llvm-6502/lib/Transforms/Scalar/GCSE.cpp
2002-08-22 18:24:48 +00:00

459 lines
17 KiB
C++

//===-- GCSE.cpp - SSA based Global Common Subexpr Elimination ------------===//
//
// This pass is designed to be a very quick global transformation that
// eliminates global common subexpressions from a function. It does this by
// examining the SSA value graph of the function, instead of doing slow, dense,
// bit-vector computations.
//
// This pass works best if it is proceeded with a simple constant propogation
// pass and an instruction combination pass because this pass does not do any
// value numbering (in order to be speedy).
//
// This pass does not attempt to CSE load instructions, because it does not use
// pointer analysis to determine when it is safe.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/InstrTypes.h"
#include "llvm/iMemory.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/CFG.h"
#include "Support/StatisticReporter.h"
#include <algorithm>
using std::set;
using std::map;
static Statistic<> NumInstRemoved("gcse\t\t- Number of instructions removed");
static Statistic<> NumLoadRemoved("gcse\t\t- Number of loads removed");
namespace {
class GCSE : public FunctionPass, public InstVisitor<GCSE, bool> {
set<Instruction*> WorkList;
DominatorSet *DomSetInfo;
ImmediateDominators *ImmDominator;
AliasAnalysis *AA;
public:
virtual bool runOnFunction(Function &F);
// Visitation methods, these are invoked depending on the type of
// instruction being checked. They should return true if a common
// subexpression was folded.
//
bool visitBinaryOperator(Instruction &I);
bool visitGetElementPtrInst(GetElementPtrInst &I);
bool visitCastInst(CastInst &I);
bool visitShiftInst(ShiftInst &I) {
return visitBinaryOperator((Instruction&)I);
}
bool visitLoadInst(LoadInst &LI);
bool visitInstruction(Instruction &) { return false; }
private:
void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI);
bool CommonSubExpressionFound(Instruction *I, Instruction *Other);
// TryToRemoveALoad - Try to remove one of L1 or L2. The problem with
// removing loads is that intervening stores might make otherwise identical
// load's yield different values. To ensure that this is not the case, we
// check that there are no intervening stores or calls between the
// instructions.
//
bool TryToRemoveALoad(LoadInst *L1, LoadInst *L2);
// CheckForInvalidatingInst - Return true if BB or any of the predecessors
// of BB (until DestBB) contain an instruction that might invalidate Ptr.
//
bool CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB,
Value *Ptr, set<BasicBlock*> &VisitedSet);
// This transformation requires dominator and immediate dominator info
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.preservesCFG();
AU.addRequired<DominatorSet>();
AU.addRequired<ImmediateDominators>();
AU.addRequired<AliasAnalysis>();
}
};
RegisterOpt<GCSE> X("gcse", "Global Common Subexpression Elimination");
}
// createGCSEPass - The public interface to this file...
Pass *createGCSEPass() { return new GCSE(); }
// GCSE::runOnFunction - This is the main transformation entry point for a
// function.
//
bool GCSE::runOnFunction(Function &F) {
bool Changed = false;
// Get pointers to the analysis results that we will be using...
DomSetInfo = &getAnalysis<DominatorSet>();
ImmDominator = &getAnalysis<ImmediateDominators>();
AA = &getAnalysis<AliasAnalysis>();
// Step #1: Add all instructions in the function to the worklist for
// processing. All of the instructions are considered to be our
// subexpressions to eliminate if possible.
//
WorkList.insert(inst_begin(F), inst_end(F));
// Step #2: WorkList processing. Iterate through all of the instructions,
// checking to see if there are any additionally defined subexpressions in the
// program. If so, eliminate them!
//
while (!WorkList.empty()) {
Instruction &I = **WorkList.begin(); // Get an instruction from the worklist
WorkList.erase(WorkList.begin());
// Visit the instruction, dispatching to the correct visit function based on
// the instruction type. This does the checking.
//
Changed |= visit(I);
}
// When the worklist is empty, return whether or not we changed anything...
return Changed;
}
// ReplaceInstWithInst - Destroy the instruction pointed to by SI, making all
// uses of the instruction use First now instead.
//
void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) {
Instruction &Second = *SI;
//cerr << "DEL " << (void*)Second << Second;
// Add the first instruction back to the worklist
WorkList.insert(First);
// Add all uses of the second instruction to the worklist
for (Value::use_iterator UI = Second.use_begin(), UE = Second.use_end();
UI != UE; ++UI)
WorkList.insert(cast<Instruction>(*UI));
// Make all users of 'Second' now use 'First'
Second.replaceAllUsesWith(First);
// Erase the second instruction from the program
Second.getParent()->getInstList().erase(SI);
}
// CommonSubExpressionFound - The two instruction I & Other have been found to
// be common subexpressions. This function is responsible for eliminating one
// of them, and for fixing the worklist to be correct.
//
bool GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) {
assert(I != Other);
WorkList.erase(I);
WorkList.erase(Other); // Other may not actually be on the worklist anymore...
++NumInstRemoved; // Keep track of number of instructions eliminated
// Handle the easy case, where both instructions are in the same basic block
BasicBlock *BB1 = I->getParent(), *BB2 = Other->getParent();
if (BB1 == BB2) {
// Eliminate the second occuring instruction. Add all uses of the second
// instruction to the worklist.
//
// Scan the basic block looking for the "first" instruction
BasicBlock::iterator BI = BB1->begin();
while (&*BI != I && &*BI != Other) {
++BI;
assert(BI != BB1->end() && "Instructions not found in parent BB!");
}
// Keep track of which instructions occurred first & second
Instruction *First = BI;
Instruction *Second = I != First ? I : Other; // Get iterator to second inst
BI = Second;
// Destroy Second, using First instead.
ReplaceInstWithInst(First, BI);
// Otherwise, the two instructions are in different basic blocks. If one
// dominates the other instruction, we can simply use it
//
} else if (DomSetInfo->dominates(BB1, BB2)) { // I dom Other?
ReplaceInstWithInst(I, Other);
} else if (DomSetInfo->dominates(BB2, BB1)) { // Other dom I?
ReplaceInstWithInst(Other, I);
} else {
// This code is disabled because it has several problems:
// One, the actual assumption is wrong, as shown by this code:
// int "test"(int %X, int %Y) {
// %Z = add int %X, %Y
// ret int %Z
// Unreachable:
// %Q = add int %X, %Y
// ret int %Q
// }
//
// Here there are no shared dominators. Additionally, this had the habit of
// moving computations where they were not always computed. For example, in
// a cast like this:
// if (c) {
// if (d) ...
// else ... X+Y ...
// } else {
// ... X+Y ...
// }
//
// In thiscase, the expression would be hoisted to outside the 'if' stmt,
// causing the expression to be evaluated, even for the if (d) path, which
// could cause problems, if, for example, it caused a divide by zero. In
// general the problem this case is trying to solve is better addressed with
// PRE than GCSE.
//
return false;
#if 0
// Handle the most general case now. In this case, neither I dom Other nor
// Other dom I. Because we are in SSA form, we are guaranteed that the
// operands of the two instructions both dominate the uses, so we _know_
// that there must exist a block that dominates both instructions (if the
// operands of the instructions are globals or constants, worst case we
// would get the entry node of the function). Search for this block now.
//
// Search up the immediate dominator chain of BB1 for the shared dominator
BasicBlock *SharedDom = (*ImmDominator)[BB1];
while (!DomSetInfo->dominates(SharedDom, BB2))
SharedDom = (*ImmDominator)[SharedDom];
// At this point, shared dom must dominate BOTH BB1 and BB2...
assert(SharedDom && DomSetInfo->dominates(SharedDom, BB1) &&
DomSetInfo->dominates(SharedDom, BB2) && "Dominators broken!");
// Rip 'I' out of BB1, and move it to the end of SharedDom.
BB1->getInstList().remove(I);
SharedDom->getInstList().insert(--SharedDom->end(), I);
// Eliminate 'Other' now.
ReplaceInstWithInst(I, Other);
#endif
}
return true;
}
//===----------------------------------------------------------------------===//
//
// Visitation methods, these are invoked depending on the type of instruction
// being checked. They should return true if a common subexpression was folded.
//
//===----------------------------------------------------------------------===//
bool GCSE::visitCastInst(CastInst &CI) {
Instruction &I = (Instruction&)CI;
Value *Op = I.getOperand(0);
Function *F = I.getParent()->getParent();
for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
UI != UE; ++UI)
if (Instruction *Other = dyn_cast<Instruction>(*UI))
// Check to see if this new cast is not I, but has the same operand...
if (Other != &I && Other->getOpcode() == I.getOpcode() &&
Other->getOperand(0) == Op && // Is the operand the same?
// Is it embeded in the same function? (This could be false if LHS
// is a constant or global!)
Other->getParent()->getParent() == F &&
// Check that the types are the same, since this code handles casts...
Other->getType() == I.getType()) {
// These instructions are identical. Handle the situation.
if (CommonSubExpressionFound(&I, Other))
return true; // One instruction eliminated!
}
return false;
}
// isIdenticalBinaryInst - Return true if the two binary instructions are
// identical.
//
static inline bool isIdenticalBinaryInst(const Instruction &I1,
const Instruction *I2) {
// Is it embeded in the same function? (This could be false if LHS
// is a constant or global!)
if (I1.getOpcode() != I2->getOpcode() ||
I1.getParent()->getParent() != I2->getParent()->getParent())
return false;
// They are identical if both operands are the same!
if (I1.getOperand(0) == I2->getOperand(0) &&
I1.getOperand(1) == I2->getOperand(1))
return true;
// If the instruction is commutative and associative, the instruction can
// match if the operands are swapped!
//
if ((I1.getOperand(0) == I2->getOperand(1) &&
I1.getOperand(1) == I2->getOperand(0)) &&
(I1.getOpcode() == Instruction::Add ||
I1.getOpcode() == Instruction::Mul ||
I1.getOpcode() == Instruction::And ||
I1.getOpcode() == Instruction::Or ||
I1.getOpcode() == Instruction::Xor))
return true;
return false;
}
bool GCSE::visitBinaryOperator(Instruction &I) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Function *F = I.getParent()->getParent();
for (Value::use_iterator UI = LHS->use_begin(), UE = LHS->use_end();
UI != UE; ++UI)
if (Instruction *Other = dyn_cast<Instruction>(*UI))
// Check to see if this new binary operator is not I, but same operand...
if (Other != &I && isIdenticalBinaryInst(I, Other)) {
// These instructions are identical. Handle the situation.
if (CommonSubExpressionFound(&I, Other))
return true; // One instruction eliminated!
}
return false;
}
// IdenticalComplexInst - Return true if the two instructions are the same, by
// using a brute force comparison.
//
static bool IdenticalComplexInst(const Instruction *I1, const Instruction *I2) {
assert(I1->getOpcode() == I2->getOpcode());
// Equal if they are in the same function...
return I1->getParent()->getParent() == I2->getParent()->getParent() &&
// And return the same type...
I1->getType() == I2->getType() &&
// And have the same number of operands...
I1->getNumOperands() == I2->getNumOperands() &&
// And all of the operands are equal.
std::equal(I1->op_begin(), I1->op_end(), I2->op_begin());
}
bool GCSE::visitGetElementPtrInst(GetElementPtrInst &I) {
Value *Op = I.getOperand(0);
Function *F = I.getParent()->getParent();
for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
UI != UE; ++UI)
if (GetElementPtrInst *Other = dyn_cast<GetElementPtrInst>(*UI))
// Check to see if this new getelementptr is not I, but same operand...
if (Other != &I && IdenticalComplexInst(&I, Other)) {
// These instructions are identical. Handle the situation.
if (CommonSubExpressionFound(&I, Other))
return true; // One instruction eliminated!
}
return false;
}
bool GCSE::visitLoadInst(LoadInst &LI) {
Value *Op = LI.getOperand(0);
Function *F = LI.getParent()->getParent();
for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
UI != UE; ++UI)
if (LoadInst *Other = dyn_cast<LoadInst>(*UI))
// Check to see if this new load is not LI, but has the same operands...
if (Other != &LI && IdenticalComplexInst(&LI, Other) &&
TryToRemoveALoad(&LI, Other))
return true; // An instruction was eliminated!
return false;
}
// TryToRemoveALoad - Try to remove one of L1 or L2. The problem with removing
// loads is that intervening stores might make otherwise identical load's yield
// different values. To ensure that this is not the case, we check that there
// are no intervening stores or calls between the instructions.
//
bool GCSE::TryToRemoveALoad(LoadInst *L1, LoadInst *L2) {
// Figure out which load dominates the other one. If neither dominates the
// other we cannot eliminate one...
//
if (DomSetInfo->dominates(L2, L1))
std::swap(L1, L2); // Make L1 dominate L2
else if (!DomSetInfo->dominates(L1, L2))
return false; // Neither instruction dominates the other one...
BasicBlock *BB1 = L1->getParent(), *BB2 = L2->getParent();
assert(!L1->hasIndices());
Value *LoadAddress = L1->getOperand(0);
// L1 now dominates L2. Check to see if the intervening instructions between
// the two loads include a store or call...
//
if (BB1 == BB2) { // In same basic block?
// In this degenerate case, no checking of global basic blocks has to occur
// just check the instructions BETWEEN L1 & L2...
//
if (AA->canInstructionRangeModify(*L1, *L2, LoadAddress))
return false; // Cannot eliminate load
++NumLoadRemoved;
if (CommonSubExpressionFound(L1, L2))
return true;
} else {
// Make sure that there are no store instructions between L1 and the end of
// it's basic block...
//
if (AA->canInstructionRangeModify(*L1, *BB1->getTerminator(), LoadAddress))
return false; // Cannot eliminate load
// Make sure that there are no store instructions between the start of BB2
// and the second load instruction...
//
if (AA->canInstructionRangeModify(BB2->front(), *L2, LoadAddress))
return false; // Cannot eliminate load
// Do a depth first traversal of the inverse CFG starting at L2's block,
// looking for L1's block. The inverse CFG is made up of the predecessor
// nodes of a block... so all of the edges in the graph are "backward".
//
set<BasicBlock*> VisitedSet;
for (pred_iterator PI = pred_begin(BB2), PE = pred_end(BB2); PI != PE; ++PI)
if (CheckForInvalidatingInst(*PI, BB1, LoadAddress, VisitedSet))
return false;
++NumLoadRemoved;
return CommonSubExpressionFound(L1, L2);
}
return false;
}
// CheckForInvalidatingInst - Return true if BB or any of the predecessors of BB
// (until DestBB) contain an instruction that might invalidate Ptr.
//
bool GCSE::CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB,
Value *Ptr, set<BasicBlock*> &VisitedSet) {
// Found the termination point!
if (BB == DestBB || VisitedSet.count(BB)) return false;
// Avoid infinite recursion!
VisitedSet.insert(BB);
// Can this basic block modify Ptr?
if (AA->canBasicBlockModify(*BB, Ptr))
return true;
// Check all of our predecessor blocks...
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
if (CheckForInvalidatingInst(*PI, DestBB, Ptr, VisitedSet))
return true;
// None of our predecessor blocks contain a store, and we don't either!
return false;
}