mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5669 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			397 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			397 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopPreheaders.cpp - Loop Preheader Insertion Pass -----------------===//
 | |
| //
 | |
| // Insert Loop pre-headers and exit blocks into the CFG for each function in the
 | |
| // module.  This pass updates loop information and dominator information.
 | |
| //
 | |
| // Loop pre-header insertion guarantees that there is a single, non-critical
 | |
| // entry edge from outside of the loop to the loop header.  This simplifies a
 | |
| // number of analyses and transformations, such as LICM.
 | |
| //
 | |
| // Loop exit-block insertion guarantees that all exit blocks from the loop
 | |
| // (blocks which are outside of the loop that have predecessors inside of the
 | |
| // loop) are dominated by the loop header.  This simplifies transformations such
 | |
| // as store-sinking that is built into LICM.
 | |
| //
 | |
| // Note that the simplifycfg pass will clean up blocks which are split out but
 | |
| // end up being unneccesary, so usage of this pass does not neccesarily
 | |
| // pessimize generated code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/iTerminators.h"
 | |
| #include "llvm/iPHINode.h"
 | |
| #include "llvm/Constant.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "Support/SetOperations.h"
 | |
| #include "Support/Statistic.h"
 | |
| #include "Support/DepthFirstIterator.h"
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumInserted("preheaders", "Number of pre-header nodes inserted");
 | |
| 
 | |
|   struct Preheaders : public FunctionPass {
 | |
|     virtual bool runOnFunction(Function &F);
 | |
|     
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       // We need loop information to identify the loops...
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addRequired<DominatorSet>();
 | |
| 
 | |
|       AU.addPreserved<LoopInfo>();
 | |
|       AU.addPreserved<DominatorSet>();
 | |
|       AU.addPreserved<ImmediateDominators>();
 | |
|       AU.addPreserved<DominatorTree>();
 | |
|       AU.addPreserved<DominanceFrontier>();
 | |
|       AU.addPreservedID(BreakCriticalEdgesID);  // No crit edges added....
 | |
|     }
 | |
|   private:
 | |
|     bool ProcessLoop(Loop *L);
 | |
|     BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
 | |
|                                        const std::vector<BasicBlock*> &Preds);
 | |
|     void RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
 | |
|     void InsertPreheaderForLoop(Loop *L);
 | |
|   };
 | |
| 
 | |
|   RegisterOpt<Preheaders> X("preheaders", "Natural loop pre-header insertion");
 | |
| }
 | |
| 
 | |
| // Publically exposed interface to pass...
 | |
| const PassInfo *LoopPreheadersID = X.getPassInfo();
 | |
| Pass *createLoopPreheaderInsertionPass() { return new Preheaders(); }
 | |
| 
 | |
| 
 | |
| /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
 | |
| /// it in any convenient order) inserting preheaders...
 | |
| ///
 | |
| bool Preheaders::runOnFunction(Function &F) {
 | |
|   bool Changed = false;
 | |
|   LoopInfo &LI = getAnalysis<LoopInfo>();
 | |
| 
 | |
|   for (unsigned i = 0, e = LI.getTopLevelLoops().size(); i != e; ++i)
 | |
|     Changed |= ProcessLoop(LI.getTopLevelLoops()[i]);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
 | |
| /// all loops have preheaders.
 | |
| ///
 | |
| bool Preheaders::ProcessLoop(Loop *L) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Does the loop already have a preheader?  If so, don't modify the loop...
 | |
|   if (L->getLoopPreheader() == 0) {
 | |
|     InsertPreheaderForLoop(L);
 | |
|     NumInserted++;
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   DominatorSet &DS = getAnalysis<DominatorSet>();
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   for (unsigned i = 0, e = L->getExitBlocks().size(); i != e; ++i)
 | |
|     if (!DS.dominates(Header, L->getExitBlocks()[i])) {
 | |
|       RewriteLoopExitBlock(L, L->getExitBlocks()[i]);
 | |
|       assert(DS.dominates(Header, L->getExitBlocks()[i]) &&
 | |
|              "RewriteLoopExitBlock failed?");
 | |
|       NumInserted++;
 | |
|       Changed = true;
 | |
|     }
 | |
| 
 | |
|   const std::vector<Loop*> &SubLoops = L->getSubLoops();
 | |
|   for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
 | |
|     Changed |= ProcessLoop(SubLoops[i]);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// SplitBlockPredecessors - Split the specified block into two blocks.  We want
 | |
| /// to move the predecessors specified in the Preds list to point to the new
 | |
| /// block, leaving the remaining predecessors pointing to BB.  This method
 | |
| /// updates the SSA PHINode's, but no other analyses.
 | |
| ///
 | |
| BasicBlock *Preheaders::SplitBlockPredecessors(BasicBlock *BB,
 | |
|                                                const char *Suffix,
 | |
|                                        const std::vector<BasicBlock*> &Preds) {
 | |
|   
 | |
|   // Create new basic block, insert right before the original block...
 | |
|   BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB);
 | |
| 
 | |
|   // The preheader first gets an unconditional branch to the loop header...
 | |
|   BranchInst *BI = new BranchInst(BB);
 | |
|   NewBB->getInstList().push_back(BI);
 | |
|   
 | |
|   // For every PHI node in the block, insert a PHI node into NewBB where the
 | |
|   // incoming values from the out of loop edges are moved to NewBB.  We have two
 | |
|   // possible cases here.  If the loop is dead, we just insert dummy entries
 | |
|   // into the PHI nodes for the new edge.  If the loop is not dead, we move the
 | |
|   // incoming edges in BB into new PHI nodes in NewBB.
 | |
|   //
 | |
|   if (!Preds.empty()) {  // Is the loop not obviously dead?
 | |
|     for (BasicBlock::iterator I = BB->begin();
 | |
|          PHINode *PN = dyn_cast<PHINode>(&*I); ++I) {
 | |
|       
 | |
|       // Create the new PHI node, insert it into NewBB at the end of the block
 | |
|       PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
 | |
|         
 | |
|       // Move all of the edges from blocks outside the loop to the new PHI
 | |
|       for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|         Value *V = PN->removeIncomingValue(Preds[i]);
 | |
|         NewPHI->addIncoming(V, Preds[i]);
 | |
|       }
 | |
|       
 | |
|       // Add an incoming value to the PHI node in the loop for the preheader
 | |
|       // edge
 | |
|       PN->addIncoming(NewPHI, NewBB);
 | |
|     }
 | |
|     
 | |
|     // Now that the PHI nodes are updated, actually move the edges from
 | |
|     // Preds to point to NewBB instead of BB.
 | |
|     //
 | |
|     for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|       TerminatorInst *TI = Preds[i]->getTerminator();
 | |
|       for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
 | |
|         if (TI->getSuccessor(s) == BB)
 | |
|           TI->setSuccessor(s, NewBB);
 | |
|     }
 | |
|     
 | |
|   } else {                       // Otherwise the loop is dead...
 | |
|     for (BasicBlock::iterator I = BB->begin();
 | |
|          PHINode *PN = dyn_cast<PHINode>(&*I); ++I)
 | |
|       // Insert dummy values as the incoming value...
 | |
|       PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
 | |
|   }  
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
 | |
| /// preheader, this method is called to insert one.  This method has two phases:
 | |
| /// preheader insertion and analysis updating.
 | |
| ///
 | |
| void Preheaders::InsertPreheaderForLoop(Loop *L) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
| 
 | |
|   // Compute the set of predecessors of the loop that are not in the loop.
 | |
|   std::vector<BasicBlock*> OutsideBlocks;
 | |
|   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
 | |
|        PI != PE; ++PI)
 | |
|       if (!L->contains(*PI))           // Coming in from outside the loop?
 | |
|         OutsideBlocks.push_back(*PI);  // Keep track of it...
 | |
|   
 | |
|   // Split out the loop pre-header
 | |
|   BasicBlock *NewBB =
 | |
|     SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
 | |
|   
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //  Update analysis results now that we have preformed the transformation
 | |
|   //
 | |
|   
 | |
|   // We know that we have loop information to update... update it now.
 | |
|   if (Loop *Parent = L->getParentLoop())
 | |
|     Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
 | |
| 
 | |
|   // If the header for the loop used to be an exit node for another loop, then
 | |
|   // we need to update this to know that the loop-preheader is now the exit
 | |
|   // node.  Note that the only loop that could have our header as an exit node
 | |
|   // is a sibling loop, ie, one with the same parent loop.
 | |
|   const std::vector<Loop*> *ParentSubLoops;
 | |
|   if (Loop *Parent = L->getParentLoop())
 | |
|     ParentSubLoops = &Parent->getSubLoops();
 | |
|   else       // Must check top-level loops...
 | |
|     ParentSubLoops = &getAnalysis<LoopInfo>().getTopLevelLoops();
 | |
| 
 | |
|   // Loop over all sibling loops, performing the substitution...
 | |
|   for (unsigned i = 0, e = ParentSubLoops->size(); i != e; ++i)
 | |
|     if ((*ParentSubLoops)[i]->hasExitBlock(Header))
 | |
|       (*ParentSubLoops)[i]->changeExitBlock(Header, NewBB);
 | |
| 
 | |
|   
 | |
|   DominatorSet &DS = getAnalysis<DominatorSet>();  // Update dominator info
 | |
|   {
 | |
|     // The blocks that dominate NewBB are the blocks that dominate Header,
 | |
|     // minus Header, plus NewBB.
 | |
|     DominatorSet::DomSetType DomSet = DS.getDominators(Header);
 | |
|     DomSet.insert(NewBB);  // We dominate ourself
 | |
|     DomSet.erase(Header);  // Header does not dominate us...
 | |
|     DS.addBasicBlock(NewBB, DomSet);
 | |
| 
 | |
|     // The newly created basic block dominates all nodes dominated by Header.
 | |
|     for (Function::iterator I = Header->getParent()->begin(),
 | |
|            E = Header->getParent()->end(); I != E; ++I)
 | |
|       if (DS.dominates(Header, I))
 | |
|         DS.addDominator(I, NewBB);
 | |
|   }
 | |
|   
 | |
|   // Update immediate dominator information if we have it...
 | |
|   if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
 | |
|     // Whatever i-dominated the header node now immediately dominates NewBB
 | |
|     ID->addNewBlock(NewBB, ID->get(Header));
 | |
|     
 | |
|     // The preheader now is the immediate dominator for the header node...
 | |
|     ID->setImmediateDominator(Header, NewBB);
 | |
|   }
 | |
|   
 | |
|   // Update DominatorTree information if it is active.
 | |
|   if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
 | |
|     // The immediate dominator of the preheader is the immediate dominator of
 | |
|     // the old header.
 | |
|     //
 | |
|     DominatorTree::Node *HeaderNode = DT->getNode(Header);
 | |
|     DominatorTree::Node *PHNode = DT->createNewNode(NewBB,
 | |
|                                                     HeaderNode->getIDom());
 | |
|     
 | |
|     // Change the header node so that PNHode is the new immediate dominator
 | |
|     DT->changeImmediateDominator(HeaderNode, PHNode);
 | |
|   }
 | |
| 
 | |
|   // Update dominance frontier information...
 | |
|   if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
 | |
|     // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
 | |
|     // everything that Header does, and it strictly dominates Header in
 | |
|     // addition.
 | |
|     assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
 | |
|     DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
 | |
|     NewDFSet.erase(Header);
 | |
|     DF->addBasicBlock(NewBB, NewDFSet);
 | |
| 
 | |
|     // Now we must loop over all of the dominance frontiers in the function,
 | |
|     // replacing occurances of Header with NewBB in some cases.  If a block
 | |
|     // dominates a (now) predecessor of NewBB, but did not strictly dominate
 | |
|     // Header, it will have Header in it's DF set, but should now have NewBB in
 | |
|     // its set.
 | |
|     for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
 | |
|       // Get all of the dominators of the predecessor...
 | |
|       const DominatorSet::DomSetType &PredDoms =
 | |
|         DS.getDominators(OutsideBlocks[i]);
 | |
|       for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
 | |
|              PDE = PredDoms.end(); PDI != PDE; ++PDI) {
 | |
|         BasicBlock *PredDom = *PDI;
 | |
|         // If the loop header is in DF(PredDom), then PredDom didn't dominate
 | |
|         // the header but did dominate a predecessor outside of the loop.  Now
 | |
|         // we change this entry to include the preheader in the DF instead of
 | |
|         // the header.
 | |
|         DominanceFrontier::iterator DFI = DF->find(PredDom);
 | |
|         assert(DFI != DF->end() && "No dominance frontier for node?");
 | |
|         if (DFI->second.count(Header)) {
 | |
|           DF->removeFromFrontier(DFI, Header);
 | |
|           DF->addToFrontier(DFI, NewBB);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Preheaders::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
 | |
|   DominatorSet &DS = getAnalysis<DominatorSet>();
 | |
|   assert(!DS.dominates(L->getHeader(), Exit) &&
 | |
|          "Loop already dominates exit block??");
 | |
|   assert(std::find(L->getExitBlocks().begin(), L->getExitBlocks().end(), Exit)
 | |
|          != L->getExitBlocks().end() && "Not a current exit block!");
 | |
|   
 | |
|   std::vector<BasicBlock*> LoopBlocks;
 | |
|   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
 | |
|     if (L->contains(*I))
 | |
|       LoopBlocks.push_back(*I);
 | |
| 
 | |
|   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
 | |
|   BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
 | |
| 
 | |
|   // Update Loop Information - we know that the new block will be in the parent
 | |
|   // loop of L.
 | |
|   if (Loop *Parent = L->getParentLoop())
 | |
|     Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
 | |
| 
 | |
|   // Replace any instances of Exit with NewBB in this and any nested loops...
 | |
|   for (df_iterator<Loop*> I = df_begin(L), E = df_end(L); I != E; ++I)
 | |
|     if (I->hasExitBlock(Exit))
 | |
|       I->changeExitBlock(Exit, NewBB);   // Update exit block information
 | |
| 
 | |
|   // Update dominator information...  The blocks that dominate NewBB are the
 | |
|   // intersection of the dominators of predecessors, plus the block itself.
 | |
|   // The newly created basic block does not dominate anything except itself.
 | |
|   //
 | |
|   DominatorSet::DomSetType NewBBDomSet = DS.getDominators(LoopBlocks[0]);
 | |
|   for (unsigned i = 1, e = LoopBlocks.size(); i != e; ++i)
 | |
|     set_intersect(NewBBDomSet, DS.getDominators(LoopBlocks[i]));
 | |
|   NewBBDomSet.insert(NewBB);  // All blocks dominate themselves...
 | |
|   DS.addBasicBlock(NewBB, NewBBDomSet);
 | |
| 
 | |
|   // Update immediate dominator information if we have it...
 | |
|   BasicBlock *NewBBIDom = 0;
 | |
|   if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
 | |
|     // This block does not strictly dominate anything, so it is not an immediate
 | |
|     // dominator.  To find the immediate dominator of the new exit node, we
 | |
|     // trace up the immediate dominators of a predecessor until we find a basic
 | |
|     // block that dominates the exit block.
 | |
|     //
 | |
|     BasicBlock *Dom = LoopBlocks[0];  // Some random predecessor...
 | |
|     while (!NewBBDomSet.count(Dom)) {  // Loop until we find a dominator...
 | |
|       assert(Dom != 0 && "No shared dominator found???");
 | |
|       Dom = ID->get(Dom);
 | |
|     }
 | |
| 
 | |
|     // Set the immediate dominator now...
 | |
|     ID->addNewBlock(NewBB, Dom);
 | |
|     NewBBIDom = Dom;   // Reuse this if calculating DominatorTree info...
 | |
|   }
 | |
| 
 | |
|   // Update DominatorTree information if it is active.
 | |
|   if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
 | |
|     // NewBB doesn't dominate anything, so just create a node and link it into
 | |
|     // its immediate dominator.  If we don't have ImmediateDominator info
 | |
|     // around, calculate the idom as above.
 | |
|     DominatorTree::Node *NewBBIDomNode;
 | |
|     if (NewBBIDom) {
 | |
|       NewBBIDomNode = DT->getNode(NewBBIDom);
 | |
|     } else {
 | |
|       NewBBIDomNode = DT->getNode(LoopBlocks[0]); // Random pred
 | |
|       while (!NewBBDomSet.count(NewBBIDomNode->getNode())) {
 | |
|         NewBBIDomNode = NewBBIDomNode->getIDom();
 | |
|         assert(NewBBIDomNode && "No shared dominator found??");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Create the new dominator tree node...
 | |
|     DT->createNewNode(NewBB, NewBBIDomNode);
 | |
|   }
 | |
| 
 | |
|   // Update dominance frontier information...
 | |
|   if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
 | |
|     // DF(NewBB) is {Exit} because NewBB does not strictly dominate Exit, but it
 | |
|     // does dominate itself (and there is an edge (NewBB -> Exit)).
 | |
|     DominanceFrontier::DomSetType NewDFSet;
 | |
|     NewDFSet.insert(Exit);
 | |
|     DF->addBasicBlock(NewBB, NewDFSet);
 | |
| 
 | |
|     // Now we must loop over all of the dominance frontiers in the function,
 | |
|     // replacing occurances of Exit with NewBB in some cases.  If a block
 | |
|     // dominates a (now) predecessor of NewBB, but did not strictly dominate
 | |
|     // Exit, it will have Exit in it's DF set, but should now have NewBB in its
 | |
|     // set.
 | |
|     for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
 | |
|       // Get all of the dominators of the predecessor...
 | |
|       const DominatorSet::DomSetType &PredDoms =DS.getDominators(LoopBlocks[i]);
 | |
|       for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
 | |
|              PDE = PredDoms.end(); PDI != PDE; ++PDI) {
 | |
|         BasicBlock *PredDom = *PDI;
 | |
|         // Make sure to only rewrite blocks that are part of the loop...
 | |
|         if (L->contains(PredDom)) {
 | |
|           // If the exit node is in DF(PredDom), then PredDom didn't dominate
 | |
|           // Exit but did dominate a predecessor inside of the loop.  Now we
 | |
|           // change this entry to include NewBB in the DF instead of Exit.
 | |
|           DominanceFrontier::iterator DFI = DF->find(PredDom);
 | |
|           assert(DFI != DF->end() && "No dominance frontier for node?");
 | |
|           if (DFI->second.count(Exit)) {
 | |
|             DF->removeFromFrontier(DFI, Exit);
 | |
|             DF->addToFrontier(DFI, NewBB);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 |