore selected cycle edges.
 | |
|   SmallVector<BasicBlock *, 16> PostOrder;
 | |
|   SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
 | |
|   ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
 | |
|                     NoObjCARCExceptionsMDKind,
 | |
|                     BBStates);
 | |
| 
 | |
|   // Use reverse-postorder on the reverse CFG for bottom-up.
 | |
|   bool BottomUpNestingDetected = false;
 | |
|   for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
 | |
|        ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend();
 | |
|        I != E; ++I)
 | |
|     BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains);
 | |
| 
 | |
|   // Use reverse-postorder for top-down.
 | |
|   bool TopDownNestingDetected = false;
 | |
|   for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
 | |
|        PostOrder.rbegin(), E = PostOrder.rend();
 | |
|        I != E; ++I)
 | |
|     TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases);
 | |
| 
 | |
|   return TopDownNestingDetected && BottomUpNestingDetected;
 | |
| }
 | |
| 
 | |
| /// MoveCalls - Move the calls in RetainsToMove and ReleasesToMove.
 | |
| void ObjCARCOpt::MoveCalls(Value *Arg,
 | |
|                            RRInfo &RetainsToMove,
 | |
|                            RRInfo &ReleasesToMove,
 | |
|                            MapVector<Value *, RRInfo> &Retains,
 | |
|                            DenseMap<Value *, RRInfo> &Releases,
 | |
|                            SmallVectorImpl<Instruction *> &DeadInsts,
 | |
|                            Module *M) {
 | |
|   Type *ArgTy = Arg->getType();
 | |
|   Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
 | |
| 
 | |
|   // Insert the new retain and release calls.
 | |
|   for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|        PI = ReleasesToMove.ReverseInsertPts.begin(),
 | |
|        PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
 | |
|     Instruction *InsertPt = *PI;
 | |
|     Value *MyArg = ArgTy == ParamTy ? Arg :
 | |
|                    new BitCastInst(Arg, ParamTy, "", InsertPt);
 | |
|     CallInst *Call =
 | |
|       CallInst::Create(RetainsToMove.IsRetainBlock ?
 | |
|                          getRetainBlockCallee(M) : getRetainCallee(M),
 | |
|                        MyArg, "", InsertPt);
 | |
|     Call->setDoesNotThrow();
 | |
|     if (RetainsToMove.IsRetainBlock)
 | |
|       Call->setMetadata(CopyOnEscapeMDKind,
 | |
|                         MDNode::get(M->getContext(), ArrayRef<Value *>()));
 | |
|     else
 | |
|       Call->setTailCall();
 | |
|   }
 | |
|   for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|        PI = RetainsToMove.ReverseInsertPts.begin(),
 | |
|        PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
 | |
|     Instruction *InsertPt = *PI;
 | |
|     Value *MyArg = ArgTy == ParamTy ? Arg :
 | |
|                    new BitCastInst(Arg, ParamTy, "", InsertPt);
 | |
|     CallInst *Call = CallInst::Create(getReleaseCallee(M), MyArg,
 | |
|                                       "", InsertPt);
 | |
|     // Attach a clang.imprecise_release metadata tag, if appropriate.
 | |
|     if (MDNode *M = ReleasesToMove.ReleaseMetadata)
 | |
|       Call->setMetadata(ImpreciseReleaseMDKind, M);
 | |
|     Call->setDoesNotThrow();
 | |
|     if (ReleasesToMove.IsTailCallRelease)
 | |
|       Call->setTailCall();
 | |
|   }
 | |
| 
 | |
|   // Delete the original retain and release calls.
 | |
|   for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|        AI = RetainsToMove.Calls.begin(),
 | |
|        AE = RetainsToMove.Calls.end(); AI != AE; ++AI) {
 | |
|     Instruction *OrigRetain = *AI;
 | |
|     Retains.blot(OrigRetain);
 | |
|     DeadInsts.push_back(OrigRetain);
 | |
|   }
 | |
|   for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|        AI = ReleasesToMove.Calls.begin(),
 | |
|        AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) {
 | |
|     Instruction *OrigRelease = *AI;
 | |
|     Releases.erase(OrigRelease);
 | |
|     DeadInsts.push_back(OrigRelease);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// PerformCodePlacement - Identify pairings between the retains and releases,
 | |
| /// and delete and/or move them.
 | |
| bool
 | |
| ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
 | |
|                                    &BBStates,
 | |
|                                  MapVector<Value *, RRInfo> &Retains,
 | |
|                                  DenseMap<Value *, RRInfo> &Releases,
 | |
|                                  Module *M) {
 | |
|   bool AnyPairsCompletelyEliminated = false;
 | |
|   RRInfo RetainsToMove;
 | |
|   RRInfo ReleasesToMove;
 | |
|   SmallVector<Instruction *, 4> NewRetains;
 | |
|   SmallVector<Instruction *, 4> NewReleases;
 | |
|   SmallVector<Instruction *, 8> DeadInsts;
 | |
| 
 | |
|   // Visit each retain.
 | |
|   for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
 | |
|        E = Retains.end(); I != E; ++I) {
 | |
|     Value *V = I->first;
 | |
|     if (!V) continue; // blotted
 | |
| 
 | |
|     Instruction *Retain = cast<Instruction>(V);
 | |
|     Value *Arg = GetObjCArg(Retain);
 | |
| 
 | |
|     // If the object being released is in static or stack storage, we know it's
 | |
|     // not being managed by ObjC reference counting, so we can delete pairs
 | |
|     // regardless of what possible decrements or uses lie between them.
 | |
|     bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
 | |
| 
 | |
|     // A constant pointer can't be pointing to an object on the heap. It may
 | |
|     // be reference-counted, but it won't be deleted.
 | |
|     if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
 | |
|       if (const GlobalVariable *GV =
 | |
|             dyn_cast<GlobalVariable>(
 | |
|               StripPointerCastsAndObjCCalls(LI->getPointerOperand())))
 | |
|         if (GV->isConstant())
 | |
|           KnownSafe = true;
 | |
| 
 | |
|     // If a pair happens in a region where it is known that the reference count
 | |
|     // is already incremented, we can similarly ignore possible decrements.
 | |
|     bool KnownSafeTD = true, KnownSafeBU = true;
 | |
| 
 | |
|     // Connect the dots between the top-down-collected RetainsToMove and
 | |
|     // bottom-up-collected ReleasesToMove to form sets of related calls.
 | |
|     // This is an iterative process so that we connect multiple releases
 | |
|     // to multiple retains if needed.
 | |
|     unsigned OldDelta = 0;
 | |
|     unsigned NewDelta = 0;
 | |
|     unsigned OldCount = 0;
 | |
|     unsigned NewCount = 0;
 | |
|     bool FirstRelease = true;
 | |
|     bool FirstRetain = true;
 | |
|     NewRetains.push_back(Retain);
 | |
|     for (;;) {
 | |
|       for (SmallVectorImpl<Instruction *>::const_iterator
 | |
|            NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
 | |
|         Instruction *NewRetain = *NI;
 | |
|         MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain);
 | |
|         assert(It != Retains.end());
 | |
|         const RRInfo &NewRetainRRI = It->second;
 | |
|         KnownSafeTD &= NewRetainRRI.KnownSafe;
 | |
|         for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|              LI = NewRetainRRI.Calls.begin(),
 | |
|              LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) {
 | |
|           Instruction *NewRetainRelease = *LI;
 | |
|           DenseMap<Value *, RRInfo>::const_iterator Jt =
 | |
|             Releases.find(NewRetainRelease);
 | |
|           if (Jt == Releases.end())
 | |
|             goto next_retain;
 | |
|           const RRInfo &NewRetainReleaseRRI = Jt->second;
 | |
|           assert(NewRetainReleaseRRI.Calls.count(NewRetain));
 | |
|           if (ReleasesToMove.Calls.insert(NewRetainRelease)) {
 | |
|             OldDelta -=
 | |
|               BBStates[NewRetainRelease->getParent()].GetAllPathCount();
 | |
| 
 | |
|             // Merge the ReleaseMetadata and IsTailCallRelease values.
 | |
|             if (FirstRelease) {
 | |
|               ReleasesToMove.ReleaseMetadata =
 | |
|                 NewRetainReleaseRRI.ReleaseMetadata;
 | |
|               ReleasesToMove.IsTailCallRelease =
 | |
|                 NewRetainReleaseRRI.IsTailCallRelease;
 | |
|               FirstRelease = false;
 | |
|             } else {
 | |
|               if (ReleasesToMove.ReleaseMetadata !=
 | |
|                     NewRetainReleaseRRI.ReleaseMetadata)
 | |
|                 ReleasesToMove.ReleaseMetadata = 0;
 | |
|               if (ReleasesToMove.IsTailCallRelease !=
 | |
|                     NewRetainReleaseRRI.IsTailCallRelease)
 | |
|                 ReleasesToMove.IsTailCallRelease = false;
 | |
|             }
 | |
| 
 | |
|             // Collect the optimal insertion points.
 | |
|             if (!KnownSafe)
 | |
|               for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|                    RI = NewRetainReleaseRRI.ReverseInsertPts.begin(),
 | |
|                    RE = NewRetainReleaseRRI.ReverseInsertPts.end();
 | |
|                    RI != RE; ++RI) {
 | |
|                 Instruction *RIP = *RI;
 | |
|                 if (ReleasesToMove.ReverseInsertPts.insert(RIP))
 | |
|                   NewDelta -= BBStates[RIP->getParent()].GetAllPathCount();
 | |
|               }
 | |
|             NewReleases.push_back(NewRetainRelease);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       NewRetains.clear();
 | |
|       if (NewReleases.empty()) break;
 | |
| 
 | |
|       // Back the other way.
 | |
|       for (SmallVectorImpl<Instruction *>::const_iterator
 | |
|            NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
 | |
|         Instruction *NewRelease = *NI;
 | |
|         DenseMap<Value *, RRInfo>::const_iterator It =
 | |
|           Releases.find(NewRelease);
 | |
|         assert(It != Releases.end());
 | |
|         const RRInfo &NewReleaseRRI = It->second;
 | |
|         KnownSafeBU &= NewReleaseRRI.KnownSafe;
 | |
|         for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|              LI = NewReleaseRRI.Calls.begin(),
 | |
|              LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) {
 | |
|           Instruction *NewReleaseRetain = *LI;
 | |
|           MapVector<Value *, RRInfo>::const_iterator Jt =
 | |
|             Retains.find(NewReleaseRetain);
 | |
|           if (Jt == Retains.end())
 | |
|             goto next_retain;
 | |
|           const RRInfo &NewReleaseRetainRRI = Jt->second;
 | |
|           assert(NewReleaseRetainRRI.Calls.count(NewRelease));
 | |
|           if (RetainsToMove.Calls.insert(NewReleaseRetain)) {
 | |
|             unsigned PathCount =
 | |
|               BBStates[NewReleaseRetain->getParent()].GetAllPathCount();
 | |
|             OldDelta += PathCount;
 | |
|             OldCount += PathCount;
 | |
| 
 | |
|             // Merge the IsRetainBlock values.
 | |
|             if (FirstRetain) {
 | |
|               RetainsToMove.IsRetainBlock = NewReleaseRetainRRI.IsRetainBlock;
 | |
|               FirstRetain = false;
 | |
|             } else if (ReleasesToMove.IsRetainBlock !=
 | |
|                        NewReleaseRetainRRI.IsRetainBlock)
 | |
|               // It's not possible to merge the sequences if one uses
 | |
|               // objc_retain and the other uses objc_retainBlock.
 | |
|               goto next_retain;
 | |
| 
 | |
|             // Collect the optimal insertion points.
 | |
|             if (!KnownSafe)
 | |
|               for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|                    RI = NewReleaseRetainRRI.ReverseInsertPts.begin(),
 | |
|                    RE = NewReleaseRetainRRI.ReverseInsertPts.end();
 | |
|                    RI != RE; ++RI) {
 | |
|                 Instruction *RIP = *RI;
 | |
|                 if (RetainsToMove.ReverseInsertPts.insert(RIP)) {
 | |
|                   PathCount = BBStates[RIP->getParent()].GetAllPathCount();
 | |
|                   NewDelta += PathCount;
 | |
|                   NewCount += PathCount;
 | |
|                 }
 | |
|               }
 | |
|             NewRetains.push_back(NewReleaseRetain);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       NewReleases.clear();
 | |
|       if (NewRetains.empty()) break;
 | |
|     }
 | |
| 
 | |
|     // If the pointer is known incremented or nested, we can safely delete the
 | |
|     // pair regardless of what's between them.
 | |
|     if (KnownSafeTD || KnownSafeBU) {
 | |
|       RetainsToMove.ReverseInsertPts.clear();
 | |
|       ReleasesToMove.ReverseInsertPts.clear();
 | |
|       NewCount = 0;
 | |
|     } else {
 | |
|       // Determine whether the new insertion points we computed preserve the
 | |
|       // balance of retain and release calls through the program.
 | |
|       // TODO: If the fully aggressive solution isn't valid, try to find a
 | |
|       // less aggressive solution which is.
 | |
|       if (NewDelta != 0)
 | |
|         goto next_retain;
 | |
|     }
 | |
| 
 | |
|     // Determine whether the original call points are balanced in the retain and
 | |
|     // release calls through the program. If not, conservatively don't touch
 | |
|     // them.
 | |
|     // TODO: It's theoretically possible to do code motion in this case, as
 | |
|     // long as the existing imbalances are maintained.
 | |
|     if (OldDelta != 0)
 | |
|       goto next_retain;
 | |
| 
 | |
|     // Ok, everything checks out and we're all set. Let's move some code!
 | |
|     Changed = true;
 | |
|     assert(OldCount != 0 && "Unreachable code?");
 | |
|     AnyPairsCompletelyEliminated = NewCount == 0;
 | |
|     NumRRs += OldCount - NewCount;
 | |
|     MoveCalls(Arg, RetainsToMove, ReleasesToMove,
 | |
|               Retains, Releases, DeadInsts, M);
 | |
| 
 | |
|   next_retain:
 | |
|     NewReleases.clear();
 | |
|     NewRetains.clear();
 | |
|     RetainsToMove.clear();
 | |
|     ReleasesToMove.clear();
 | |
|   }
 | |
| 
 | |
|   // Now that we're done moving everything, we can delete the newly dead
 | |
|   // instructions, as we no longer need them as insert points.
 | |
|   while (!DeadInsts.empty())
 | |
|     EraseInstruction(DeadInsts.pop_back_val());
 | |
| 
 | |
|   return AnyPairsCompletelyEliminated;
 | |
| }
 | |
| 
 | |
| /// OptimizeWeakCalls - Weak pointer optimizations.
 | |
| void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
 | |
|   // First, do memdep-style RLE and S2L optimizations. We can't use memdep
 | |
|   // itself because it uses AliasAnalysis and we need to do provenance
 | |
|   // queries instead.
 | |
|   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | |
|     Instruction *Inst = &*I++;
 | |
|     InstructionClass Class = GetBasicInstructionClass(Inst);
 | |
|     if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
 | |
|       continue;
 | |
| 
 | |
|     // Delete objc_loadWeak calls with no users.
 | |
|     if (Class == IC_LoadWeak && Inst->use_empty()) {
 | |
|       Inst->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // TODO: For now, just look for an earlier available version of this value
 | |
|     // within the same block. Theoretically, we could do memdep-style non-local
 | |
|     // analysis too, but that would want caching. A better approach would be to
 | |
|     // use the technique that EarlyCSE uses.
 | |
|     inst_iterator Current = llvm::prior(I);
 | |
|     BasicBlock *CurrentBB = Current.getBasicBlockIterator();
 | |
|     for (BasicBlock::iterator B = CurrentBB->begin(),
 | |
|                               J = Current.getInstructionIterator();
 | |
|          J != B; --J) {
 | |
|       Instruction *EarlierInst = &*llvm::prior(J);
 | |
|       InstructionClass EarlierClass = GetInstructionClass(EarlierInst);
 | |
|       switch (EarlierClass) {
 | |
|       case IC_LoadWeak:
 | |
|       case IC_LoadWeakRetained: {
 | |
|         // If this is loading from the same pointer, replace this load's value
 | |
|         // with that one.
 | |
|         CallInst *Call = cast<CallInst>(Inst);
 | |
|         CallInst *EarlierCall = cast<CallInst>(EarlierInst);
 | |
|         Value *Arg = Call->getArgOperand(0);
 | |
|         Value *EarlierArg = EarlierCall->getArgOperand(0);
 | |
|         switch (PA.getAA()->alias(Arg, EarlierArg)) {
 | |
|         case AliasAnalysis::MustAlias:
 | |
|           Changed = true;
 | |
|           // If the load has a builtin retain, insert a plain retain for it.
 | |
|           if (Class == IC_LoadWeakRetained) {
 | |
|             CallInst *CI =
 | |
|               CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
 | |
|                                "", Call);
 | |
|             CI->setTailCall();
 | |
|           }
 | |
|           // Zap the fully redundant load.
 | |
|           Call->replaceAllUsesWith(EarlierCall);
 | |
|           Call->eraseFromParent();
 | |
|           goto clobbered;
 | |
|         case AliasAnalysis::MayAlias:
 | |
|         case AliasAnalysis::PartialAlias:
 | |
|           goto clobbered;
 | |
|         case AliasAnalysis::NoAlias:
 | |
|           break;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case IC_StoreWeak:
 | |
|       case IC_InitWeak: {
 | |
|         // If this is storing to the same pointer and has the same size etc.
 | |
|         // replace this load's value with the stored value.
 | |
|         CallInst *Call = cast<CallInst>(Inst);
 | |
|         CallInst *EarlierCall = cast<CallInst>(EarlierInst);
 | |
|         Value *Arg = Call->getArgOperand(0);
 | |
|         Value *EarlierArg = EarlierCall->getArgOperand(0);
 | |
|         switch (PA.getAA()->alias(Arg, EarlierArg)) {
 | |
|         case AliasAnalysis::MustAlias:
 | |
|           Changed = true;
 | |
|           // If the load has a builtin retain, insert a plain retain for it.
 | |
|           if (Class == IC_LoadWeakRetained) {
 | |
|             CallInst *CI =
 | |
|               CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
 | |
|                                "", Call);
 | |
|             CI->setTailCall();
 | |
|           }
 | |
|           // Zap the fully redundant load.
 | |
|           Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
 | |
|           Call->eraseFromParent();
 | |
|           goto clobbered;
 | |
|         case AliasAnalysis::MayAlias:
 | |
|         case AliasAnalysis::PartialAlias:
 | |
|           goto clobbered;
 | |
|         case AliasAnalysis::NoAlias:
 | |
|           break;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case IC_MoveWeak:
 | |
|       case IC_CopyWeak:
 | |
|         // TOOD: Grab the copied value.
 | |
|         goto clobbered;
 | |
|       case IC_AutoreleasepoolPush:
 | |
|       case IC_None:
 | |
|       case IC_User:
 | |
|         // Weak pointers are only modified through the weak entry points
 | |
|         // (and arbitrary calls, which could call the weak entry points).
 | |
|         break;
 | |
|       default:
 | |
|         // Anything else could modify the weak pointer.
 | |
|         goto clobbered;
 | |
|       }
 | |
|     }
 | |
|   clobbered:;
 | |
|   }
 | |
| 
 | |
|   // Then, for each destroyWeak with an alloca operand, check to see if
 | |
|   // the alloca and all its users can be zapped.
 | |
|   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | |
|     Instruction *Inst = &*I++;
 | |
|     InstructionClass Class = GetBasicInstructionClass(Inst);
 | |
|     if (Class != IC_DestroyWeak)
 | |
|       continue;
 | |
| 
 | |
|     CallInst *Call = cast<CallInst>(Inst);
 | |
|     Value *Arg = Call->getArgOperand(0);
 | |
|     if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
 | |
|       for (Value::use_iterator UI = Alloca->use_begin(),
 | |
|            UE = Alloca->use_end(); UI != UE; ++UI) {
 | |
|         const Instruction *UserInst = cast<Instruction>(*UI);
 | |
|         switch (GetBasicInstructionClass(UserInst)) {
 | |
|         case IC_InitWeak:
 | |
|         case IC_StoreWeak:
 | |
|         case IC_DestroyWeak:
 | |
|           continue;
 | |
|         default:
 | |
|           goto done;
 | |
|         }
 | |
|       }
 | |
|       Changed = true;
 | |
|       for (Value::use_iterator UI = Alloca->use_begin(),
 | |
|            UE = Alloca->use_end(); UI != UE; ) {
 | |
|         CallInst *UserInst = cast<CallInst>(*UI++);
 | |
|         switch (GetBasicInstructionClass(UserInst)) {
 | |
|         case IC_InitWeak:
 | |
|         case IC_StoreWeak:
 | |
|           // These functions return their second argument.
 | |
|           UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
 | |
|           break;
 | |
|         case IC_DestroyWeak:
 | |
|           // No return value.
 | |
|           break;
 | |
|         default:
 | |
|           llvm_unreachable("alloca really is used!");
 | |
|         }
 | |
|         UserInst->eraseFromParent();
 | |
|       }
 | |
|       Alloca->eraseFromParent();
 | |
|     done:;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// OptimizeSequences - Identify program paths which execute sequences of
 | |
| /// retains and releases which can be eliminated.
 | |
| bool ObjCARCOpt::OptimizeSequences(Function &F) {
 | |
|   /// Releases, Retains - These are used to store the results of the main flow
 | |
|   /// analysis. These use Value* as the key instead of Instruction* so that the
 | |
|   /// map stays valid when we get around to rewriting code and calls get
 | |
|   /// replaced by arguments.
 | |
|   DenseMap<Value *, RRInfo> Releases;
 | |
|   MapVector<Value *, RRInfo> Retains;
 | |
| 
 | |
|   /// BBStates, This is used during the traversal of the function to track the
 | |
|   /// states for each identified object at each block.
 | |
|   DenseMap<const BasicBlock *, BBState> BBStates;
 | |
| 
 | |
|   // Analyze the CFG of the function, and all instructions.
 | |
|   bool NestingDetected = Visit(F, BBStates, Retains, Releases);
 | |
| 
 | |
|   // Transform.
 | |
|   return PerformCodePlacement(BBStates, Retains, Releases, F.getParent()) &&
 | |
|          NestingDetected;
 | |
| }
 | |
| 
 | |
| /// OptimizeReturns - Look for this pattern:
 | |
| /// \code
 | |
| ///    %call = call i8* @something(...)
 | |
| ///    %2 = call i8* @objc_retain(i8* %call)
 | |
| ///    %3 = call i8* @objc_autorelease(i8* %2)
 | |
| ///    ret i8* %3
 | |
| /// \endcode
 | |
| /// And delete the retain and autorelease.
 | |
| ///
 | |
| /// Otherwise if it's just this:
 | |
| /// \code
 | |
| ///    %3 = call i8* @objc_autorelease(i8* %2)
 | |
| ///    ret i8* %3
 | |
| /// \endcode
 | |
| /// convert the autorelease to autoreleaseRV.
 | |
| void ObjCARCOpt::OptimizeReturns(Function &F) {
 | |
|   if (!F.getReturnType()->isPointerTy())
 | |
|     return;
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 4> DependingInstructions;
 | |
|   SmallPtrSet<const BasicBlock *, 4> Visited;
 | |
|   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
 | |
|     BasicBlock *BB = FI;
 | |
|     ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
 | |
|     if (!Ret) continue;
 | |
| 
 | |
|     const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
 | |
|     FindDependencies(NeedsPositiveRetainCount, Arg,
 | |
|                      BB, Ret, DependingInstructions, Visited, PA);
 | |
|     if (DependingInstructions.size() != 1)
 | |
|       goto next_block;
 | |
| 
 | |
|     {
 | |
|       CallInst *Autorelease =
 | |
|         dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
 | |
|       if (!Autorelease)
 | |
|         goto next_block;
 | |
|       InstructionClass AutoreleaseClass = GetBasicInstructionClass(Autorelease);
 | |
|       if (!IsAutorelease(AutoreleaseClass))
 | |
|         goto next_block;
 | |
|       if (GetObjCArg(Autorelease) != Arg)
 | |
|         goto next_block;
 | |
| 
 | |
|       DependingInstructions.clear();
 | |
|       Visited.clear();
 | |
| 
 | |
|       // Check that there is nothing that can affect the reference
 | |
|       // count between the autorelease and the retain.
 | |
|       FindDependencies(CanChangeRetainCount, Arg,
 | |
|                        BB, Autorelease, DependingInstructions, Visited, PA);
 | |
|       if (DependingInstructions.size() != 1)
 | |
|         goto next_block;
 | |
| 
 | |
|       {
 | |
|         CallInst *Retain =
 | |
|           dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
 | |
| 
 | |
|         // Check that we found a retain with the same argument.
 | |
|         if (!Retain ||
 | |
|             !IsRetain(GetBasicInstructionClass(Retain)) ||
 | |
|             GetObjCArg(Retain) != Arg)
 | |
|           goto next_block;
 | |
| 
 | |
|         DependingInstructions.clear();
 | |
|         Visited.clear();
 | |
| 
 | |
|         // Convert the autorelease to an autoreleaseRV, since it's
 | |
|         // returning the value.
 | |
|         if (AutoreleaseClass == IC_Autorelease) {
 | |
|           Autorelease->setCalledFunction(getAutoreleaseRVCallee(F.getParent()));
 | |
|           AutoreleaseClass = IC_AutoreleaseRV;
 | |
|         }
 | |
| 
 | |
|         // Check that there is nothing that can affect the reference
 | |
|         // count between the retain and the call.
 | |
|         // Note that Retain need not be in BB.
 | |
|         FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
 | |
|                          DependingInstructions, Visited, PA);
 | |
|         if (DependingInstructions.size() != 1)
 | |
|           goto next_block;
 | |
| 
 | |
|         {
 | |
|           CallInst *Call =
 | |
|             dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
 | |
| 
 | |
|           // Check that the pointer is the return value of the call.
 | |
|           if (!Call || Arg != Call)
 | |
|             goto next_block;
 | |
| 
 | |
|           // Check that the call is a regular call.
 | |
|           InstructionClass Class = GetBasicInstructionClass(Call);
 | |
|           if (Class != IC_CallOrUser && Class != IC_Call)
 | |
|             goto next_block;
 | |
| 
 | |
|           // If so, we can zap the retain and autorelease.
 | |
|           Changed = true;
 | |
|           ++NumRets;
 | |
|           EraseInstruction(Retain);
 | |
|           EraseInstruction(Autorelease);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   next_block:
 | |
|     DependingInstructions.clear();
 | |
|     Visited.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ObjCARCOpt::doInitialization(Module &M) {
 | |
|   if (!EnableARCOpts)
 | |
|     return false;
 | |
| 
 | |
|   // If nothing in the Module uses ARC, don't do anything.
 | |
|   Run = ModuleHasARC(M);
 | |
|   if (!Run)
 | |
|     return false;
 | |
| 
 | |
|   // Identify the imprecise release metadata kind.
 | |
|   ImpreciseReleaseMDKind =
 | |
|     M.getContext().getMDKindID("clang.imprecise_release");
 | |
|   CopyOnEscapeMDKind =
 | |
|     M.getContext().getMDKindID("clang.arc.copy_on_escape");
 | |
|   NoObjCARCExceptionsMDKind =
 | |
|     M.getContext().getMDKindID("clang.arc.no_objc_arc_exceptions");
 | |
| 
 | |
|   // Intuitively, objc_retain and others are nocapture, however in practice
 | |
|   // they are not, because they return their argument value. And objc_release
 | |
|   // calls finalizers which can have arbitrary side effects.
 | |
| 
 | |
|   // These are initialized lazily.
 | |
|   RetainRVCallee = 0;
 | |
|   AutoreleaseRVCallee = 0;
 | |
|   ReleaseCallee = 0;
 | |
|   RetainCallee = 0;
 | |
|   RetainBlockCallee = 0;
 | |
|   AutoreleaseCallee = 0;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ObjCARCOpt::runOnFunction(Function &F) {
 | |
|   if (!EnableARCOpts)
 | |
|     return false;
 | |
| 
 | |
|   // If nothing in the Module uses ARC, don't do anything.
 | |
|   if (!Run)
 | |
|     return false;
 | |
| 
 | |
|   Changed = false;
 | |
| 
 | |
|   PA.setAA(&getAnalysis<AliasAnalysis>());
 | |
| 
 | |
|   // This pass performs several distinct transformations. As a compile-time aid
 | |
|   // when compiling code that isn't ObjC, skip these if the relevant ObjC
 | |
|   // library functions aren't declared.
 | |
| 
 | |
|   // Preliminary optimizations. This also computs UsedInThisFunction.
 | |
|   OptimizeIndividualCalls(F);
 | |
| 
 | |
|   // Optimizations for weak pointers.
 | |
|   if (UsedInThisFunction & ((1 << IC_LoadWeak) |
 | |
|                             (1 << IC_LoadWeakRetained) |
 | |
|                             (1 << IC_StoreWeak) |
 | |
|                             (1 << IC_InitWeak) |
 | |
|                             (1 << IC_CopyWeak) |
 | |
|                             (1 << IC_MoveWeak) |
 | |
|                             (1 << IC_DestroyWeak)))
 | |
|     OptimizeWeakCalls(F);
 | |
| 
 | |
|   // Optimizations for retain+release pairs.
 | |
|   if (UsedInThisFunction & ((1 << IC_Retain) |
 | |
|                             (1 << IC_RetainRV) |
 | |
|                             (1 << IC_RetainBlock)))
 | |
|     if (UsedInThisFunction & (1 << IC_Release))
 | |
|       // Run OptimizeSequences until it either stops making changes or
 | |
|       // no retain+release pair nesting is detected.
 | |
|       while (OptimizeSequences(F)) {}
 | |
| 
 | |
|   // Optimizations if objc_autorelease is used.
 | |
|   if (UsedInThisFunction & ((1 << IC_Autorelease) |
 | |
|                             (1 << IC_AutoreleaseRV)))
 | |
|     OptimizeReturns(F);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void ObjCARCOpt::releaseMemory() {
 | |
|   PA.clear();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ARC contraction.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // TODO: ObjCARCContract could insert PHI nodes when uses aren't
 | |
| // dominated by single calls.
 | |
| 
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| 
 | |
| STATISTIC(NumStoreStrongs, "Number objc_storeStrong calls formed");
 | |
| 
 | |
| namespace {
 | |
|   /// ObjCARCContract - Late ARC optimizations.  These change the IR in a way
 | |
|   /// that makes it difficult to be analyzed by ObjCARCOpt, so it's run late.
 | |
|   class ObjCARCContract : public FunctionPass {
 | |
|     bool Changed;
 | |
|     AliasAnalysis *AA;
 | |
|     DominatorTree *DT;
 | |
|     ProvenanceAnalysis PA;
 | |
| 
 | |
|     /// Run - A flag indicating whether this optimization pass should run.
 | |
|     bool Run;
 | |
| 
 | |
|     /// StoreStrongCallee, etc. - Declarations for ObjC runtime
 | |
|     /// functions, for use in creating calls to them. These are initialized
 | |
|     /// lazily to avoid cluttering up the Module with unused declarations.
 | |
|     Constant *StoreStrongCallee,
 | |
|              *RetainAutoreleaseCallee, *RetainAutoreleaseRVCallee;
 | |
| 
 | |
|     /// RetainRVMarker - The inline asm string to insert between calls and
 | |
|     /// RetainRV calls to make the optimization work on targets which need it.
 | |
|     const MDString *RetainRVMarker;
 | |
| 
 | |
|     /// StoreStrongCalls - The set of inserted objc_storeStrong calls. If
 | |
|     /// at the end of walking the function we have found no alloca
 | |
|     /// instructions, these calls can be marked "tail".
 | |
|     SmallPtrSet<CallInst *, 8> StoreStrongCalls;
 | |
| 
 | |
|     Constant *getStoreStrongCallee(Module *M);
 | |
|     Constant *getRetainAutoreleaseCallee(Module *M);
 | |
|     Constant *getRetainAutoreleaseRVCallee(Module *M);
 | |
| 
 | |
|     bool ContractAutorelease(Function &F, Instruction *Autorelease,
 | |
|                              InstructionClass Class,
 | |
|                              SmallPtrSet<Instruction *, 4>
 | |
|                                &DependingInstructions,
 | |
|                              SmallPtrSet<const BasicBlock *, 4>
 | |
|                                &Visited);
 | |
| 
 | |
|     void ContractRelease(Instruction *Release,
 | |
|                          inst_iterator &Iter);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
|     virtual bool doInitialization(Module &M);
 | |
|     virtual bool runOnFunction(Function &F);
 | |
| 
 | |
|   public:
 | |
|     static char ID;
 | |
|     ObjCARCContract() : FunctionPass(ID) {
 | |
|       initializeObjCARCContractPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char ObjCARCContract::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(ObjCARCContract,
 | |
|                       "objc-arc-contract", "ObjC ARC contraction", false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | |
| INITIALIZE_PASS_END(ObjCARCContract,
 | |
|                     "objc-arc-contract", "ObjC ARC contraction", false, false)
 | |
| 
 | |
| Pass *llvm::createObjCARCContractPass() {
 | |
|   return new ObjCARCContract();
 | |
| }
 | |
| 
 | |
| void ObjCARCContract::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   AU.addRequired<DominatorTree>();
 | |
|   AU.setPreservesCFG();
 | |
| }
 | |
| 
 | |
| Constant *ObjCARCContract::getStoreStrongCallee(Module *M) {
 | |
|   if (!StoreStrongCallee) {
 | |
|     LLVMContext &C = M->getContext();
 | |
|     Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
 | |
|     Type *I8XX = PointerType::getUnqual(I8X);
 | |
|     Type *Params[] = { I8XX, I8X };
 | |
| 
 | |
|     AttrListPtr Attributes = AttrListPtr()
 | |
|       .addAttr(M->getContext(), AttrListPtr::FunctionIndex,
 | |
|                Attributes::get(C, Attributes::NoUnwind))
 | |
|       .addAttr(M->getContext(), 1, Attributes::get(C, Attributes::NoCapture));
 | |
| 
 | |
|     StoreStrongCallee =
 | |
|       M->getOrInsertFunction(
 | |
|         "objc_storeStrong",
 | |
|         FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
 | |
|         Attributes);
 | |
|   }
 | |
|   return StoreStrongCallee;
 | |
| }
 | |
| 
 | |
| Constant *ObjCARCContract::getRetainAutoreleaseCallee(Module *M) {
 | |
|   if (!RetainAutoreleaseCallee) {
 | |
|     LLVMContext &C = M->getContext();
 | |
|     Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
 | |
|     Type *Params[] = { I8X };
 | |
|     FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
 | |
|     AttrListPtr Attributes =
 | |
|       AttrListPtr().addAttr(M->getContext(), AttrListPtr::FunctionIndex,
 | |
|                             Attributes::get(C, Attributes::NoUnwind));
 | |
|     RetainAutoreleaseCallee =
 | |
|       M->getOrInsertFunction("objc_retainAutorelease", FTy, Attributes);
 | |
|   }
 | |
|   return RetainAutoreleaseCallee;
 | |
| }
 | |
| 
 | |
| Constant *ObjCARCContract::getRetainAutoreleaseRVCallee(Module *M) {
 | |
|   if (!RetainAutoreleaseRVCallee) {
 | |
|     LLVMContext &C = M->getContext();
 | |
|     Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
 | |
|     Type *Params[] = { I8X };
 | |
|     FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false);
 | |
|     AttrListPtr Attributes =
 | |
|       AttrListPtr().addAttr(M->getContext(), AttrListPtr::FunctionIndex,
 | |
|                             Attributes::get(C, Attributes::NoUnwind));
 | |
|     RetainAutoreleaseRVCallee =
 | |
|       M->getOrInsertFunction("objc_retainAutoreleaseReturnValue", FTy,
 | |
|                              Attributes);
 | |
|   }
 | |
|   return RetainAutoreleaseRVCallee;
 | |
| }
 | |
| 
 | |
| /// ContractAutorelease - Merge an autorelease with a retain into a fused call.
 | |
| bool
 | |
| ObjCARCContract::ContractAutorelease(Function &F, Instruction *Autorelease,
 | |
|                                      InstructionClass Class,
 | |
|                                      SmallPtrSet<Instruction *, 4>
 | |
|                                        &DependingInstructions,
 | |
|                                      SmallPtrSet<const BasicBlock *, 4>
 | |
|                                        &Visited) {
 | |
|   const Value *Arg = GetObjCArg(Autorelease);
 | |
| 
 | |
|   // Check that there are no instructions between the retain and the autorelease
 | |
|   // (such as an autorelease_pop) which may change the count.
 | |
|   CallInst *Retain = 0;
 | |
|   if (Class == IC_AutoreleaseRV)
 | |
|     FindDependencies(RetainAutoreleaseRVDep, Arg,
 | |
|                      Autorelease->getParent(), Autorelease,
 | |
|                      DependingInstructions, Visited, PA);
 | |
|   else
 | |
|     FindDependencies(RetainAutoreleaseDep, Arg,
 | |
|                      Autorelease->getParent(), Autorelease,
 | |
|                      DependingInstructions, Visited, PA);
 | |
| 
 | |
|   Visited.clear();
 | |
|   if (DependingInstructions.size() != 1) {
 | |
|     DependingInstructions.clear();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Retain = dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
 | |
|   DependingInstructions.clear();
 | |
| 
 | |
|   if (!Retain ||
 | |
|       GetBasicInstructionClass(Retain) != IC_Retain ||
 | |
|       GetObjCArg(Retain) != Arg)
 | |
|     return false;
 | |
| 
 | |
|   Changed = true;
 | |
|   ++NumPeeps;
 | |
| 
 | |
|   if (Class == IC_AutoreleaseRV)
 | |
|     Retain->setCalledFunction(getRetainAutoreleaseRVCallee(F.getParent()));
 | |
|   else
 | |
|     Retain->setCalledFunction(getRetainAutoreleaseCallee(F.getParent()));
 | |
| 
 | |
|   EraseInstruction(Autorelease);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ContractRelease - Attempt to merge an objc_release with a store, load, and
 | |
| /// objc_retain to form an objc_storeStrong. This can be a little tricky because
 | |
| /// the instructions don't always appear in order, and there may be unrelated
 | |
| /// intervening instructions.
 | |
| void ObjCARCContract::ContractRelease(Instruction *Release,
 | |
|                                       inst_iterator &Iter) {
 | |
|   LoadInst *Load = dyn_cast<LoadInst>(GetObjCArg(Release));
 | |
|   if (!Load || !Load->isSimple()) return;
 | |
| 
 | |
|   // For now, require everything to be in one basic block.
 | |
|   BasicBlock *BB = Release->getParent();
 | |
|   if (Load->getParent() != BB) return;
 | |
| 
 | |
|   // Walk down to find the store and the release, which may be in either order.
 | |
|   BasicBlock::iterator I = Load, End = BB->end();
 | |
|   ++I;
 | |
|   AliasAnalysis::Location Loc = AA->getLocation(Load);
 | |
|   StoreInst *Store = 0;
 | |
|   bool SawRelease = false;
 | |
|   for (; !Store || !SawRelease; ++I) {
 | |
|     if (I == End)
 | |
|       return;
 | |
| 
 | |
|     Instruction *Inst = I;
 | |
|     if (Inst == Release) {
 | |
|       SawRelease = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     InstructionClass Class = GetBasicInstructionClass(Inst);
 | |
| 
 | |
|     // Unrelated retains are harmless.
 | |
|     if (IsRetain(Class))
 | |
|       continue;
 | |
| 
 | |
|     if (Store) {
 | |
|       // The store is the point where we're going to put the objc_storeStrong,
 | |
|       // so make sure there are no uses after it.
 | |
|       if (CanUse(Inst, Load, PA, Class))
 | |
|         return;
 | |
|     } else if (AA->getModRefInfo(Inst, Loc) & AliasAnalysis::Mod) {
 | |
|       // We are moving the load down to the store, so check for anything
 | |
|       // else which writes to the memory between the load and the store.
 | |
|       Store = dyn_cast<StoreInst>(Inst);
 | |
|       if (!Store || !Store->isSimple()) return;
 | |
|       if (Store->getPointerOperand() != Loc.Ptr) return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Value *New = StripPointerCastsAndObjCCalls(Store->getValueOperand());
 | |
| 
 | |
|   // Walk up to find the retain.
 | |
|   I = Store;
 | |
|   BasicBlock::iterator Begin = BB->begin();
 | |
|   while (I != Begin && GetBasicInstructionClass(I) != IC_Retain)
 | |
|     --I;
 | |
|   Instruction *Retain = I;
 | |
|   if (GetBasicInstructionClass(Retain) != IC_Retain) return;
 | |
|   if (GetObjCArg(Retain) != New) return;
 | |
| 
 | |
|   Changed = true;
 | |
|   ++NumStoreStrongs;
 | |
| 
 | |
|   LLVMContext &C = Release->getContext();
 | |
|   Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
 | |
|   Type *I8XX = PointerType::getUnqual(I8X);
 | |
| 
 | |
|   Value *Args[] = { Load->getPointerOperand(), New };
 | |
|   if (Args[0]->getType() != I8XX)
 | |
|     Args[0] = new BitCastInst(Args[0], I8XX, "", Store);
 | |
|   if (Args[1]->getType() != I8X)
 | |
|     Args[1] = new BitCastInst(Args[1], I8X, "", Store);
 | |
|   CallInst *StoreStrong =
 | |
|     CallInst::Create(getStoreStrongCallee(BB->getParent()->getParent()),
 | |
|                      Args, "", Store);
 | |
|   StoreStrong->setDoesNotThrow();
 | |
|   StoreStrong->setDebugLoc(Store->getDebugLoc());
 | |
| 
 | |
|   // We can't set the tail flag yet, because we haven't yet determined
 | |
|   // whether there are any escaping allocas. Remember this call, so that
 | |
|   // we can set the tail flag once we know it's safe.
 | |
|   StoreStrongCalls.insert(StoreStrong);
 | |
| 
 | |
|   if (&*Iter == Store) ++Iter;
 | |
|   Store->eraseFromParent();
 | |
|   Release->eraseFromParent();
 | |
|   EraseInstruction(Retain);
 | |
|   if (Load->use_empty())
 | |
|     Load->eraseFromParent();
 | |
| }
 | |
| 
 | |
| bool ObjCARCContract::doInitialization(Module &M) {
 | |
|   // If nothing in the Module uses ARC, don't do anything.
 | |
|   Run = ModuleHasARC(M);
 | |
|   if (!Run)
 | |
|     return false;
 | |
| 
 | |
|   // These are initialized lazily.
 | |
|   StoreStrongCallee = 0;
 | |
|   RetainAutoreleaseCallee = 0;
 | |
|   RetainAutoreleaseRVCallee = 0;
 | |
| 
 | |
|   // Initialize RetainRVMarker.
 | |
|   RetainRVMarker = 0;
 | |
|   if (NamedMDNode *NMD =
 | |
|         M.getNamedMetadata("clang.arc.retainAutoreleasedReturnValueMarker"))
 | |
|     if (NMD->getNumOperands() == 1) {
 | |
|       const MDNode *N = NMD->getOperand(0);
 | |
|       if (N->getNumOperands() == 1)
 | |
|         if (const MDString *S = dyn_cast<MDString>(N->getOperand(0)))
 | |
|           RetainRVMarker = S;
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ObjCARCContract::runOnFunction(Function &F) {
 | |
|   if (!EnableARCOpts)
 | |
|     return false;
 | |
| 
 | |
|   // If nothing in the Module uses ARC, don't do anything.
 | |
|   if (!Run)
 | |
|     return false;
 | |
| 
 | |
|   Changed = false;
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   DT = &getAnalysis<DominatorTree>();
 | |
| 
 | |
|   PA.setAA(&getAnalysis<AliasAnalysis>());
 | |
| 
 | |
|   // Track whether it's ok to mark objc_storeStrong calls with the "tail"
 | |
|   // keyword. Be conservative if the function has variadic arguments.
 | |
|   // It seems that functions which "return twice" are also unsafe for the
 | |
|   // "tail" argument, because they are setjmp, which could need to
 | |
|   // return to an earlier stack state.
 | |
|   bool TailOkForStoreStrongs = !F.isVarArg() &&
 | |
|                                !F.callsFunctionThatReturnsTwice();
 | |
| 
 | |
|   // For ObjC library calls which return their argument, replace uses of the
 | |
|   // argument with uses of the call return value, if it dominates the use. This
 | |
|   // reduces register pressure.
 | |
|   SmallPtrSet<Instruction *, 4> DependingInstructions;
 | |
|   SmallPtrSet<const BasicBlock *, 4> Visited;
 | |
|   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | |
|     Instruction *Inst = &*I++;
 | |
| 
 | |
|     // Only these library routines return their argument. In particular,
 | |
|     // objc_retainBlock does not necessarily return its argument.
 | |
|     InstructionClass Class = GetBasicInstructionClass(Inst);
 | |
|     switch (Class) {
 | |
|     case IC_Retain:
 | |
|     case IC_FusedRetainAutorelease:
 | |
|     case IC_FusedRetainAutoreleaseRV:
 | |
|       break;
 | |
|     case IC_Autorelease:
 | |
|     case IC_AutoreleaseRV:
 | |
|       if (ContractAutorelease(F, Inst, Class, DependingInstructions, Visited))
 | |
|         continue;
 | |
|       break;
 | |
|     case IC_RetainRV: {
 | |
|       // If we're compiling for a target which needs a special inline-asm
 | |
|       // marker to do the retainAutoreleasedReturnValue optimization,
 | |
|       // insert it now.
 | |
|       if (!RetainRVMarker)
 | |
|         break;
 | |
|       BasicBlock::iterator BBI = Inst;
 | |
|       BasicBlock *InstParent = Inst->getParent();
 | |
| 
 | |
|       // Step up to see if the call immediately precedes the RetainRV call.
 | |
|       // If it's an invoke, we have to cross a block boundary. And we have
 | |
|       // to carefully dodge no-op instructions.
 | |
|       do {
 | |
|         if (&*BBI == InstParent->begin()) {
 | |
|           BasicBlock *Pred = InstParent->getSinglePredecessor();
 | |
|           if (!Pred)
 | |
|             goto decline_rv_optimization;
 | |
|           BBI = Pred->getTerminator();
 | |
|           break;
 | |
|         }
 | |
|         --BBI;
 | |
|       } while (isNoopInstruction(BBI));
 | |
| 
 | |
|       if (&*BBI == GetObjCArg(Inst)) {
 | |
|         Changed = true;
 | |
|         InlineAsm *IA =
 | |
|           InlineAsm::get(FunctionType::get(Type::getVoidTy(Inst->getContext()),
 | |
|                                            /*isVarArg=*/false),
 | |
|                          RetainRVMarker->getString(),
 | |
|                          /*Constraints=*/"", /*hasSideEffects=*/true);
 | |
|         CallInst::Create(IA, "", Inst);
 | |
|       }
 | |
|     decline_rv_optimization:
 | |
|       break;
 | |
|     }
 | |
|     case IC_InitWeak: {
 | |
|       // objc_initWeak(p, null) => *p = null
 | |
|       CallInst *CI = cast<CallInst>(Inst);
 | |
|       if (isNullOrUndef(CI->getArgOperand(1))) {
 | |
|         Value *Null =
 | |
|           ConstantPointerNull::get(cast<PointerType>(CI->getType()));
 | |
|         Changed = true;
 | |
|         new StoreInst(Null, CI->getArgOperand(0), CI);
 | |
|         CI->replaceAllUsesWith(Null);
 | |
|         CI->eraseFromParent();
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     case IC_Release:
 | |
|       ContractRelease(Inst, I);
 | |
|       continue;
 | |
|     case IC_User:
 | |
|       // Be conservative if the function has any alloca instructions.
 | |
|       // Technically we only care about escaping alloca instructions,
 | |
|       // but this is sufficient to handle some interesting cases.
 | |
|       if (isa<AllocaInst>(Inst))
 | |
|         TailOkForStoreStrongs = false;
 | |
|       continue;
 | |
|     default:
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Don't use GetObjCArg because we don't want to look through bitcasts
 | |
|     // and such; to do the replacement, the argument must have type i8*.
 | |
|     const Value *Arg = cast<CallInst>(Inst)->getArgOperand(0);
 | |
|     for (;;) {
 | |
|       // If we're compiling bugpointed code, don't get in trouble.
 | |
|       if (!isa<Instruction>(Arg) && !isa<Argument>(Arg))
 | |
|         break;
 | |
|       // Look through the uses of the pointer.
 | |
|       for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
 | |
|            UI != UE; ) {
 | |
|         Use &U = UI.getUse();
 | |
|         unsigned OperandNo = UI.getOperandNo();
 | |
|         ++UI; // Increment UI now, because we may unlink its element.
 | |
| 
 | |
|         // If the call's return value dominates a use of the call's argument
 | |
|         // value, rewrite the use to use the return value. We check for
 | |
|         // reachability here because an unreachable call is considered to
 | |
|         // trivially dominate itself, which would lead us to rewriting its
 | |
|         // argument in terms of its return value, which would lead to
 | |
|         // infinite loops in GetObjCArg.
 | |
|         if (DT->isReachableFromEntry(U) && DT->dominates(Inst, U)) {
 | |
|           Changed = true;
 | |
|           Instruction *Replacement = Inst;
 | |
|           Type *UseTy = U.get()->getType();
 | |
|           if (PHINode *PHI = dyn_cast<PHINode>(U.getUser())) {
 | |
|             // For PHI nodes, insert the bitcast in the predecessor block.
 | |
|             unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
 | |
|             BasicBlock *BB = PHI->getIncomingBlock(ValNo);
 | |
|             if (Replacement->getType() != UseTy)
 | |
|               Replacement = new BitCastInst(Replacement, UseTy, "",
 | |
|                                             &BB->back());
 | |
|             // While we're here, rewrite all edges for this PHI, rather
 | |
|             // than just one use at a time, to minimize the number of
 | |
|             // bitcasts we emit.
 | |
|             for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
 | |
|               if (PHI->getIncomingBlock(i) == BB) {
 | |
|                 // Keep the UI iterator valid.
 | |
|                 if (&PHI->getOperandUse(
 | |
|                       PHINode::getOperandNumForIncomingValue(i)) ==
 | |
|                     &UI.getUse())
 | |
|                   ++UI;
 | |
|                 PHI->setIncomingValue(i, Replacement);
 | |
|               }
 | |
|           } else {
 | |
|             if (Replacement->getType() != UseTy)
 | |
|               Replacement = new BitCastInst(Replacement, UseTy, "",
 | |
|                                             cast<Instruction>(U.getUser()));
 | |
|             U.set(Replacement);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If Arg is a no-op casted pointer, strip one level of casts and iterate.
 | |
|       if (const BitCastInst *BI = dyn_cast<BitCastInst>(Arg))
 | |
|         Arg = BI->getOperand(0);
 | |
|       else if (isa<GEPOperator>(Arg) &&
 | |
|                cast<GEPOperator>(Arg)->hasAllZeroIndices())
 | |
|         Arg = cast<GEPOperator>(Arg)->getPointerOperand();
 | |
|       else if (isa<GlobalAlias>(Arg) &&
 | |
|                !cast<GlobalAlias>(Arg)->mayBeOverridden())
 | |
|         Arg = cast<GlobalAlias>(Arg)->getAliasee();
 | |
|       else
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this function has no escaping allocas or suspicious vararg usage,
 | |
|   // objc_storeStrong calls can be marked with the "tail" keyword.
 | |
|   if (TailOkForStoreStrongs)
 | |
|     for (SmallPtrSet<CallInst *, 8>::iterator I = StoreStrongCalls.begin(),
 | |
|          E = StoreStrongCalls.end(); I != E; ++I)
 | |
|       (*I)->setTailCall();
 | |
|   StoreStrongCalls.clear();
 | |
| 
 | |
|   return Changed;
 | |
| }
 |