mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	instructions. This doesn't introduce any optimizations we weren't doing before (except potentially due to pass ordering issues), now passes will eliminate them sooner as part of their own cleanups. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142787 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			897 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			897 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- Local.cpp - Functions to perform local transformations ------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This family of functions perform various local transformations to the
 | 
						|
// program.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/GlobalAlias.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Metadata.h"
 | 
						|
#include "llvm/Operator.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/Analysis/DebugInfo.h"
 | 
						|
#include "llvm/Analysis/DIBuilder.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/ProfileInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/IRBuilder.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/ValueHandle.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Local constant propagation.
 | 
						|
//
 | 
						|
 | 
						|
/// ConstantFoldTerminator - If a terminator instruction is predicated on a
 | 
						|
/// constant value, convert it into an unconditional branch to the constant
 | 
						|
/// destination.  This is a nontrivial operation because the successors of this
 | 
						|
/// basic block must have their PHI nodes updated.
 | 
						|
/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
 | 
						|
/// conditions and indirectbr addresses this might make dead if
 | 
						|
/// DeleteDeadConditions is true.
 | 
						|
bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) {
 | 
						|
  TerminatorInst *T = BB->getTerminator();
 | 
						|
  IRBuilder<> Builder(T);
 | 
						|
 | 
						|
  // Branch - See if we are conditional jumping on constant
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
 | 
						|
    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
 | 
						|
    BasicBlock *Dest1 = BI->getSuccessor(0);
 | 
						|
    BasicBlock *Dest2 = BI->getSuccessor(1);
 | 
						|
 | 
						|
    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
 | 
						|
      // Are we branching on constant?
 | 
						|
      // YES.  Change to unconditional branch...
 | 
						|
      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
 | 
						|
      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
 | 
						|
 | 
						|
      //cerr << "Function: " << T->getParent()->getParent()
 | 
						|
      //     << "\nRemoving branch from " << T->getParent()
 | 
						|
      //     << "\n\nTo: " << OldDest << endl;
 | 
						|
 | 
						|
      // Let the basic block know that we are letting go of it.  Based on this,
 | 
						|
      // it will adjust it's PHI nodes.
 | 
						|
      OldDest->removePredecessor(BB);
 | 
						|
 | 
						|
      // Replace the conditional branch with an unconditional one.
 | 
						|
      Builder.CreateBr(Destination);
 | 
						|
      BI->eraseFromParent();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (Dest2 == Dest1) {       // Conditional branch to same location?
 | 
						|
      // This branch matches something like this:
 | 
						|
      //     br bool %cond, label %Dest, label %Dest
 | 
						|
      // and changes it into:  br label %Dest
 | 
						|
 | 
						|
      // Let the basic block know that we are letting go of one copy of it.
 | 
						|
      assert(BI->getParent() && "Terminator not inserted in block!");
 | 
						|
      Dest1->removePredecessor(BI->getParent());
 | 
						|
 | 
						|
      // Replace the conditional branch with an unconditional one.
 | 
						|
      Builder.CreateBr(Dest1);
 | 
						|
      Value *Cond = BI->getCondition();
 | 
						|
      BI->eraseFromParent();
 | 
						|
      if (DeleteDeadConditions)
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(Cond);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
 | 
						|
    // If we are switching on a constant, we can convert the switch into a
 | 
						|
    // single branch instruction!
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
 | 
						|
    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
 | 
						|
    BasicBlock *DefaultDest = TheOnlyDest;
 | 
						|
    assert(TheOnlyDest == SI->getDefaultDest() &&
 | 
						|
           "Default destination is not successor #0?");
 | 
						|
 | 
						|
    // Figure out which case it goes to.
 | 
						|
    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
 | 
						|
      // Found case matching a constant operand?
 | 
						|
      if (SI->getSuccessorValue(i) == CI) {
 | 
						|
        TheOnlyDest = SI->getSuccessor(i);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check to see if this branch is going to the same place as the default
 | 
						|
      // dest.  If so, eliminate it as an explicit compare.
 | 
						|
      if (SI->getSuccessor(i) == DefaultDest) {
 | 
						|
        // Remove this entry.
 | 
						|
        DefaultDest->removePredecessor(SI->getParent());
 | 
						|
        SI->removeCase(i);
 | 
						|
        --i; --e;  // Don't skip an entry...
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, check to see if the switch only branches to one destination.
 | 
						|
      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
 | 
						|
      // destinations.
 | 
						|
      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CI && !TheOnlyDest) {
 | 
						|
      // Branching on a constant, but not any of the cases, go to the default
 | 
						|
      // successor.
 | 
						|
      TheOnlyDest = SI->getDefaultDest();
 | 
						|
    }
 | 
						|
 | 
						|
    // If we found a single destination that we can fold the switch into, do so
 | 
						|
    // now.
 | 
						|
    if (TheOnlyDest) {
 | 
						|
      // Insert the new branch.
 | 
						|
      Builder.CreateBr(TheOnlyDest);
 | 
						|
      BasicBlock *BB = SI->getParent();
 | 
						|
 | 
						|
      // Remove entries from PHI nodes which we no longer branch to...
 | 
						|
      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
 | 
						|
        // Found case matching a constant operand?
 | 
						|
        BasicBlock *Succ = SI->getSuccessor(i);
 | 
						|
        if (Succ == TheOnlyDest)
 | 
						|
          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
 | 
						|
        else
 | 
						|
          Succ->removePredecessor(BB);
 | 
						|
      }
 | 
						|
 | 
						|
      // Delete the old switch.
 | 
						|
      Value *Cond = SI->getCondition();
 | 
						|
      SI->eraseFromParent();
 | 
						|
      if (DeleteDeadConditions)
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(Cond);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (SI->getNumSuccessors() == 2) {
 | 
						|
      // Otherwise, we can fold this switch into a conditional branch
 | 
						|
      // instruction if it has only one non-default destination.
 | 
						|
      Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
 | 
						|
                                         SI->getSuccessorValue(1), "cond");
 | 
						|
 | 
						|
      // Insert the new branch.
 | 
						|
      Builder.CreateCondBr(Cond, SI->getSuccessor(1), SI->getSuccessor(0));
 | 
						|
 | 
						|
      // Delete the old switch.
 | 
						|
      SI->eraseFromParent();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
 | 
						|
    // indirectbr blockaddress(@F, @BB) -> br label @BB
 | 
						|
    if (BlockAddress *BA =
 | 
						|
          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
 | 
						|
      BasicBlock *TheOnlyDest = BA->getBasicBlock();
 | 
						|
      // Insert the new branch.
 | 
						|
      Builder.CreateBr(TheOnlyDest);
 | 
						|
      
 | 
						|
      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
 | 
						|
        if (IBI->getDestination(i) == TheOnlyDest)
 | 
						|
          TheOnlyDest = 0;
 | 
						|
        else
 | 
						|
          IBI->getDestination(i)->removePredecessor(IBI->getParent());
 | 
						|
      }
 | 
						|
      Value *Address = IBI->getAddress();
 | 
						|
      IBI->eraseFromParent();
 | 
						|
      if (DeleteDeadConditions)
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(Address);
 | 
						|
      
 | 
						|
      // If we didn't find our destination in the IBI successor list, then we
 | 
						|
      // have undefined behavior.  Replace the unconditional branch with an
 | 
						|
      // 'unreachable' instruction.
 | 
						|
      if (TheOnlyDest) {
 | 
						|
        BB->getTerminator()->eraseFromParent();
 | 
						|
        new UnreachableInst(BB->getContext(), BB);
 | 
						|
      }
 | 
						|
      
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Local dead code elimination.
 | 
						|
//
 | 
						|
 | 
						|
/// isInstructionTriviallyDead - Return true if the result produced by the
 | 
						|
/// instruction is not used, and the instruction has no side effects.
 | 
						|
///
 | 
						|
bool llvm::isInstructionTriviallyDead(Instruction *I) {
 | 
						|
  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
 | 
						|
 | 
						|
  // We don't want the landingpad instruction removed by anything this general.
 | 
						|
  if (isa<LandingPadInst>(I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We don't want debug info removed by anything this general, unless
 | 
						|
  // debug info is empty.
 | 
						|
  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
 | 
						|
    if (DDI->getAddress())
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
 | 
						|
    if (DVI->getValue())
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!I->mayHaveSideEffects()) return true;
 | 
						|
 | 
						|
  // Special case intrinsics that "may have side effects" but can be deleted
 | 
						|
  // when dead.
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
    // Safe to delete llvm.stacksave if dead.
 | 
						|
    if (II->getIntrinsicID() == Intrinsic::stacksave)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Lifetime intrinsics are dead when their right-hand is undef.
 | 
						|
    if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | 
						|
        II->getIntrinsicID() == Intrinsic::lifetime_end)
 | 
						|
      return isa<UndefValue>(II->getArgOperand(1));
 | 
						|
  }
 | 
						|
 | 
						|
  if (extractMallocCall(I)) return true;
 | 
						|
 | 
						|
  if (CallInst *CI = isFreeCall(I))
 | 
						|
    if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
 | 
						|
      return C->isNullValue() || isa<UndefValue>(C);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
 | 
						|
/// trivially dead instruction, delete it.  If that makes any of its operands
 | 
						|
/// trivially dead, delete them too, recursively.  Return true if any
 | 
						|
/// instructions were deleted.
 | 
						|
bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  SmallVector<Instruction*, 16> DeadInsts;
 | 
						|
  DeadInsts.push_back(I);
 | 
						|
  
 | 
						|
  do {
 | 
						|
    I = DeadInsts.pop_back_val();
 | 
						|
 | 
						|
    // Null out all of the instruction's operands to see if any operand becomes
 | 
						|
    // dead as we go.
 | 
						|
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
      Value *OpV = I->getOperand(i);
 | 
						|
      I->setOperand(i, 0);
 | 
						|
      
 | 
						|
      if (!OpV->use_empty()) continue;
 | 
						|
    
 | 
						|
      // If the operand is an instruction that became dead as we nulled out the
 | 
						|
      // operand, and if it is 'trivially' dead, delete it in a future loop
 | 
						|
      // iteration.
 | 
						|
      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
 | 
						|
        if (isInstructionTriviallyDead(OpI))
 | 
						|
          DeadInsts.push_back(OpI);
 | 
						|
    }
 | 
						|
    
 | 
						|
    I->eraseFromParent();
 | 
						|
  } while (!DeadInsts.empty());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// areAllUsesEqual - Check whether the uses of a value are all the same.
 | 
						|
/// This is similar to Instruction::hasOneUse() except this will also return
 | 
						|
/// true when there are no uses or multiple uses that all refer to the same
 | 
						|
/// value.
 | 
						|
static bool areAllUsesEqual(Instruction *I) {
 | 
						|
  Value::use_iterator UI = I->use_begin();
 | 
						|
  Value::use_iterator UE = I->use_end();
 | 
						|
  if (UI == UE)
 | 
						|
    return true;
 | 
						|
 | 
						|
  User *TheUse = *UI;
 | 
						|
  for (++UI; UI != UE; ++UI) {
 | 
						|
    if (*UI != TheUse)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
 | 
						|
/// dead PHI node, due to being a def-use chain of single-use nodes that
 | 
						|
/// either forms a cycle or is terminated by a trivially dead instruction,
 | 
						|
/// delete it.  If that makes any of its operands trivially dead, delete them
 | 
						|
/// too, recursively.  Return true if a change was made.
 | 
						|
bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
 | 
						|
  SmallPtrSet<Instruction*, 4> Visited;
 | 
						|
  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
 | 
						|
       I = cast<Instruction>(*I->use_begin())) {
 | 
						|
    if (I->use_empty())
 | 
						|
      return RecursivelyDeleteTriviallyDeadInstructions(I);
 | 
						|
 | 
						|
    // If we find an instruction more than once, we're on a cycle that
 | 
						|
    // won't prove fruitful.
 | 
						|
    if (!Visited.insert(I)) {
 | 
						|
      // Break the cycle and delete the instruction and its operands.
 | 
						|
      I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | 
						|
      (void)RecursivelyDeleteTriviallyDeadInstructions(I);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
 | 
						|
/// simplify any instructions in it and recursively delete dead instructions.
 | 
						|
///
 | 
						|
/// This returns true if it changed the code, note that it can delete
 | 
						|
/// instructions in other blocks as well in this block.
 | 
						|
bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
 | 
						|
    Instruction *Inst = BI++;
 | 
						|
    
 | 
						|
    if (Value *V = SimplifyInstruction(Inst, TD)) {
 | 
						|
      WeakVH BIHandle(BI);
 | 
						|
      ReplaceAndSimplifyAllUses(Inst, V, TD);
 | 
						|
      MadeChange = true;
 | 
						|
      if (BIHandle != BI)
 | 
						|
        BI = BB->begin();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Inst->isTerminator())
 | 
						|
      break;
 | 
						|
 | 
						|
    WeakVH BIHandle(BI);
 | 
						|
    MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | 
						|
    if (BIHandle != BI)
 | 
						|
      BI = BB->begin();
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Control Flow Graph Restructuring.
 | 
						|
//
 | 
						|
 | 
						|
 | 
						|
/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
 | 
						|
/// method is called when we're about to delete Pred as a predecessor of BB.  If
 | 
						|
/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
 | 
						|
///
 | 
						|
/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
 | 
						|
/// nodes that collapse into identity values.  For example, if we have:
 | 
						|
///   x = phi(1, 0, 0, 0)
 | 
						|
///   y = and x, z
 | 
						|
///
 | 
						|
/// .. and delete the predecessor corresponding to the '1', this will attempt to
 | 
						|
/// recursively fold the and to 0.
 | 
						|
void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
 | 
						|
                                        TargetData *TD) {
 | 
						|
  // This only adjusts blocks with PHI nodes.
 | 
						|
  if (!isa<PHINode>(BB->begin()))
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
 | 
						|
  // them down.  This will leave us with single entry phi nodes and other phis
 | 
						|
  // that can be removed.
 | 
						|
  BB->removePredecessor(Pred, true);
 | 
						|
  
 | 
						|
  WeakVH PhiIt = &BB->front();
 | 
						|
  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
 | 
						|
    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
 | 
						|
 | 
						|
    Value *PNV = SimplifyInstruction(PN, TD);
 | 
						|
    if (PNV == 0) continue;
 | 
						|
 | 
						|
    // If we're able to simplify the phi to a single value, substitute the new
 | 
						|
    // value into all of its uses.
 | 
						|
    assert(PNV != PN && "SimplifyInstruction broken!");
 | 
						|
    
 | 
						|
    Value *OldPhiIt = PhiIt;
 | 
						|
    ReplaceAndSimplifyAllUses(PN, PNV, TD);
 | 
						|
    
 | 
						|
    // If recursive simplification ended up deleting the next PHI node we would
 | 
						|
    // iterate to, then our iterator is invalid, restart scanning from the top
 | 
						|
    // of the block.
 | 
						|
    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
 | 
						|
/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
 | 
						|
/// between them, moving the instructions in the predecessor into DestBB and
 | 
						|
/// deleting the predecessor block.
 | 
						|
///
 | 
						|
void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
 | 
						|
  // If BB has single-entry PHI nodes, fold them.
 | 
						|
  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
 | 
						|
    Value *NewVal = PN->getIncomingValue(0);
 | 
						|
    // Replace self referencing PHI with undef, it must be dead.
 | 
						|
    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
 | 
						|
    PN->replaceAllUsesWith(NewVal);
 | 
						|
    PN->eraseFromParent();
 | 
						|
  }
 | 
						|
  
 | 
						|
  BasicBlock *PredBB = DestBB->getSinglePredecessor();
 | 
						|
  assert(PredBB && "Block doesn't have a single predecessor!");
 | 
						|
  
 | 
						|
  // Zap anything that took the address of DestBB.  Not doing this will give the
 | 
						|
  // address an invalid value.
 | 
						|
  if (DestBB->hasAddressTaken()) {
 | 
						|
    BlockAddress *BA = BlockAddress::get(DestBB);
 | 
						|
    Constant *Replacement =
 | 
						|
      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
 | 
						|
    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
 | 
						|
                                                     BA->getType()));
 | 
						|
    BA->destroyConstant();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Anything that branched to PredBB now branches to DestBB.
 | 
						|
  PredBB->replaceAllUsesWith(DestBB);
 | 
						|
  
 | 
						|
  // Splice all the instructions from PredBB to DestBB.
 | 
						|
  PredBB->getTerminator()->eraseFromParent();
 | 
						|
  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
 | 
						|
 | 
						|
  if (P) {
 | 
						|
    DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
 | 
						|
    if (DT) {
 | 
						|
      BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
 | 
						|
      DT->changeImmediateDominator(DestBB, PredBBIDom);
 | 
						|
      DT->eraseNode(PredBB);
 | 
						|
    }
 | 
						|
    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
 | 
						|
    if (PI) {
 | 
						|
      PI->replaceAllUses(PredBB, DestBB);
 | 
						|
      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Nuke BB.
 | 
						|
  PredBB->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
 | 
						|
/// almost-empty BB ending in an unconditional branch to Succ, into succ.
 | 
						|
///
 | 
						|
/// Assumption: Succ is the single successor for BB.
 | 
						|
///
 | 
						|
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
 | 
						|
  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 
 | 
						|
        << Succ->getName() << "\n");
 | 
						|
  // Shortcut, if there is only a single predecessor it must be BB and merging
 | 
						|
  // is always safe
 | 
						|
  if (Succ->getSinglePredecessor()) return true;
 | 
						|
 | 
						|
  // Make a list of the predecessors of BB
 | 
						|
  typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
 | 
						|
  BlockSet BBPreds(pred_begin(BB), pred_end(BB));
 | 
						|
 | 
						|
  // Use that list to make another list of common predecessors of BB and Succ
 | 
						|
  BlockSet CommonPreds;
 | 
						|
  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
 | 
						|
       PI != PE; ++PI) {
 | 
						|
    BasicBlock *P = *PI;
 | 
						|
    if (BBPreds.count(P))
 | 
						|
      CommonPreds.insert(P);
 | 
						|
  }
 | 
						|
 | 
						|
  // Shortcut, if there are no common predecessors, merging is always safe
 | 
						|
  if (CommonPreds.empty())
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // Look at all the phi nodes in Succ, to see if they present a conflict when
 | 
						|
  // merging these blocks
 | 
						|
  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
 | 
						|
    // If the incoming value from BB is again a PHINode in
 | 
						|
    // BB which has the same incoming value for *PI as PN does, we can
 | 
						|
    // merge the phi nodes and then the blocks can still be merged
 | 
						|
    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
 | 
						|
    if (BBPN && BBPN->getParent() == BB) {
 | 
						|
      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
 | 
						|
            PI != PE; PI++) {
 | 
						|
        if (BBPN->getIncomingValueForBlock(*PI) 
 | 
						|
              != PN->getIncomingValueForBlock(*PI)) {
 | 
						|
          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 
 | 
						|
                << Succ->getName() << " is conflicting with " 
 | 
						|
                << BBPN->getName() << " with regard to common predecessor "
 | 
						|
                << (*PI)->getName() << "\n");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      Value* Val = PN->getIncomingValueForBlock(BB);
 | 
						|
      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
 | 
						|
            PI != PE; PI++) {
 | 
						|
        // See if the incoming value for the common predecessor is equal to the
 | 
						|
        // one for BB, in which case this phi node will not prevent the merging
 | 
						|
        // of the block.
 | 
						|
        if (Val != PN->getIncomingValueForBlock(*PI)) {
 | 
						|
          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 
 | 
						|
                << Succ->getName() << " is conflicting with regard to common "
 | 
						|
                << "predecessor " << (*PI)->getName() << "\n");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
 | 
						|
/// unconditional branch, and contains no instructions other than PHI nodes,
 | 
						|
/// potential side-effect free intrinsics and the branch.  If possible,
 | 
						|
/// eliminate BB by rewriting all the predecessors to branch to the successor
 | 
						|
/// block and return true.  If we can't transform, return false.
 | 
						|
bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
 | 
						|
  assert(BB != &BB->getParent()->getEntryBlock() &&
 | 
						|
         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
 | 
						|
 | 
						|
  // We can't eliminate infinite loops.
 | 
						|
  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
 | 
						|
  if (BB == Succ) return false;
 | 
						|
  
 | 
						|
  // Check to see if merging these blocks would cause conflicts for any of the
 | 
						|
  // phi nodes in BB or Succ. If not, we can safely merge.
 | 
						|
  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
 | 
						|
 | 
						|
  // Check for cases where Succ has multiple predecessors and a PHI node in BB
 | 
						|
  // has uses which will not disappear when the PHI nodes are merged.  It is
 | 
						|
  // possible to handle such cases, but difficult: it requires checking whether
 | 
						|
  // BB dominates Succ, which is non-trivial to calculate in the case where
 | 
						|
  // Succ has multiple predecessors.  Also, it requires checking whether
 | 
						|
  // constructing the necessary self-referential PHI node doesn't intoduce any
 | 
						|
  // conflicts; this isn't too difficult, but the previous code for doing this
 | 
						|
  // was incorrect.
 | 
						|
  //
 | 
						|
  // Note that if this check finds a live use, BB dominates Succ, so BB is
 | 
						|
  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
 | 
						|
  // folding the branch isn't profitable in that case anyway.
 | 
						|
  if (!Succ->getSinglePredecessor()) {
 | 
						|
    BasicBlock::iterator BBI = BB->begin();
 | 
						|
    while (isa<PHINode>(*BBI)) {
 | 
						|
      for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
 | 
						|
           UI != E; ++UI) {
 | 
						|
        if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
 | 
						|
          if (PN->getIncomingBlock(UI) != BB)
 | 
						|
            return false;
 | 
						|
        } else {
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      ++BBI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
 | 
						|
  
 | 
						|
  if (isa<PHINode>(Succ->begin())) {
 | 
						|
    // If there is more than one pred of succ, and there are PHI nodes in
 | 
						|
    // the successor, then we need to add incoming edges for the PHI nodes
 | 
						|
    //
 | 
						|
    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
 | 
						|
    
 | 
						|
    // Loop over all of the PHI nodes in the successor of BB.
 | 
						|
    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | 
						|
      PHINode *PN = cast<PHINode>(I);
 | 
						|
      Value *OldVal = PN->removeIncomingValue(BB, false);
 | 
						|
      assert(OldVal && "No entry in PHI for Pred BB!");
 | 
						|
      
 | 
						|
      // If this incoming value is one of the PHI nodes in BB, the new entries
 | 
						|
      // in the PHI node are the entries from the old PHI.
 | 
						|
      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
 | 
						|
        PHINode *OldValPN = cast<PHINode>(OldVal);
 | 
						|
        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
 | 
						|
          // Note that, since we are merging phi nodes and BB and Succ might
 | 
						|
          // have common predecessors, we could end up with a phi node with
 | 
						|
          // identical incoming branches. This will be cleaned up later (and
 | 
						|
          // will trigger asserts if we try to clean it up now, without also
 | 
						|
          // simplifying the corresponding conditional branch).
 | 
						|
          PN->addIncoming(OldValPN->getIncomingValue(i),
 | 
						|
                          OldValPN->getIncomingBlock(i));
 | 
						|
      } else {
 | 
						|
        // Add an incoming value for each of the new incoming values.
 | 
						|
        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
 | 
						|
          PN->addIncoming(OldVal, BBPreds[i]);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Succ->getSinglePredecessor()) {
 | 
						|
    // BB is the only predecessor of Succ, so Succ will end up with exactly
 | 
						|
    // the same predecessors BB had.
 | 
						|
 | 
						|
    // Copy over any phi, debug or lifetime instruction.
 | 
						|
    BB->getTerminator()->eraseFromParent();
 | 
						|
    Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
 | 
						|
  } else {
 | 
						|
    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
 | 
						|
      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
 | 
						|
      assert(PN->use_empty() && "There shouldn't be any uses here!");
 | 
						|
      PN->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Everything that jumped to BB now goes to Succ.
 | 
						|
  BB->replaceAllUsesWith(Succ);
 | 
						|
  if (!Succ->hasName()) Succ->takeName(BB);
 | 
						|
  BB->eraseFromParent();              // Delete the old basic block.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
 | 
						|
/// nodes in this block. This doesn't try to be clever about PHI nodes
 | 
						|
/// which differ only in the order of the incoming values, but instcombine
 | 
						|
/// orders them so it usually won't matter.
 | 
						|
///
 | 
						|
bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // This implementation doesn't currently consider undef operands
 | 
						|
  // specially. Theoretically, two phis which are identical except for
 | 
						|
  // one having an undef where the other doesn't could be collapsed.
 | 
						|
 | 
						|
  // Map from PHI hash values to PHI nodes. If multiple PHIs have
 | 
						|
  // the same hash value, the element is the first PHI in the
 | 
						|
  // linked list in CollisionMap.
 | 
						|
  DenseMap<uintptr_t, PHINode *> HashMap;
 | 
						|
 | 
						|
  // Maintain linked lists of PHI nodes with common hash values.
 | 
						|
  DenseMap<PHINode *, PHINode *> CollisionMap;
 | 
						|
 | 
						|
  // Examine each PHI.
 | 
						|
  for (BasicBlock::iterator I = BB->begin();
 | 
						|
       PHINode *PN = dyn_cast<PHINode>(I++); ) {
 | 
						|
    // Compute a hash value on the operands. Instcombine will likely have sorted
 | 
						|
    // them, which helps expose duplicates, but we have to check all the
 | 
						|
    // operands to be safe in case instcombine hasn't run.
 | 
						|
    uintptr_t Hash = 0;
 | 
						|
    // This hash algorithm is quite weak as hash functions go, but it seems
 | 
						|
    // to do a good enough job for this particular purpose, and is very quick.
 | 
						|
    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
 | 
						|
      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
 | 
						|
      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
 | 
						|
    }
 | 
						|
    for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
 | 
						|
      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
 | 
						|
    }
 | 
						|
    // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
 | 
						|
    Hash >>= 1;
 | 
						|
    // If we've never seen this hash value before, it's a unique PHI.
 | 
						|
    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
 | 
						|
      HashMap.insert(std::make_pair(Hash, PN));
 | 
						|
    if (Pair.second) continue;
 | 
						|
    // Otherwise it's either a duplicate or a hash collision.
 | 
						|
    for (PHINode *OtherPN = Pair.first->second; ; ) {
 | 
						|
      if (OtherPN->isIdenticalTo(PN)) {
 | 
						|
        // A duplicate. Replace this PHI with its duplicate.
 | 
						|
        PN->replaceAllUsesWith(OtherPN);
 | 
						|
        PN->eraseFromParent();
 | 
						|
        Changed = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // A non-duplicate hash collision.
 | 
						|
      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
 | 
						|
      if (I == CollisionMap.end()) {
 | 
						|
        // Set this PHI to be the head of the linked list of colliding PHIs.
 | 
						|
        PHINode *Old = Pair.first->second;
 | 
						|
        Pair.first->second = PN;
 | 
						|
        CollisionMap[PN] = Old;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // Procede to the next PHI in the list.
 | 
						|
      OtherPN = I->second;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// enforceKnownAlignment - If the specified pointer points to an object that
 | 
						|
/// we control, modify the object's alignment to PrefAlign. This isn't
 | 
						|
/// often possible though. If alignment is important, a more reliable approach
 | 
						|
/// is to simply align all global variables and allocation instructions to
 | 
						|
/// their preferred alignment from the beginning.
 | 
						|
///
 | 
						|
static unsigned enforceKnownAlignment(Value *V, unsigned Align,
 | 
						|
                                      unsigned PrefAlign, const TargetData *TD) {
 | 
						|
  V = V->stripPointerCasts();
 | 
						|
 | 
						|
  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | 
						|
    // If the preferred alignment is greater than the natural stack alignment
 | 
						|
    // then don't round up. This avoids dynamic stack realignment.
 | 
						|
    if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
 | 
						|
      return Align;
 | 
						|
    // If there is a requested alignment and if this is an alloca, round up.
 | 
						|
    if (AI->getAlignment() >= PrefAlign)
 | 
						|
      return AI->getAlignment();
 | 
						|
    AI->setAlignment(PrefAlign);
 | 
						|
    return PrefAlign;
 | 
						|
  }
 | 
						|
 | 
						|
  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
    // If there is a large requested alignment and we can, bump up the alignment
 | 
						|
    // of the global.
 | 
						|
    if (GV->isDeclaration()) return Align;
 | 
						|
    
 | 
						|
    if (GV->getAlignment() >= PrefAlign)
 | 
						|
      return GV->getAlignment();
 | 
						|
    // We can only increase the alignment of the global if it has no alignment
 | 
						|
    // specified or if it is not assigned a section.  If it is assigned a
 | 
						|
    // section, the global could be densely packed with other objects in the
 | 
						|
    // section, increasing the alignment could cause padding issues.
 | 
						|
    if (!GV->hasSection() || GV->getAlignment() == 0)
 | 
						|
      GV->setAlignment(PrefAlign);
 | 
						|
    return GV->getAlignment();
 | 
						|
  }
 | 
						|
 | 
						|
  return Align;
 | 
						|
}
 | 
						|
 | 
						|
/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
 | 
						|
/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
 | 
						|
/// and it is more than the alignment of the ultimate object, see if we can
 | 
						|
/// increase the alignment of the ultimate object, making this check succeed.
 | 
						|
unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
 | 
						|
                                          const TargetData *TD) {
 | 
						|
  assert(V->getType()->isPointerTy() &&
 | 
						|
         "getOrEnforceKnownAlignment expects a pointer!");
 | 
						|
  unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
 | 
						|
  APInt Mask = APInt::getAllOnesValue(BitWidth);
 | 
						|
  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | 
						|
  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
 | 
						|
  unsigned TrailZ = KnownZero.countTrailingOnes();
 | 
						|
  
 | 
						|
  // Avoid trouble with rediculously large TrailZ values, such as
 | 
						|
  // those computed from a null pointer.
 | 
						|
  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
 | 
						|
  
 | 
						|
  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
 | 
						|
  
 | 
						|
  // LLVM doesn't support alignments larger than this currently.
 | 
						|
  Align = std::min(Align, +Value::MaximumAlignment);
 | 
						|
  
 | 
						|
  if (PrefAlign > Align)
 | 
						|
    Align = enforceKnownAlignment(V, Align, PrefAlign, TD);
 | 
						|
    
 | 
						|
  // We don't need to make any adjustment.
 | 
						|
  return Align;
 | 
						|
}
 | 
						|
 | 
						|
///===---------------------------------------------------------------------===//
 | 
						|
///  Dbg Intrinsic utilities
 | 
						|
///
 | 
						|
 | 
						|
/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
 | 
						|
/// that has an associated llvm.dbg.decl intrinsic.
 | 
						|
bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
 | 
						|
                                           StoreInst *SI, DIBuilder &Builder) {
 | 
						|
  DIVariable DIVar(DDI->getVariable());
 | 
						|
  if (!DIVar.Verify())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Instruction *DbgVal = NULL;
 | 
						|
  // If an argument is zero extended then use argument directly. The ZExt
 | 
						|
  // may be zapped by an optimization pass in future.
 | 
						|
  Argument *ExtendedArg = NULL;
 | 
						|
  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
 | 
						|
    ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
 | 
						|
  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
 | 
						|
    ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
 | 
						|
  if (ExtendedArg)
 | 
						|
    DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
 | 
						|
  else
 | 
						|
    DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
 | 
						|
 | 
						|
  // Propagate any debug metadata from the store onto the dbg.value.
 | 
						|
  DebugLoc SIDL = SI->getDebugLoc();
 | 
						|
  if (!SIDL.isUnknown())
 | 
						|
    DbgVal->setDebugLoc(SIDL);
 | 
						|
  // Otherwise propagate debug metadata from dbg.declare.
 | 
						|
  else
 | 
						|
    DbgVal->setDebugLoc(DDI->getDebugLoc());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
 | 
						|
/// that has an associated llvm.dbg.decl intrinsic.
 | 
						|
bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
 | 
						|
                                           LoadInst *LI, DIBuilder &Builder) {
 | 
						|
  DIVariable DIVar(DDI->getVariable());
 | 
						|
  if (!DIVar.Verify())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Instruction *DbgVal = 
 | 
						|
    Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
 | 
						|
                                    DIVar, LI);
 | 
						|
  
 | 
						|
  // Propagate any debug metadata from the store onto the dbg.value.
 | 
						|
  DebugLoc LIDL = LI->getDebugLoc();
 | 
						|
  if (!LIDL.isUnknown())
 | 
						|
    DbgVal->setDebugLoc(LIDL);
 | 
						|
  // Otherwise propagate debug metadata from dbg.declare.
 | 
						|
  else
 | 
						|
    DbgVal->setDebugLoc(DDI->getDebugLoc());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
 | 
						|
/// of llvm.dbg.value intrinsics.
 | 
						|
bool llvm::LowerDbgDeclare(Function &F) {
 | 
						|
  DIBuilder DIB(*F.getParent());
 | 
						|
  SmallVector<DbgDeclareInst *, 4> Dbgs;
 | 
						|
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
 | 
						|
    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
 | 
						|
      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
 | 
						|
        Dbgs.push_back(DDI);
 | 
						|
    }
 | 
						|
  if (Dbgs.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
 | 
						|
         E = Dbgs.end(); I != E; ++I) {
 | 
						|
    DbgDeclareInst *DDI = *I;
 | 
						|
    if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
 | 
						|
      bool RemoveDDI = true;
 | 
						|
      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
 | 
						|
           UI != E; ++UI)
 | 
						|
        if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
 | 
						|
          ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
 | 
						|
        else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
 | 
						|
          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
 | 
						|
        else
 | 
						|
          RemoveDDI = false;
 | 
						|
      if (RemoveDDI)
 | 
						|
        DDI->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
 | 
						|
/// alloca 'V', if any.
 | 
						|
DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
 | 
						|
  if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
 | 
						|
    for (Value::use_iterator UI = DebugNode->use_begin(),
 | 
						|
         E = DebugNode->use_end(); UI != E; ++UI)
 | 
						|
      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
 | 
						|
        return DDI;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 |