mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-03 13:31:05 +00:00
61114619bc
`-> asm printer updated to not print out those registers with the call instr All of Shootout tests now work. Great thanks to Nate Begeman for the patch! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15015 91177308-0d34-0410-b5e6-96231b3b80d8
692 lines
23 KiB
C++
692 lines
23 KiB
C++
//===-- Printer.cpp - Convert LLVM code to PowerPC assembly ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a printer that converts from our internal representation
|
|
// of machine-dependent LLVM code to PowerPC assembly language. This printer is
|
|
// the output mechanism used by `llc' and `lli -print-machineinstrs'.
|
|
//
|
|
// Documentation at http://developer.apple.com/documentation/DeveloperTools/
|
|
// Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "asmprinter"
|
|
#include "PowerPC.h"
|
|
#include "PowerPCInstrInfo.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/Mangler.h"
|
|
#include "Support/CommandLine.h"
|
|
#include "Support/Debug.h"
|
|
#include "Support/Statistic.h"
|
|
#include "Support/StringExtras.h"
|
|
#include <set>
|
|
|
|
namespace llvm {
|
|
|
|
namespace {
|
|
Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
|
|
|
|
struct Printer : public MachineFunctionPass {
|
|
/// Output stream on which we're printing assembly code.
|
|
///
|
|
std::ostream &O;
|
|
|
|
/// Target machine description which we query for reg. names, data
|
|
/// layout, etc.
|
|
///
|
|
TargetMachine &TM;
|
|
|
|
/// Name-mangler for global names.
|
|
///
|
|
Mangler *Mang;
|
|
std::set<std::string> FnStubs, GVStubs;
|
|
std::set<std::string> Strings;
|
|
|
|
Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm), labelNumber(0)
|
|
{ }
|
|
|
|
/// Cache of mangled name for current function. This is
|
|
/// recalculated at the beginning of each call to
|
|
/// runOnMachineFunction().
|
|
///
|
|
std::string CurrentFnName;
|
|
|
|
/// Unique incrementer for label values for referencing
|
|
/// Global values.
|
|
///
|
|
unsigned int labelNumber;
|
|
|
|
virtual const char *getPassName() const {
|
|
return "PowerPC Assembly Printer";
|
|
}
|
|
|
|
void printMachineInstruction(const MachineInstr *MI);
|
|
void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false);
|
|
void printConstantPool(MachineConstantPool *MCP);
|
|
bool runOnMachineFunction(MachineFunction &F);
|
|
bool doInitialization(Module &M);
|
|
bool doFinalization(Module &M);
|
|
void emitGlobalConstant(const Constant* CV);
|
|
void emitConstantValueOnly(const Constant *CV);
|
|
};
|
|
} // end of anonymous namespace
|
|
|
|
/// createPPCCodePrinterPass - Returns a pass that prints the PPC
|
|
/// assembly code for a MachineFunction to the given output stream,
|
|
/// using the given target machine description. This should work
|
|
/// regardless of whether the function is in SSA form.
|
|
///
|
|
FunctionPass *createPPCCodePrinterPass(std::ostream &o,TargetMachine &tm) {
|
|
return new Printer(o, tm);
|
|
}
|
|
|
|
/// isStringCompatible - Can we treat the specified array as a string?
|
|
/// Only if it is an array of ubytes or non-negative sbytes.
|
|
///
|
|
static bool isStringCompatible(const ConstantArray *CVA) {
|
|
const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
|
|
if (ETy == Type::UByteTy) return true;
|
|
if (ETy != Type::SByteTy) return false;
|
|
|
|
for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
|
|
if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// toOctal - Convert the low order bits of X into an octal digit.
|
|
///
|
|
static inline char toOctal(int X) {
|
|
return (X&7)+'0';
|
|
}
|
|
|
|
/// getAsCString - Return the specified array as a C compatible
|
|
/// string, only if the predicate isStringCompatible is true.
|
|
///
|
|
static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
|
|
assert(isStringCompatible(CVA) && "Array is not string compatible!");
|
|
|
|
O << "\"";
|
|
for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
|
|
unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
|
|
|
|
if (C == '"') {
|
|
O << "\\\"";
|
|
} else if (C == '\\') {
|
|
O << "\\\\";
|
|
} else if (isprint(C)) {
|
|
O << C;
|
|
} else {
|
|
switch(C) {
|
|
case '\b': O << "\\b"; break;
|
|
case '\f': O << "\\f"; break;
|
|
case '\n': O << "\\n"; break;
|
|
case '\r': O << "\\r"; break;
|
|
case '\t': O << "\\t"; break;
|
|
default:
|
|
O << '\\';
|
|
O << toOctal(C >> 6);
|
|
O << toOctal(C >> 3);
|
|
O << toOctal(C >> 0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
O << "\"";
|
|
}
|
|
|
|
// Print out the specified constant, without a storage class. Only the
|
|
// constants valid in constant expressions can occur here.
|
|
void Printer::emitConstantValueOnly(const Constant *CV) {
|
|
if (CV->isNullValue())
|
|
O << "0";
|
|
else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
|
|
assert(CB == ConstantBool::True);
|
|
O << "1";
|
|
} else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
|
|
O << CI->getValue();
|
|
else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
|
|
O << CI->getValue();
|
|
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
|
|
// This is a constant address for a global variable or function. Use the
|
|
// name of the variable or function as the address value.
|
|
O << Mang->getValueName(GV);
|
|
else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
|
|
const TargetData &TD = TM.getTargetData();
|
|
switch(CE->getOpcode()) {
|
|
case Instruction::GetElementPtr: {
|
|
// generate a symbolic expression for the byte address
|
|
const Constant *ptrVal = CE->getOperand(0);
|
|
std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
|
|
if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
|
|
O << "(";
|
|
emitConstantValueOnly(ptrVal);
|
|
O << ") + " << Offset;
|
|
} else {
|
|
emitConstantValueOnly(ptrVal);
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::Cast: {
|
|
// Support only non-converting or widening casts for now, that is, ones
|
|
// that do not involve a change in value. This assertion is really gross,
|
|
// and may not even be a complete check.
|
|
Constant *Op = CE->getOperand(0);
|
|
const Type *OpTy = Op->getType(), *Ty = CE->getType();
|
|
|
|
// Remember, kids, pointers on x86 can be losslessly converted back and
|
|
// forth into 32-bit or wider integers, regardless of signedness. :-P
|
|
assert(((isa<PointerType>(OpTy)
|
|
&& (Ty == Type::LongTy || Ty == Type::ULongTy
|
|
|| Ty == Type::IntTy || Ty == Type::UIntTy))
|
|
|| (isa<PointerType>(Ty)
|
|
&& (OpTy == Type::LongTy || OpTy == Type::ULongTy
|
|
|| OpTy == Type::IntTy || OpTy == Type::UIntTy))
|
|
|| (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
|
|
&& OpTy->isLosslesslyConvertibleTo(Ty))))
|
|
&& "FIXME: Don't yet support this kind of constant cast expr");
|
|
O << "(";
|
|
emitConstantValueOnly(Op);
|
|
O << ")";
|
|
break;
|
|
}
|
|
case Instruction::Add:
|
|
O << "(";
|
|
emitConstantValueOnly(CE->getOperand(0));
|
|
O << ") + (";
|
|
emitConstantValueOnly(CE->getOperand(1));
|
|
O << ")";
|
|
break;
|
|
default:
|
|
assert(0 && "Unsupported operator!");
|
|
}
|
|
} else {
|
|
assert(0 && "Unknown constant value!");
|
|
}
|
|
}
|
|
|
|
// Print a constant value or values, with the appropriate storage class as a
|
|
// prefix.
|
|
void Printer::emitGlobalConstant(const Constant *CV) {
|
|
const TargetData &TD = TM.getTargetData();
|
|
|
|
if (CV->isNullValue()) {
|
|
O << "\t.space\t " << TD.getTypeSize(CV->getType()) << "\n";
|
|
return;
|
|
} else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
|
|
if (isStringCompatible(CVA)) {
|
|
O << "\t.ascii ";
|
|
printAsCString(O, CVA);
|
|
O << "\n";
|
|
} else { // Not a string. Print the values in successive locations
|
|
const std::vector<Use> &constValues = CVA->getValues();
|
|
for (unsigned i=0; i < constValues.size(); i++)
|
|
emitGlobalConstant(cast<Constant>(constValues[i].get()));
|
|
}
|
|
return;
|
|
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
|
|
// Print the fields in successive locations. Pad to align if needed!
|
|
const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
|
|
const std::vector<Use>& constValues = CVS->getValues();
|
|
unsigned sizeSoFar = 0;
|
|
for (unsigned i=0, N = constValues.size(); i < N; i++) {
|
|
const Constant* field = cast<Constant>(constValues[i].get());
|
|
|
|
// Check if padding is needed and insert one or more 0s.
|
|
unsigned fieldSize = TD.getTypeSize(field->getType());
|
|
unsigned padSize = ((i == N-1? cvsLayout->StructSize
|
|
: cvsLayout->MemberOffsets[i+1])
|
|
- cvsLayout->MemberOffsets[i]) - fieldSize;
|
|
sizeSoFar += fieldSize + padSize;
|
|
|
|
// Now print the actual field value
|
|
emitGlobalConstant(field);
|
|
|
|
// Insert the field padding unless it's zero bytes...
|
|
if (padSize)
|
|
O << "\t.space\t " << padSize << "\n";
|
|
}
|
|
assert(sizeSoFar == cvsLayout->StructSize &&
|
|
"Layout of constant struct may be incorrect!");
|
|
return;
|
|
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
|
|
// FP Constants are printed as integer constants to avoid losing
|
|
// precision...
|
|
double Val = CFP->getValue();
|
|
switch (CFP->getType()->getTypeID()) {
|
|
default: assert(0 && "Unknown floating point type!");
|
|
case Type::FloatTyID: {
|
|
union FU { // Abide by C TBAA rules
|
|
float FVal;
|
|
unsigned UVal;
|
|
} U;
|
|
U.FVal = Val;
|
|
O << ".long\t" << U.UVal << "\t; float " << Val << "\n";
|
|
return;
|
|
}
|
|
case Type::DoubleTyID: {
|
|
union DU { // Abide by C TBAA rules
|
|
double FVal;
|
|
uint64_t UVal;
|
|
struct {
|
|
uint32_t MSWord;
|
|
uint32_t LSWord;
|
|
} T;
|
|
} U;
|
|
U.FVal = Val;
|
|
|
|
O << ".long\t" << U.T.MSWord << "\t; double most significant word "
|
|
<< Val << "\n";
|
|
O << ".long\t" << U.T.LSWord << "\t; double least significant word "
|
|
<< Val << "\n";
|
|
return;
|
|
}
|
|
}
|
|
} else if (CV->getType()->getPrimitiveSize() == 64) {
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
|
|
union DU { // Abide by C TBAA rules
|
|
int64_t UVal;
|
|
struct {
|
|
uint32_t MSWord;
|
|
uint32_t LSWord;
|
|
} T;
|
|
} U;
|
|
U.UVal = CI->getRawValue();
|
|
|
|
O << ".long\t" << U.T.MSWord << "\t; Double-word most significant word "
|
|
<< U.UVal << "\n";
|
|
O << ".long\t" << U.T.LSWord << "\t; Double-word least significant word "
|
|
<< U.UVal << "\n";
|
|
return;
|
|
}
|
|
}
|
|
|
|
const Type *type = CV->getType();
|
|
O << "\t";
|
|
switch (type->getTypeID()) {
|
|
case Type::UByteTyID: case Type::SByteTyID:
|
|
O << ".byte";
|
|
break;
|
|
case Type::UShortTyID: case Type::ShortTyID:
|
|
O << ".short";
|
|
break;
|
|
case Type::BoolTyID:
|
|
case Type::PointerTyID:
|
|
case Type::UIntTyID: case Type::IntTyID:
|
|
O << ".long";
|
|
break;
|
|
case Type::ULongTyID: case Type::LongTyID:
|
|
assert (0 && "Should have already output double-word constant.");
|
|
case Type::FloatTyID: case Type::DoubleTyID:
|
|
assert (0 && "Should have already output floating point constant.");
|
|
default:
|
|
assert (0 && "Can't handle printing this type of thing");
|
|
break;
|
|
}
|
|
O << "\t";
|
|
emitConstantValueOnly(CV);
|
|
O << "\n";
|
|
}
|
|
|
|
/// printConstantPool - Print to the current output stream assembly
|
|
/// representations of the constants in the constant pool MCP. This is
|
|
/// used to print out constants which have been "spilled to memory" by
|
|
/// the code generator.
|
|
///
|
|
void Printer::printConstantPool(MachineConstantPool *MCP) {
|
|
const std::vector<Constant*> &CP = MCP->getConstants();
|
|
const TargetData &TD = TM.getTargetData();
|
|
|
|
if (CP.empty()) return;
|
|
|
|
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
|
|
O << "\t.const\n";
|
|
O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
|
|
<< "\n";
|
|
O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t;"
|
|
<< *CP[i] << "\n";
|
|
emitGlobalConstant(CP[i]);
|
|
}
|
|
}
|
|
|
|
/// runOnMachineFunction - This uses the printMachineInstruction()
|
|
/// method to print assembly for each instruction.
|
|
///
|
|
bool Printer::runOnMachineFunction(MachineFunction &MF) {
|
|
O << "\n\n";
|
|
// What's my mangled name?
|
|
CurrentFnName = Mang->getValueName(MF.getFunction());
|
|
|
|
// Print out constants referenced by the function
|
|
printConstantPool(MF.getConstantPool());
|
|
|
|
// Print out labels for the function.
|
|
O << "\t.text\n";
|
|
O << "\t.globl\t" << CurrentFnName << "\n";
|
|
O << "\t.align 2\n";
|
|
O << CurrentFnName << ":\n";
|
|
|
|
// Print out code for the function.
|
|
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
|
|
I != E; ++I) {
|
|
// Print a label for the basic block.
|
|
O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t; "
|
|
<< I->getBasicBlock()->getName() << "\n";
|
|
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
|
|
II != E; ++II) {
|
|
// Print the assembly for the instruction.
|
|
O << "\t";
|
|
printMachineInstruction(II);
|
|
}
|
|
}
|
|
|
|
// We didn't modify anything.
|
|
return false;
|
|
}
|
|
|
|
void Printer::printOp(const MachineOperand &MO,
|
|
bool elideOffsetKeyword /* = false */) {
|
|
const MRegisterInfo &RI = *TM.getRegisterInfo();
|
|
int new_symbol;
|
|
|
|
switch (MO.getType()) {
|
|
case MachineOperand::MO_VirtualRegister:
|
|
if (Value *V = MO.getVRegValueOrNull()) {
|
|
O << "<" << V->getName() << ">";
|
|
return;
|
|
}
|
|
// FALLTHROUGH
|
|
case MachineOperand::MO_MachineRegister:
|
|
case MachineOperand::MO_CCRegister:
|
|
O << LowercaseString(RI.get(MO.getReg()).Name);
|
|
return;
|
|
|
|
case MachineOperand::MO_SignExtendedImmed:
|
|
case MachineOperand::MO_UnextendedImmed:
|
|
O << (int)MO.getImmedValue();
|
|
return;
|
|
|
|
case MachineOperand::MO_PCRelativeDisp:
|
|
std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs";
|
|
abort();
|
|
return;
|
|
|
|
case MachineOperand::MO_MachineBasicBlock: {
|
|
MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
|
|
O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
|
|
<< "_" << MBBOp->getNumber() << "\t; "
|
|
<< MBBOp->getBasicBlock()->getName();
|
|
return;
|
|
}
|
|
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
O << ".CPI" << CurrentFnName << "_" << MO.getConstantPoolIndex();
|
|
return;
|
|
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
O << MO.getSymbolName();
|
|
return;
|
|
|
|
case MachineOperand::MO_GlobalAddress:
|
|
if (!elideOffsetKeyword) {
|
|
GlobalValue *GV = MO.getGlobal();
|
|
std::string Name = Mang->getValueName(GV);
|
|
// Dynamically-resolved functions need a stub for the function
|
|
Function *F = dyn_cast<Function>(GV);
|
|
if (F && F->isExternal()) {
|
|
FnStubs.insert(Name);
|
|
O << "L" << Name << "$stub";
|
|
} else {
|
|
GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
|
|
// External global variables need a non-lazily-resolved stub
|
|
if (GVar && GVar->isExternal()) {
|
|
GVStubs.insert(Name);
|
|
O << "L" << Name << "$non_lazy_ptr";
|
|
} else
|
|
O << Mang->getValueName(GV);
|
|
}
|
|
}
|
|
return;
|
|
|
|
default:
|
|
O << "<unknown operand type: " << MO.getType() << ">";
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// printMachineInstruction -- Print out a single PPC32 LLVM instruction
|
|
/// MI in Darwin syntax to the current output stream.
|
|
///
|
|
void Printer::printMachineInstruction(const MachineInstr *MI) {
|
|
unsigned Opcode = MI->getOpcode();
|
|
const TargetInstrInfo &TII = *TM.getInstrInfo();
|
|
const TargetInstrDescriptor &Desc = TII.get(Opcode);
|
|
unsigned int i;
|
|
|
|
unsigned int ArgCount = MI->getNumOperands();
|
|
//Desc.TSFlags & PPC32II::ArgCountMask;
|
|
unsigned int ArgType[] = {
|
|
(Desc.TSFlags >> PPC32II::Arg0TypeShift) & PPC32II::ArgTypeMask,
|
|
(Desc.TSFlags >> PPC32II::Arg1TypeShift) & PPC32II::ArgTypeMask,
|
|
(Desc.TSFlags >> PPC32II::Arg2TypeShift) & PPC32II::ArgTypeMask,
|
|
(Desc.TSFlags >> PPC32II::Arg3TypeShift) & PPC32II::ArgTypeMask,
|
|
(Desc.TSFlags >> PPC32II::Arg4TypeShift) & PPC32II::ArgTypeMask
|
|
};
|
|
assert(((Desc.TSFlags & PPC32II::VMX) == 0) &&
|
|
"Instruction requires VMX support");
|
|
assert(((Desc.TSFlags & PPC32II::PPC64) == 0) &&
|
|
"Instruction requires 64 bit support");
|
|
++EmittedInsts;
|
|
|
|
// CALLpcrel and CALLindirect are handled specially here to print only the
|
|
// appropriate number of args that the assembler expects. This is because
|
|
// may have many arguments appended to record the uses of registers that are
|
|
// holding arguments to the called function.
|
|
if (Opcode == PPC32::IMPLICIT_DEF) {
|
|
O << "; IMPLICIT DEF ";
|
|
printOp(MI->getOperand(0));
|
|
O << "\n";
|
|
return;
|
|
} else if (Opcode == PPC32::CALLpcrel) {
|
|
O << TII.getName(MI->getOpcode()) << " ";
|
|
printOp(MI->getOperand(0));
|
|
O << "\n";
|
|
return;
|
|
} else if (Opcode == PPC32::CALLindirect) {
|
|
O << TII.getName(MI->getOpcode()) << " ";
|
|
printOp(MI->getOperand(0));
|
|
O << ", ";
|
|
printOp(MI->getOperand(1));
|
|
O << "\n";
|
|
return;
|
|
} else if (Opcode == PPC32::MovePCtoLR) {
|
|
// FIXME: should probably be converted to cout.width and cout.fill
|
|
O << "bl \"L0000" << labelNumber << "$pb\"\n";
|
|
O << "\"L0000" << labelNumber << "$pb\":\n";
|
|
O << "\tmflr ";
|
|
printOp(MI->getOperand(0));
|
|
O << "\n";
|
|
return;
|
|
}
|
|
|
|
O << TII.getName(MI->getOpcode()) << " ";
|
|
if (Opcode == PPC32::LOADLoAddr) {
|
|
printOp(MI->getOperand(0));
|
|
O << ", lo16(";
|
|
printOp(MI->getOperand(2));
|
|
O << "-\"L0000" << labelNumber << "$pb\")";
|
|
labelNumber++;
|
|
O << "(";
|
|
if (MI->getOperand(1).getReg() == PPC32::R0)
|
|
O << "0";
|
|
else
|
|
printOp(MI->getOperand(1));
|
|
O << ")\n";
|
|
} else if (Opcode == PPC32::LOADHiAddr) {
|
|
printOp(MI->getOperand(0));
|
|
O << ", ";
|
|
if (MI->getOperand(1).getReg() == PPC32::R0)
|
|
O << "0";
|
|
else
|
|
printOp(MI->getOperand(1));
|
|
O << ", ha16(" ;
|
|
printOp(MI->getOperand(2));
|
|
O << "-\"L0000" << labelNumber << "$pb\")\n";
|
|
} else if (ArgCount == 3 && ArgType[1] == PPC32II::Disimm16) {
|
|
printOp(MI->getOperand(0));
|
|
O << ", ";
|
|
printOp(MI->getOperand(1));
|
|
O << "(";
|
|
if (MI->getOperand(2).hasAllocatedReg() &&
|
|
MI->getOperand(2).getReg() == PPC32::R0)
|
|
O << "0";
|
|
else
|
|
printOp(MI->getOperand(2));
|
|
O << ")\n";
|
|
} else {
|
|
for (i = 0; i < ArgCount; ++i) {
|
|
if (i == 1 && ArgCount == 3 && ArgType[2] == PPC32II::Simm16 &&
|
|
MI->getOperand(1).hasAllocatedReg() &&
|
|
MI->getOperand(1).getReg() == PPC32::R0) {
|
|
O << "0";
|
|
} else {
|
|
printOp(MI->getOperand(i));
|
|
}
|
|
if (ArgCount - 1 == i)
|
|
O << "\n";
|
|
else
|
|
O << ", ";
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Printer::doInitialization(Module &M) {
|
|
Mang = new Mangler(M, true);
|
|
return false; // success
|
|
}
|
|
|
|
// SwitchSection - Switch to the specified section of the executable if we are
|
|
// not already in it!
|
|
//
|
|
static void SwitchSection(std::ostream &OS, std::string &CurSection,
|
|
const char *NewSection) {
|
|
if (CurSection != NewSection) {
|
|
CurSection = NewSection;
|
|
if (!CurSection.empty())
|
|
OS << "\t" << NewSection << "\n";
|
|
}
|
|
}
|
|
|
|
bool Printer::doFinalization(Module &M) {
|
|
const TargetData &TD = TM.getTargetData();
|
|
std::string CurSection;
|
|
|
|
// Print out module-level global variables here.
|
|
for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
|
|
if (I->hasInitializer()) { // External global require no code
|
|
O << "\n\n";
|
|
std::string name = Mang->getValueName(I);
|
|
Constant *C = I->getInitializer();
|
|
unsigned Size = TD.getTypeSize(C->getType());
|
|
unsigned Align = TD.getTypeAlignment(C->getType());
|
|
|
|
if (C->isNullValue() &&
|
|
(I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
|
|
I->hasWeakLinkage() /* FIXME: Verify correct */)) {
|
|
SwitchSection(O, CurSection, ".data");
|
|
if (I->hasInternalLinkage())
|
|
O << "\t.lcomm " << name << "," << TD.getTypeSize(C->getType())
|
|
<< "," << (unsigned)TD.getTypeAlignment(C->getType());
|
|
else
|
|
O << "\t.comm " << name << "," << TD.getTypeSize(C->getType());
|
|
O << "\t\t; ";
|
|
WriteAsOperand(O, I, true, true, &M);
|
|
O << "\n";
|
|
} else {
|
|
switch (I->getLinkage()) {
|
|
case GlobalValue::LinkOnceLinkage:
|
|
case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak.
|
|
// Nonnull linkonce -> weak
|
|
O << "\t.weak " << name << "\n";
|
|
SwitchSection(O, CurSection, "");
|
|
O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
|
|
break;
|
|
|
|
case GlobalValue::AppendingLinkage:
|
|
// FIXME: appending linkage variables should go into a section of
|
|
// their name or something. For now, just emit them as external.
|
|
case GlobalValue::ExternalLinkage:
|
|
// If external or appending, declare as a global symbol
|
|
O << "\t.globl " << name << "\n";
|
|
// FALL THROUGH
|
|
case GlobalValue::InternalLinkage:
|
|
SwitchSection(O, CurSection, ".data");
|
|
break;
|
|
}
|
|
|
|
O << "\t.align " << Align << "\n";
|
|
O << name << ":\t\t\t\t; ";
|
|
WriteAsOperand(O, I, true, true, &M);
|
|
O << " = ";
|
|
WriteAsOperand(O, C, false, false, &M);
|
|
O << "\n";
|
|
emitGlobalConstant(C);
|
|
}
|
|
}
|
|
|
|
// Output stubs for dynamically-linked functions
|
|
for (std::set<std::string>::iterator i = FnStubs.begin(), e = FnStubs.end();
|
|
i != e; ++i)
|
|
{
|
|
O << "\t.picsymbol_stub\n";
|
|
O << "L" << *i << "$stub:\n";
|
|
O << "\t.indirect_symbol " << *i << "\n";
|
|
O << "\tmflr r0\n";
|
|
O << "\tbl L0$" << *i << "\n";
|
|
O << "L0$" << *i << ":\n";
|
|
O << "\tmflr r11\n";
|
|
O << "\taddis r11,r11,ha16(L" << *i << "$lazy_ptr-L0$" << *i << ")\n";
|
|
O << "\tmtlr r0\n";
|
|
O << "\tlwz r12,lo16(L" << *i << "$lazy_ptr-L0$" << *i << ")(r11)\n";
|
|
O << "\tmtctr r12\n";
|
|
O << "\taddi r11,r11,lo16(L" << *i << "$lazy_ptr - L0$" << *i << ")\n";
|
|
O << "\tbctr\n";
|
|
O << ".data\n";
|
|
O << ".lazy_symbol_pointer\n";
|
|
O << "L" << *i << "$lazy_ptr:\n";
|
|
O << ".indirect_symbol " << *i << "\n";
|
|
O << ".long dyld_stub_binding_helper\n";
|
|
}
|
|
|
|
O << "\n";
|
|
|
|
// Output stubs for external global variables
|
|
if (GVStubs.begin() != GVStubs.end())
|
|
O << "\t.non_lazy_symbol_pointer\n";
|
|
for (std::set<std::string>::iterator i = GVStubs.begin(), e = GVStubs.end();
|
|
i != e; ++i) {
|
|
O << "L" << *i << "$non_lazy_ptr:\n";
|
|
O << "\t.indirect_symbol " << *i << "\n";
|
|
O << "\t.long\t0\n";
|
|
}
|
|
|
|
delete Mang;
|
|
return false; // success
|
|
}
|
|
|
|
} // End llvm namespace
|