mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	the scheduler has inserted no-ops. This fixes the 2006-07-03-schedulers.ll regression on ppc32. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49747 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1876 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1876 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements bottom-up and top-down register pressure reduction list
 | |
| // schedulers, using standard algorithms.  The basic approach uses a priority
 | |
| // queue of available nodes to schedule.  One at a time, nodes are taken from
 | |
| // the priority queue (thus in priority order), checked for legality to
 | |
| // schedule, and emitted if legal.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "pre-RA-sched"
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/CodeGen/SchedulerRegistry.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <climits>
 | |
| #include <queue>
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
 | |
| STATISTIC(NumUnfolds,    "Number of nodes unfolded");
 | |
| STATISTIC(NumDups,       "Number of duplicated nodes");
 | |
| STATISTIC(NumCCCopies,   "Number of cross class copies");
 | |
| 
 | |
| static RegisterScheduler
 | |
|   burrListDAGScheduler("list-burr",
 | |
|                        "  Bottom-up register reduction list scheduling",
 | |
|                        createBURRListDAGScheduler);
 | |
| static RegisterScheduler
 | |
|   tdrListrDAGScheduler("list-tdrr",
 | |
|                        "  Top-down register reduction list scheduling",
 | |
|                        createTDRRListDAGScheduler);
 | |
| 
 | |
| namespace {
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ScheduleDAGRRList - The actual register reduction list scheduler
 | |
| /// implementation.  This supports both top-down and bottom-up scheduling.
 | |
| ///
 | |
| class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
 | |
| private:
 | |
|   /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
 | |
|   /// it is top-down.
 | |
|   bool isBottomUp;
 | |
|   
 | |
|   /// AvailableQueue - The priority queue to use for the available SUnits.
 | |
|   SchedulingPriorityQueue *AvailableQueue;
 | |
| 
 | |
|   /// LiveRegs / LiveRegDefs - A set of physical registers and their definition
 | |
|   /// that are "live". These nodes must be scheduled before any other nodes that
 | |
|   /// modifies the registers can be scheduled.
 | |
|   SmallSet<unsigned, 4> LiveRegs;
 | |
|   std::vector<SUnit*> LiveRegDefs;
 | |
|   std::vector<unsigned> LiveRegCycles;
 | |
| 
 | |
| public:
 | |
|   ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
 | |
|                   const TargetMachine &tm, bool isbottomup,
 | |
|                   SchedulingPriorityQueue *availqueue)
 | |
|     : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
 | |
|       AvailableQueue(availqueue) {
 | |
|     }
 | |
| 
 | |
|   ~ScheduleDAGRRList() {
 | |
|     delete AvailableQueue;
 | |
|   }
 | |
| 
 | |
|   void Schedule();
 | |
| 
 | |
|   /// IsReachable - Checks if SU is reachable from TargetSU.
 | |
|   bool IsReachable(SUnit *SU, SUnit *TargetSU);
 | |
| 
 | |
|   /// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
 | |
|   /// create a cycle.
 | |
|   bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
 | |
| 
 | |
|   /// AddPred - This adds the specified node X as a predecessor of 
 | |
|   /// the current node Y if not already.
 | |
|   /// This returns true if this is a new predecessor.
 | |
|   /// Updates the topological ordering if required.
 | |
|   bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
 | |
|                unsigned PhyReg = 0, int Cost = 1);
 | |
| 
 | |
|   /// RemovePred - This removes the specified node N from the predecessors of 
 | |
|   /// the current node M. Updates the topological ordering if required.
 | |
|   bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isSpecial);
 | |
| 
 | |
| private:
 | |
|   void ReleasePred(SUnit*, bool, unsigned);
 | |
|   void ReleaseSucc(SUnit*, bool isChain, unsigned);
 | |
|   void CapturePred(SUnit*, SUnit*, bool);
 | |
|   void ScheduleNodeBottomUp(SUnit*, unsigned);
 | |
|   void ScheduleNodeTopDown(SUnit*, unsigned);
 | |
|   void UnscheduleNodeBottomUp(SUnit*);
 | |
|   void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
 | |
|   SUnit *CopyAndMoveSuccessors(SUnit*);
 | |
|   void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
 | |
|                                   const TargetRegisterClass*,
 | |
|                                   const TargetRegisterClass*,
 | |
|                                   SmallVector<SUnit*, 2>&);
 | |
|   bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
 | |
|   void ListScheduleTopDown();
 | |
|   void ListScheduleBottomUp();
 | |
|   void CommuteNodesToReducePressure();
 | |
| 
 | |
| 
 | |
|   /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
 | |
|   /// Updates the topological ordering if required.
 | |
|   SUnit *CreateNewSUnit(SDNode *N) {
 | |
|     SUnit *NewNode = NewSUnit(N);
 | |
|     // Update the topological ordering.
 | |
|     if (NewNode->NodeNum >= Node2Index.size())
 | |
|       InitDAGTopologicalSorting();
 | |
|     return NewNode;
 | |
|   }
 | |
| 
 | |
|   /// CreateClone - Creates a new SUnit from an existing one.
 | |
|   /// Updates the topological ordering if required.
 | |
|   SUnit *CreateClone(SUnit *N) {
 | |
|     SUnit *NewNode = Clone(N);
 | |
|     // Update the topological ordering.
 | |
|     if (NewNode->NodeNum >= Node2Index.size())
 | |
|       InitDAGTopologicalSorting();
 | |
|     return NewNode;
 | |
|   }
 | |
| 
 | |
|   /// Functions for preserving the topological ordering
 | |
|   /// even after dynamic insertions of new edges.
 | |
|   /// This allows a very fast implementation of IsReachable.
 | |
| 
 | |
| 
 | |
|   /** 
 | |
|   The idea of the algorithm is taken from 
 | |
|   "Online algorithms for managing the topological order of
 | |
|   a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
 | |
|   This is the MNR algorithm, which was first introduced by 
 | |
|   A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in  
 | |
|   "Maintaining a topological order under edge insertions".
 | |
| 
 | |
|   Short description of the algorithm: 
 | |
|   
 | |
|   Topological ordering, ord, of a DAG maps each node to a topological
 | |
|   index so that for all edges X->Y it is the case that ord(X) < ord(Y).
 | |
|   
 | |
|   This means that if there is a path from the node X to the node Z, 
 | |
|   then ord(X) < ord(Z).
 | |
|   
 | |
|   This property can be used to check for reachability of nodes:
 | |
|   if Z is reachable from X, then an insertion of the edge Z->X would 
 | |
|   create a cycle.
 | |
|    
 | |
|   The algorithm first computes a topological ordering for the DAG by initializing
 | |
|   the Index2Node and Node2Index arrays and then tries to keep the ordering
 | |
|   up-to-date after edge insertions by reordering the DAG.
 | |
|   
 | |
|   On insertion of the edge X->Y, the algorithm first marks by calling DFS the
 | |
|   nodes reachable from Y, and then shifts them using Shift to lie immediately
 | |
|   after X in Index2Node.
 | |
|   */
 | |
| 
 | |
|   /// InitDAGTopologicalSorting - create the initial topological 
 | |
|   /// ordering from the DAG to be scheduled.
 | |
|   void InitDAGTopologicalSorting();
 | |
| 
 | |
|   /// DFS - make a DFS traversal and mark all nodes affected by the 
 | |
|   /// edge insertion. These nodes will later get new topological indexes
 | |
|   /// by means of the Shift method.
 | |
|   void DFS(SUnit *SU, int UpperBound, bool& HasLoop);
 | |
| 
 | |
|   /// Shift - reassign topological indexes for the nodes in the DAG
 | |
|   /// to preserve the topological ordering.
 | |
|   void Shift(BitVector& Visited, int LowerBound, int UpperBound);
 | |
| 
 | |
|   /// Allocate - assign the topological index to the node n.
 | |
|   void Allocate(int n, int index);
 | |
| 
 | |
|   /// Index2Node - Maps topological index to the node number.
 | |
|   std::vector<int> Index2Node;
 | |
|   /// Node2Index - Maps the node number to its topological index.
 | |
|   std::vector<int> Node2Index;
 | |
|   /// Visited - a set of nodes visited during a DFS traversal.
 | |
|   BitVector Visited;
 | |
| };
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| 
 | |
| /// Schedule - Schedule the DAG using list scheduling.
 | |
| void ScheduleDAGRRList::Schedule() {
 | |
|   DOUT << "********** List Scheduling **********\n";
 | |
| 
 | |
|   LiveRegDefs.resize(TRI->getNumRegs(), NULL);  
 | |
|   LiveRegCycles.resize(TRI->getNumRegs(), 0);
 | |
| 
 | |
|   // Build scheduling units.
 | |
|   BuildSchedUnits();
 | |
| 
 | |
|   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | |
|           SUnits[su].dumpAll(&DAG));
 | |
|   CalculateDepths();
 | |
|   CalculateHeights();
 | |
|   InitDAGTopologicalSorting();
 | |
| 
 | |
|   AvailableQueue->initNodes(SUnitMap, SUnits);
 | |
|   
 | |
|   // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
 | |
|   if (isBottomUp)
 | |
|     ListScheduleBottomUp();
 | |
|   else
 | |
|     ListScheduleTopDown();
 | |
|   
 | |
|   AvailableQueue->releaseState();
 | |
|   
 | |
|   CommuteNodesToReducePressure();
 | |
|   
 | |
|   DOUT << "*** Final schedule ***\n";
 | |
|   DEBUG(dumpSchedule());
 | |
|   DOUT << "\n";
 | |
|   
 | |
|   // Emit in scheduled order
 | |
|   EmitSchedule();
 | |
| }
 | |
| 
 | |
| /// CommuteNodesToReducePressure - If a node is two-address and commutable, and
 | |
| /// it is not the last use of its first operand, add it to the CommuteSet if
 | |
| /// possible. It will be commuted when it is translated to a MI.
 | |
| void ScheduleDAGRRList::CommuteNodesToReducePressure() {
 | |
|   SmallPtrSet<SUnit*, 4> OperandSeen;
 | |
|   for (unsigned i = Sequence.size(); i != 0; ) {
 | |
|     --i;
 | |
|     SUnit *SU = Sequence[i];
 | |
|     if (!SU || !SU->Node) continue;
 | |
|     if (SU->isCommutable) {
 | |
|       unsigned Opc = SU->Node->getTargetOpcode();
 | |
|       const TargetInstrDesc &TID = TII->get(Opc);
 | |
|       unsigned NumRes = TID.getNumDefs();
 | |
|       unsigned NumOps = TID.getNumOperands() - NumRes;
 | |
|       for (unsigned j = 0; j != NumOps; ++j) {
 | |
|         if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
 | |
|           continue;
 | |
| 
 | |
|         SDNode *OpN = SU->Node->getOperand(j).Val;
 | |
|         SUnit *OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo];
 | |
|         if (OpSU && OperandSeen.count(OpSU) == 1) {
 | |
|           // Ok, so SU is not the last use of OpSU, but SU is two-address so
 | |
|           // it will clobber OpSU. Try to commute SU if no other source operands
 | |
|           // are live below.
 | |
|           bool DoCommute = true;
 | |
|           for (unsigned k = 0; k < NumOps; ++k) {
 | |
|             if (k != j) {
 | |
|               OpN = SU->Node->getOperand(k).Val;
 | |
|               OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo];
 | |
|               if (OpSU && OperandSeen.count(OpSU) == 1) {
 | |
|                 DoCommute = false;
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|           if (DoCommute)
 | |
|             CommuteSet.insert(SU->Node);
 | |
|         }
 | |
| 
 | |
|         // Only look at the first use&def node for now.
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|          I != E; ++I) {
 | |
|       if (!I->isCtrl)
 | |
|         OperandSeen.insert(I->Dep);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Bottom-Up Scheduling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
 | |
| /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
 | |
| void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain, 
 | |
|                                     unsigned CurCycle) {
 | |
|   // FIXME: the distance between two nodes is not always == the predecessor's
 | |
|   // latency. For example, the reader can very well read the register written
 | |
|   // by the predecessor later than the issue cycle. It also depends on the
 | |
|   // interrupt model (drain vs. freeze).
 | |
|   PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
 | |
| 
 | |
|   --PredSU->NumSuccsLeft;
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   if (PredSU->NumSuccsLeft < 0) {
 | |
|     cerr << "*** List scheduling failed! ***\n";
 | |
|     PredSU->dump(&DAG);
 | |
|     cerr << " has been released too many times!\n";
 | |
|     assert(0);
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   if (PredSU->NumSuccsLeft == 0) {
 | |
|     PredSU->isAvailable = true;
 | |
|     AvailableQueue->push(PredSU);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
 | |
| /// count of its predecessors. If a predecessor pending count is zero, add it to
 | |
| /// the Available queue.
 | |
| void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
 | |
|   DOUT << "*** Scheduling [" << CurCycle << "]: ";
 | |
|   DEBUG(SU->dump(&DAG));
 | |
|   SU->Cycle = CurCycle;
 | |
| 
 | |
|   AvailableQueue->ScheduledNode(SU);
 | |
| 
 | |
|   // Bottom up: release predecessors
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     ReleasePred(I->Dep, I->isCtrl, CurCycle);
 | |
|     if (I->Cost < 0)  {
 | |
|       // This is a physical register dependency and it's impossible or
 | |
|       // expensive to copy the register. Make sure nothing that can 
 | |
|       // clobber the register is scheduled between the predecessor and
 | |
|       // this node.
 | |
|       if (LiveRegs.insert(I->Reg)) {
 | |
|         LiveRegDefs[I->Reg] = I->Dep;
 | |
|         LiveRegCycles[I->Reg] = CurCycle;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Release all the implicit physical register defs that are live.
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->Cost < 0)  {
 | |
|       if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
 | |
|         LiveRegs.erase(I->Reg);
 | |
|         assert(LiveRegDefs[I->Reg] == SU &&
 | |
|                "Physical register dependency violated?");
 | |
|         LiveRegDefs[I->Reg] = NULL;
 | |
|         LiveRegCycles[I->Reg] = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SU->isScheduled = true;
 | |
| }
 | |
| 
 | |
| /// CapturePred - This does the opposite of ReleasePred. Since SU is being
 | |
| /// unscheduled, incrcease the succ left count of its predecessors. Remove
 | |
| /// them from AvailableQueue if necessary.
 | |
| void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {
 | |
|   PredSU->CycleBound = 0;
 | |
|   for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->Dep == SU)
 | |
|       continue;
 | |
|     PredSU->CycleBound = std::max(PredSU->CycleBound,
 | |
|                                   I->Dep->Cycle + PredSU->Latency);
 | |
|   }
 | |
| 
 | |
|   if (PredSU->isAvailable) {
 | |
|     PredSU->isAvailable = false;
 | |
|     if (!PredSU->isPending)
 | |
|       AvailableQueue->remove(PredSU);
 | |
|   }
 | |
| 
 | |
|   ++PredSU->NumSuccsLeft;
 | |
| }
 | |
| 
 | |
| /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
 | |
| /// its predecessor states to reflect the change.
 | |
| void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
 | |
|   DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
 | |
|   DEBUG(SU->dump(&DAG));
 | |
| 
 | |
|   AvailableQueue->UnscheduledNode(SU);
 | |
| 
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     CapturePred(I->Dep, SU, I->isCtrl);
 | |
|     if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg])  {
 | |
|       LiveRegs.erase(I->Reg);
 | |
|       assert(LiveRegDefs[I->Reg] == I->Dep &&
 | |
|              "Physical register dependency violated?");
 | |
|       LiveRegDefs[I->Reg] = NULL;
 | |
|       LiveRegCycles[I->Reg] = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->Cost < 0)  {
 | |
|       if (LiveRegs.insert(I->Reg)) {
 | |
|         assert(!LiveRegDefs[I->Reg] &&
 | |
|                "Physical register dependency violated?");
 | |
|         LiveRegDefs[I->Reg] = SU;
 | |
|       }
 | |
|       if (I->Dep->Cycle < LiveRegCycles[I->Reg])
 | |
|         LiveRegCycles[I->Reg] = I->Dep->Cycle;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SU->Cycle = 0;
 | |
|   SU->isScheduled = false;
 | |
|   SU->isAvailable = true;
 | |
|   AvailableQueue->push(SU);
 | |
| }
 | |
| 
 | |
| /// IsReachable - Checks if SU is reachable from TargetSU.
 | |
| bool ScheduleDAGRRList::IsReachable(SUnit *SU, SUnit *TargetSU) {
 | |
|   // If insertion of the edge SU->TargetSU would create a cycle
 | |
|   // then there is a path from TargetSU to SU.
 | |
|   int UpperBound, LowerBound;
 | |
|   LowerBound = Node2Index[TargetSU->NodeNum];
 | |
|   UpperBound = Node2Index[SU->NodeNum];
 | |
|   bool HasLoop = false;
 | |
|   // Is Ord(TargetSU) < Ord(SU) ?
 | |
|   if (LowerBound < UpperBound) {
 | |
|     Visited.reset();
 | |
|     // There may be a path from TargetSU to SU. Check for it. 
 | |
|     DFS(TargetSU, UpperBound, HasLoop);
 | |
|   }
 | |
|   return HasLoop;
 | |
| }
 | |
| 
 | |
| /// Allocate - assign the topological index to the node n.
 | |
| inline void ScheduleDAGRRList::Allocate(int n, int index) {
 | |
|   Node2Index[n] = index;
 | |
|   Index2Node[index] = n;
 | |
| }
 | |
| 
 | |
| /// InitDAGTopologicalSorting - create the initial topological 
 | |
| /// ordering from the DAG to be scheduled.
 | |
| void ScheduleDAGRRList::InitDAGTopologicalSorting() {
 | |
|   unsigned DAGSize = SUnits.size();
 | |
|   std::vector<unsigned> InDegree(DAGSize);
 | |
|   std::vector<SUnit*> WorkList;
 | |
|   WorkList.reserve(DAGSize);
 | |
|   std::vector<SUnit*> TopOrder;
 | |
|   TopOrder.reserve(DAGSize);
 | |
| 
 | |
|   // Initialize the data structures.
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     SUnit *SU = &SUnits[i];
 | |
|     int NodeNum = SU->NodeNum;
 | |
|     unsigned Degree = SU->Succs.size();
 | |
|     InDegree[NodeNum] = Degree;
 | |
| 
 | |
|     // Is it a node without dependencies?
 | |
|     if (Degree == 0) {
 | |
|         assert(SU->Succs.empty() && "SUnit should have no successors");
 | |
|         // Collect leaf nodes.
 | |
|         WorkList.push_back(SU);
 | |
|     }
 | |
|   }  
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     SUnit *SU = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     TopOrder.push_back(SU);
 | |
|     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|          I != E; ++I) {
 | |
|       SUnit *SU = I->Dep;
 | |
|       if (!--InDegree[SU->NodeNum])
 | |
|         // If all dependencies of the node are processed already,
 | |
|         // then the node can be computed now.
 | |
|         WorkList.push_back(SU);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Second pass, assign the actual topological order as node ids.
 | |
|   int Id = 0;
 | |
| 
 | |
|   Index2Node.clear();
 | |
|   Node2Index.clear();
 | |
|   Index2Node.resize(DAGSize);
 | |
|   Node2Index.resize(DAGSize);
 | |
|   Visited.resize(DAGSize);
 | |
| 
 | |
|   for (std::vector<SUnit*>::reverse_iterator TI = TopOrder.rbegin(),
 | |
|        TE = TopOrder.rend();TI != TE; ++TI) {
 | |
|     Allocate((*TI)->NodeNum, Id);
 | |
|     Id++;
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check correctness of the ordering
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     SUnit *SU = &SUnits[i];
 | |
|     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|          I != E; ++I) {
 | |
|        assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] && 
 | |
|        "Wrong topological sorting");
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// AddPred - adds an edge from SUnit X to SUnit Y.
 | |
| /// Updates the topological ordering if required.
 | |
| bool ScheduleDAGRRList::AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
 | |
|                  unsigned PhyReg, int Cost) {
 | |
|   int UpperBound, LowerBound;
 | |
|   LowerBound = Node2Index[Y->NodeNum];
 | |
|   UpperBound = Node2Index[X->NodeNum];
 | |
|   bool HasLoop = false;
 | |
|   // Is Ord(X) < Ord(Y) ?
 | |
|   if (LowerBound < UpperBound) {
 | |
|     // Update the topological order.
 | |
|     Visited.reset();
 | |
|     DFS(Y, UpperBound, HasLoop);
 | |
|     assert(!HasLoop && "Inserted edge creates a loop!");
 | |
|     // Recompute topological indexes.
 | |
|     Shift(Visited, LowerBound, UpperBound);
 | |
|   }
 | |
|   // Now really insert the edge.
 | |
|   return Y->addPred(X, isCtrl, isSpecial, PhyReg, Cost);
 | |
| }
 | |
| 
 | |
| /// RemovePred - This removes the specified node N from the predecessors of 
 | |
| /// the current node M. Updates the topological ordering if required.
 | |
| bool ScheduleDAGRRList::RemovePred(SUnit *M, SUnit *N, 
 | |
|                                    bool isCtrl, bool isSpecial) {
 | |
|   // InitDAGTopologicalSorting();
 | |
|   return M->removePred(N, isCtrl, isSpecial);
 | |
| }
 | |
| 
 | |
| /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
 | |
| /// all nodes affected by the edge insertion. These nodes will later get new
 | |
| /// topological indexes by means of the Shift method.
 | |
| void ScheduleDAGRRList::DFS(SUnit *SU, int UpperBound, bool& HasLoop) {
 | |
|   std::vector<SUnit*> WorkList;
 | |
|   WorkList.reserve(SUnits.size()); 
 | |
| 
 | |
|   WorkList.push_back(SU);
 | |
|   while (!WorkList.empty()) {
 | |
|     SU = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     Visited.set(SU->NodeNum);
 | |
|     for (int I = SU->Succs.size()-1; I >= 0; --I) {
 | |
|       int s = SU->Succs[I].Dep->NodeNum;
 | |
|       if (Node2Index[s] == UpperBound) {
 | |
|         HasLoop = true; 
 | |
|         return;
 | |
|       }
 | |
|       // Visit successors if not already and in affected region.
 | |
|       if (!Visited.test(s) && Node2Index[s] < UpperBound) {
 | |
|         WorkList.push_back(SU->Succs[I].Dep);
 | |
|       } 
 | |
|     } 
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Shift - Renumber the nodes so that the topological ordering is 
 | |
| /// preserved.
 | |
| void ScheduleDAGRRList::Shift(BitVector& Visited, int LowerBound, 
 | |
|                               int UpperBound) {
 | |
|   std::vector<int> L;
 | |
|   int shift = 0;
 | |
|   int i;
 | |
| 
 | |
|   for (i = LowerBound; i <= UpperBound; ++i) {
 | |
|     // w is node at topological index i.
 | |
|     int w = Index2Node[i];
 | |
|     if (Visited.test(w)) {
 | |
|       // Unmark.
 | |
|       Visited.reset(w);
 | |
|       L.push_back(w);
 | |
|       shift = shift + 1;
 | |
|     } else {
 | |
|       Allocate(w, i - shift);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned j = 0; j < L.size(); ++j) {
 | |
|     Allocate(L[j], i - shift);
 | |
|     i = i + 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
 | |
| /// create a cycle.
 | |
| bool ScheduleDAGRRList::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
 | |
|   if (IsReachable(TargetSU, SU))
 | |
|     return true;
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I)
 | |
|     if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
 | |
| /// BTCycle in order to schedule a specific node. Returns the last unscheduled
 | |
| /// SUnit. Also returns if a successor is unscheduled in the process.
 | |
| void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
 | |
|                                           unsigned &CurCycle) {
 | |
|   SUnit *OldSU = NULL;
 | |
|   while (CurCycle > BtCycle) {
 | |
|     OldSU = Sequence.back();
 | |
|     Sequence.pop_back();
 | |
|     if (SU->isSucc(OldSU))
 | |
|       // Don't try to remove SU from AvailableQueue.
 | |
|       SU->isAvailable = false;
 | |
|     UnscheduleNodeBottomUp(OldSU);
 | |
|     --CurCycle;
 | |
|   }
 | |
| 
 | |
|       
 | |
|   if (SU->isSucc(OldSU)) {
 | |
|     assert(false && "Something is wrong!");
 | |
|     abort();
 | |
|   }
 | |
| 
 | |
|   ++NumBacktracks;
 | |
| }
 | |
| 
 | |
| /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
 | |
| /// successors to the newly created node.
 | |
| SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
 | |
|   if (SU->FlaggedNodes.size())
 | |
|     return NULL;
 | |
| 
 | |
|   SDNode *N = SU->Node;
 | |
|   if (!N)
 | |
|     return NULL;
 | |
| 
 | |
|   SUnit *NewSU;
 | |
|   bool TryUnfold = false;
 | |
|   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
 | |
|     MVT::ValueType VT = N->getValueType(i);
 | |
|     if (VT == MVT::Flag)
 | |
|       return NULL;
 | |
|     else if (VT == MVT::Other)
 | |
|       TryUnfold = true;
 | |
|   }
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     const SDOperand &Op = N->getOperand(i);
 | |
|     MVT::ValueType VT = Op.Val->getValueType(Op.ResNo);
 | |
|     if (VT == MVT::Flag)
 | |
|       return NULL;
 | |
|   }
 | |
| 
 | |
|   if (TryUnfold) {
 | |
|     SmallVector<SDNode*, 4> NewNodes;
 | |
|     if (!TII->unfoldMemoryOperand(DAG, N, NewNodes))
 | |
|       return NULL;
 | |
| 
 | |
|     DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
 | |
|     assert(NewNodes.size() == 2 && "Expected a load folding node!");
 | |
| 
 | |
|     N = NewNodes[1];
 | |
|     SDNode *LoadNode = NewNodes[0];
 | |
|     unsigned NumVals = N->getNumValues();
 | |
|     unsigned OldNumVals = SU->Node->getNumValues();
 | |
|     for (unsigned i = 0; i != NumVals; ++i)
 | |
|       DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, i), SDOperand(N, i));
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, OldNumVals-1),
 | |
|                                   SDOperand(LoadNode, 1));
 | |
| 
 | |
|     SUnit *NewSU = CreateNewSUnit(N);
 | |
|     SUnitMap[N].push_back(NewSU);
 | |
|     const TargetInstrDesc &TID = TII->get(N->getTargetOpcode());
 | |
|     for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
 | |
|       if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
 | |
|         NewSU->isTwoAddress = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (TID.isCommutable())
 | |
|       NewSU->isCommutable = true;
 | |
|     // FIXME: Calculate height / depth and propagate the changes?
 | |
|     NewSU->Depth = SU->Depth;
 | |
|     NewSU->Height = SU->Height;
 | |
|     ComputeLatency(NewSU);
 | |
| 
 | |
|     // LoadNode may already exist. This can happen when there is another
 | |
|     // load from the same location and producing the same type of value
 | |
|     // but it has different alignment or volatileness.
 | |
|     bool isNewLoad = true;
 | |
|     SUnit *LoadSU;
 | |
|     DenseMap<SDNode*, std::vector<SUnit*> >::iterator SMI =
 | |
|       SUnitMap.find(LoadNode);
 | |
|     if (SMI != SUnitMap.end()) {
 | |
|       LoadSU = SMI->second.front();
 | |
|       isNewLoad = false;
 | |
|     } else {
 | |
|       LoadSU = CreateNewSUnit(LoadNode);
 | |
|       SUnitMap[LoadNode].push_back(LoadSU);
 | |
| 
 | |
|       LoadSU->Depth = SU->Depth;
 | |
|       LoadSU->Height = SU->Height;
 | |
|       ComputeLatency(LoadSU);
 | |
|     }
 | |
| 
 | |
|     SUnit *ChainPred = NULL;
 | |
|     SmallVector<SDep, 4> ChainSuccs;
 | |
|     SmallVector<SDep, 4> LoadPreds;
 | |
|     SmallVector<SDep, 4> NodePreds;
 | |
|     SmallVector<SDep, 4> NodeSuccs;
 | |
|     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->isCtrl)
 | |
|         ChainPred = I->Dep;
 | |
|       else if (I->Dep->Node && I->Dep->Node->isOperandOf(LoadNode))
 | |
|         LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
 | |
|       else
 | |
|         NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
 | |
|     }
 | |
|     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->isCtrl)
 | |
|         ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
 | |
|                                   I->isCtrl, I->isSpecial));
 | |
|       else
 | |
|         NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
 | |
|                                  I->isCtrl, I->isSpecial));
 | |
|     }
 | |
| 
 | |
|     if (ChainPred) {
 | |
|       RemovePred(SU, ChainPred, true, false);
 | |
|       if (isNewLoad)
 | |
|         AddPred(LoadSU, ChainPred, true, false);
 | |
|     }
 | |
|     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
 | |
|       SDep *Pred = &LoadPreds[i];
 | |
|       RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
 | |
|       if (isNewLoad) {
 | |
|         AddPred(LoadSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
 | |
|                 Pred->Reg, Pred->Cost);
 | |
|       }
 | |
|     }
 | |
|     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
 | |
|       SDep *Pred = &NodePreds[i];
 | |
|       RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
 | |
|       AddPred(NewSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
 | |
|               Pred->Reg, Pred->Cost);
 | |
|     }
 | |
|     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
 | |
|       SDep *Succ = &NodeSuccs[i];
 | |
|       RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
 | |
|       AddPred(Succ->Dep, NewSU, Succ->isCtrl, Succ->isSpecial,
 | |
|               Succ->Reg, Succ->Cost);
 | |
|     }
 | |
|     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
 | |
|       SDep *Succ = &ChainSuccs[i];
 | |
|       RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
 | |
|       if (isNewLoad) {
 | |
|         AddPred(Succ->Dep, LoadSU, Succ->isCtrl, Succ->isSpecial,
 | |
|                 Succ->Reg, Succ->Cost);
 | |
|       }
 | |
|     } 
 | |
|     if (isNewLoad) {
 | |
|       AddPred(NewSU, LoadSU, false, false);
 | |
|     }
 | |
| 
 | |
|     if (isNewLoad)
 | |
|       AvailableQueue->addNode(LoadSU);
 | |
|     AvailableQueue->addNode(NewSU);
 | |
| 
 | |
|     ++NumUnfolds;
 | |
| 
 | |
|     if (NewSU->NumSuccsLeft == 0) {
 | |
|       NewSU->isAvailable = true;
 | |
|       return NewSU;
 | |
|     }
 | |
|     SU = NewSU;
 | |
|   }
 | |
| 
 | |
|   DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
 | |
|   NewSU = CreateClone(SU);
 | |
| 
 | |
|   // New SUnit has the exact same predecessors.
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I)
 | |
|     if (!I->isSpecial) {
 | |
|       AddPred(NewSU, I->Dep, I->isCtrl, false, I->Reg, I->Cost);
 | |
|       NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
 | |
|     }
 | |
| 
 | |
|   // Only copy scheduled successors. Cut them from old node's successor
 | |
|   // list and move them over.
 | |
|   SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isSpecial)
 | |
|       continue;
 | |
|     if (I->Dep->isScheduled) {
 | |
|       NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
 | |
|       AddPred(I->Dep, NewSU, I->isCtrl, false, I->Reg, I->Cost);
 | |
|       DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
 | |
|     SUnit *Succ = DelDeps[i].first;
 | |
|     bool isCtrl = DelDeps[i].second;
 | |
|     RemovePred(Succ, SU, isCtrl, false);
 | |
|   }
 | |
| 
 | |
|   AvailableQueue->updateNode(SU);
 | |
|   AvailableQueue->addNode(NewSU);
 | |
| 
 | |
|   ++NumDups;
 | |
|   return NewSU;
 | |
| }
 | |
| 
 | |
| /// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
 | |
| /// and move all scheduled successors of the given SUnit to the last copy.
 | |
| void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
 | |
|                                               const TargetRegisterClass *DestRC,
 | |
|                                               const TargetRegisterClass *SrcRC,
 | |
|                                                SmallVector<SUnit*, 2> &Copies) {
 | |
|   SUnit *CopyFromSU = CreateNewSUnit(NULL);
 | |
|   CopyFromSU->CopySrcRC = SrcRC;
 | |
|   CopyFromSU->CopyDstRC = DestRC;
 | |
|   CopyFromSU->Depth = SU->Depth;
 | |
|   CopyFromSU->Height = SU->Height;
 | |
| 
 | |
|   SUnit *CopyToSU = CreateNewSUnit(NULL);
 | |
|   CopyToSU->CopySrcRC = DestRC;
 | |
|   CopyToSU->CopyDstRC = SrcRC;
 | |
| 
 | |
|   // Only copy scheduled successors. Cut them from old node's successor
 | |
|   // list and move them over.
 | |
|   SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isSpecial)
 | |
|       continue;
 | |
|     if (I->Dep->isScheduled) {
 | |
|       CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1);
 | |
|       AddPred(I->Dep, CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
 | |
|       DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
 | |
|     SUnit *Succ = DelDeps[i].first;
 | |
|     bool isCtrl = DelDeps[i].second;
 | |
|     RemovePred(Succ, SU, isCtrl, false);
 | |
|   }
 | |
| 
 | |
|   AddPred(CopyFromSU, SU, false, false, Reg, -1);
 | |
|   AddPred(CopyToSU, CopyFromSU, false, false, Reg, 1);
 | |
| 
 | |
|   AvailableQueue->updateNode(SU);
 | |
|   AvailableQueue->addNode(CopyFromSU);
 | |
|   AvailableQueue->addNode(CopyToSU);
 | |
|   Copies.push_back(CopyFromSU);
 | |
|   Copies.push_back(CopyToSU);
 | |
| 
 | |
|   ++NumCCCopies;
 | |
| }
 | |
| 
 | |
| /// getPhysicalRegisterVT - Returns the ValueType of the physical register
 | |
| /// definition of the specified node.
 | |
| /// FIXME: Move to SelectionDAG?
 | |
| static MVT::ValueType getPhysicalRegisterVT(SDNode *N, unsigned Reg,
 | |
|                                             const TargetInstrInfo *TII) {
 | |
|   const TargetInstrDesc &TID = TII->get(N->getTargetOpcode());
 | |
|   assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
 | |
|   unsigned NumRes = TID.getNumDefs();
 | |
|   for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
 | |
|     if (Reg == *ImpDef)
 | |
|       break;
 | |
|     ++NumRes;
 | |
|   }
 | |
|   return N->getValueType(NumRes);
 | |
| }
 | |
| 
 | |
| /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
 | |
| /// scheduling of the given node to satisfy live physical register dependencies.
 | |
| /// If the specific node is the last one that's available to schedule, do
 | |
| /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
 | |
| bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
 | |
|                                                  SmallVector<unsigned, 4> &LRegs){
 | |
|   if (LiveRegs.empty())
 | |
|     return false;
 | |
| 
 | |
|   SmallSet<unsigned, 4> RegAdded;
 | |
|   // If this node would clobber any "live" register, then it's not ready.
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->Cost < 0)  {
 | |
|       unsigned Reg = I->Reg;
 | |
|       if (LiveRegs.count(Reg) && LiveRegDefs[Reg] != I->Dep) {
 | |
|         if (RegAdded.insert(Reg))
 | |
|           LRegs.push_back(Reg);
 | |
|       }
 | |
|       for (const unsigned *Alias = TRI->getAliasSet(Reg);
 | |
|            *Alias; ++Alias)
 | |
|         if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != I->Dep) {
 | |
|           if (RegAdded.insert(*Alias))
 | |
|             LRegs.push_back(*Alias);
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) {
 | |
|     SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1];
 | |
|     if (!Node || !Node->isTargetOpcode())
 | |
|       continue;
 | |
|     const TargetInstrDesc &TID = TII->get(Node->getTargetOpcode());
 | |
|     if (!TID.ImplicitDefs)
 | |
|       continue;
 | |
|     for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
 | |
|       if (LiveRegs.count(*Reg) && LiveRegDefs[*Reg] != SU) {
 | |
|         if (RegAdded.insert(*Reg))
 | |
|           LRegs.push_back(*Reg);
 | |
|       }
 | |
|       for (const unsigned *Alias = TRI->getAliasSet(*Reg);
 | |
|            *Alias; ++Alias)
 | |
|         if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != SU) {
 | |
|           if (RegAdded.insert(*Alias))
 | |
|             LRegs.push_back(*Alias);
 | |
|         }
 | |
|     }
 | |
|   }
 | |
|   return !LRegs.empty();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
 | |
| /// schedulers.
 | |
| void ScheduleDAGRRList::ListScheduleBottomUp() {
 | |
|   unsigned CurCycle = 0;
 | |
|   // Add root to Available queue.
 | |
|   if (!SUnits.empty()) {
 | |
|     SUnit *RootSU = SUnitMap[DAG.getRoot().Val].front();
 | |
|     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
 | |
|     RootSU->isAvailable = true;
 | |
|     AvailableQueue->push(RootSU);
 | |
|   }
 | |
| 
 | |
|   // While Available queue is not empty, grab the node with the highest
 | |
|   // priority. If it is not ready put it back.  Schedule the node.
 | |
|   SmallVector<SUnit*, 4> NotReady;
 | |
|   while (!AvailableQueue->empty()) {
 | |
|     bool Delayed = false;
 | |
|     DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
 | |
|     SUnit *CurSU = AvailableQueue->pop();
 | |
|     while (CurSU) {
 | |
|       if (CurSU->CycleBound <= CurCycle) {
 | |
|         SmallVector<unsigned, 4> LRegs;
 | |
|         if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
 | |
|           break;
 | |
|         Delayed = true;
 | |
|         LRegsMap.insert(std::make_pair(CurSU, LRegs));
 | |
|       }
 | |
| 
 | |
|       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
 | |
|       NotReady.push_back(CurSU);
 | |
|       CurSU = AvailableQueue->pop();
 | |
|     }
 | |
| 
 | |
|     // All candidates are delayed due to live physical reg dependencies.
 | |
|     // Try backtracking, code duplication, or inserting cross class copies
 | |
|     // to resolve it.
 | |
|     if (Delayed && !CurSU) {
 | |
|       for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
 | |
|         SUnit *TrySU = NotReady[i];
 | |
|         SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
 | |
| 
 | |
|         // Try unscheduling up to the point where it's safe to schedule
 | |
|         // this node.
 | |
|         unsigned LiveCycle = CurCycle;
 | |
|         for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
 | |
|           unsigned Reg = LRegs[j];
 | |
|           unsigned LCycle = LiveRegCycles[Reg];
 | |
|           LiveCycle = std::min(LiveCycle, LCycle);
 | |
|         }
 | |
|         SUnit *OldSU = Sequence[LiveCycle];
 | |
|         if (!WillCreateCycle(TrySU, OldSU))  {
 | |
|           BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
 | |
|           // Force the current node to be scheduled before the node that
 | |
|           // requires the physical reg dep.
 | |
|           if (OldSU->isAvailable) {
 | |
|             OldSU->isAvailable = false;
 | |
|             AvailableQueue->remove(OldSU);
 | |
|           }
 | |
|           AddPred(TrySU, OldSU, true, true);
 | |
|           // If one or more successors has been unscheduled, then the current
 | |
|           // node is no longer avaialable. Schedule a successor that's now
 | |
|           // available instead.
 | |
|           if (!TrySU->isAvailable)
 | |
|             CurSU = AvailableQueue->pop();
 | |
|           else {
 | |
|             CurSU = TrySU;
 | |
|             TrySU->isPending = false;
 | |
|             NotReady.erase(NotReady.begin()+i);
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!CurSU) {
 | |
|         // Can't backtrack. Try duplicating the nodes that produces these
 | |
|         // "expensive to copy" values to break the dependency. In case even
 | |
|         // that doesn't work, insert cross class copies.
 | |
|         SUnit *TrySU = NotReady[0];
 | |
|         SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
 | |
|         assert(LRegs.size() == 1 && "Can't handle this yet!");
 | |
|         unsigned Reg = LRegs[0];
 | |
|         SUnit *LRDef = LiveRegDefs[Reg];
 | |
|         SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
 | |
|         if (!NewDef) {
 | |
|           // Issue expensive cross register class copies.
 | |
|           MVT::ValueType VT = getPhysicalRegisterVT(LRDef->Node, Reg, TII);
 | |
|           const TargetRegisterClass *RC =
 | |
|             TRI->getPhysicalRegisterRegClass(Reg, VT);
 | |
|           const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
 | |
|           if (!DestRC) {
 | |
|             assert(false && "Don't know how to copy this physical register!");
 | |
|             abort();
 | |
|           }
 | |
|           SmallVector<SUnit*, 2> Copies;
 | |
|           InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
 | |
|           DOUT << "Adding an edge from SU # " << TrySU->NodeNum
 | |
|                << " to SU #" << Copies.front()->NodeNum << "\n";
 | |
|           AddPred(TrySU, Copies.front(), true, true);
 | |
|           NewDef = Copies.back();
 | |
|         }
 | |
| 
 | |
|         DOUT << "Adding an edge from SU # " << NewDef->NodeNum
 | |
|              << " to SU #" << TrySU->NodeNum << "\n";
 | |
|         LiveRegDefs[Reg] = NewDef;
 | |
|         AddPred(NewDef, TrySU, true, true);
 | |
|         TrySU->isAvailable = false;
 | |
|         CurSU = NewDef;
 | |
|       }
 | |
| 
 | |
|       if (!CurSU) {
 | |
|         assert(false && "Unable to resolve live physical register dependencies!");
 | |
|         abort();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Add the nodes that aren't ready back onto the available list.
 | |
|     for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
 | |
|       NotReady[i]->isPending = false;
 | |
|       // May no longer be available due to backtracking.
 | |
|       if (NotReady[i]->isAvailable)
 | |
|         AvailableQueue->push(NotReady[i]);
 | |
|     }
 | |
|     NotReady.clear();
 | |
| 
 | |
|     if (!CurSU)
 | |
|       Sequence.push_back(0);
 | |
|     else {
 | |
|       ScheduleNodeBottomUp(CurSU, CurCycle);
 | |
|       Sequence.push_back(CurSU);
 | |
|     }
 | |
|     ++CurCycle;
 | |
|   }
 | |
| 
 | |
|   // Reverse the order if it is bottom up.
 | |
|   std::reverse(Sequence.begin(), Sequence.end());
 | |
|   
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   // Verify that all SUnits were scheduled.
 | |
|   bool AnyNotSched = false;
 | |
|   unsigned DeadNodes = 0;
 | |
|   unsigned Noops = 0;
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     if (!SUnits[i].isScheduled) {
 | |
|       if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
 | |
|         ++DeadNodes;
 | |
|         continue;
 | |
|       }
 | |
|       if (!AnyNotSched)
 | |
|         cerr << "*** List scheduling failed! ***\n";
 | |
|       SUnits[i].dump(&DAG);
 | |
|       cerr << "has not been scheduled!\n";
 | |
|       AnyNotSched = true;
 | |
|     }
 | |
|     if (SUnits[i].NumSuccsLeft != 0) {
 | |
|       if (!AnyNotSched)
 | |
|         cerr << "*** List scheduling failed! ***\n";
 | |
|       SUnits[i].dump(&DAG);
 | |
|       cerr << "has successors left!\n";
 | |
|       AnyNotSched = true;
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
 | |
|     if (!Sequence[i])
 | |
|       ++Noops;
 | |
|   assert(!AnyNotSched);
 | |
|   assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
 | |
|          "The number of nodes scheduled doesn't match the expected number!");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Top-Down Scheduling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | |
| /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
 | |
| void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain, 
 | |
|                                     unsigned CurCycle) {
 | |
|   // FIXME: the distance between two nodes is not always == the predecessor's
 | |
|   // latency. For example, the reader can very well read the register written
 | |
|   // by the predecessor later than the issue cycle. It also depends on the
 | |
|   // interrupt model (drain vs. freeze).
 | |
|   SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
 | |
| 
 | |
|   --SuccSU->NumPredsLeft;
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   if (SuccSU->NumPredsLeft < 0) {
 | |
|     cerr << "*** List scheduling failed! ***\n";
 | |
|     SuccSU->dump(&DAG);
 | |
|     cerr << " has been released too many times!\n";
 | |
|     assert(0);
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   if (SuccSU->NumPredsLeft == 0) {
 | |
|     SuccSU->isAvailable = true;
 | |
|     AvailableQueue->push(SuccSU);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | |
| /// count of its successors. If a successor pending count is zero, add it to
 | |
| /// the Available queue.
 | |
| void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
 | |
|   DOUT << "*** Scheduling [" << CurCycle << "]: ";
 | |
|   DEBUG(SU->dump(&DAG));
 | |
|   SU->Cycle = CurCycle;
 | |
| 
 | |
|   AvailableQueue->ScheduledNode(SU);
 | |
| 
 | |
|   // Top down: release successors
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I)
 | |
|     ReleaseSucc(I->Dep, I->isCtrl, CurCycle);
 | |
|   SU->isScheduled = true;
 | |
| }
 | |
| 
 | |
| /// ListScheduleTopDown - The main loop of list scheduling for top-down
 | |
| /// schedulers.
 | |
| void ScheduleDAGRRList::ListScheduleTopDown() {
 | |
|   unsigned CurCycle = 0;
 | |
| 
 | |
|   // All leaves to Available queue.
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     // It is available if it has no predecessors.
 | |
|     if (SUnits[i].Preds.empty()) {
 | |
|       AvailableQueue->push(&SUnits[i]);
 | |
|       SUnits[i].isAvailable = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // While Available queue is not empty, grab the node with the highest
 | |
|   // priority. If it is not ready put it back.  Schedule the node.
 | |
|   std::vector<SUnit*> NotReady;
 | |
|   while (!AvailableQueue->empty()) {
 | |
|     SUnit *CurSU = AvailableQueue->pop();
 | |
|     while (CurSU && CurSU->CycleBound > CurCycle) {
 | |
|       NotReady.push_back(CurSU);
 | |
|       CurSU = AvailableQueue->pop();
 | |
|     }
 | |
|     
 | |
|     // Add the nodes that aren't ready back onto the available list.
 | |
|     AvailableQueue->push_all(NotReady);
 | |
|     NotReady.clear();
 | |
| 
 | |
|     if (!CurSU)
 | |
|       Sequence.push_back(0);
 | |
|     else {
 | |
|       ScheduleNodeTopDown(CurSU, CurCycle);
 | |
|       Sequence.push_back(CurSU);
 | |
|     }
 | |
|     ++CurCycle;
 | |
|   }
 | |
|   
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   // Verify that all SUnits were scheduled.
 | |
|   bool AnyNotSched = false;
 | |
|   unsigned DeadNodes = 0;
 | |
|   unsigned Noops = 0;
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     if (!SUnits[i].isScheduled) {
 | |
|       if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
 | |
|         ++DeadNodes;
 | |
|         continue;
 | |
|       }
 | |
|       if (!AnyNotSched)
 | |
|         cerr << "*** List scheduling failed! ***\n";
 | |
|       SUnits[i].dump(&DAG);
 | |
|       cerr << "has not been scheduled!\n";
 | |
|       AnyNotSched = true;
 | |
|     }
 | |
|     if (SUnits[i].NumPredsLeft != 0) {
 | |
|       if (!AnyNotSched)
 | |
|         cerr << "*** List scheduling failed! ***\n";
 | |
|       SUnits[i].dump(&DAG);
 | |
|       cerr << "has predecessors left!\n";
 | |
|       AnyNotSched = true;
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
 | |
|     if (!Sequence[i])
 | |
|       ++Noops;
 | |
|   assert(!AnyNotSched);
 | |
|   assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
 | |
|          "The number of nodes scheduled doesn't match the expected number!");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                RegReductionPriorityQueue Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
 | |
| // to reduce register pressure.
 | |
| // 
 | |
| namespace {
 | |
|   template<class SF>
 | |
|   class RegReductionPriorityQueue;
 | |
|   
 | |
|   /// Sorting functions for the Available queue.
 | |
|   struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|     RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
 | |
|     bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
 | |
|     bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | |
|     
 | |
|     bool operator()(const SUnit* left, const SUnit* right) const;
 | |
|   };
 | |
| 
 | |
|   struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|     RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
 | |
|     td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
 | |
|     td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | |
|     
 | |
|     bool operator()(const SUnit* left, const SUnit* right) const;
 | |
|   };
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| static inline bool isCopyFromLiveIn(const SUnit *SU) {
 | |
|   SDNode *N = SU->Node;
 | |
|   return N && N->getOpcode() == ISD::CopyFromReg &&
 | |
|     N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   template<class SF>
 | |
|   class VISIBILITY_HIDDEN RegReductionPriorityQueue
 | |
|    : public SchedulingPriorityQueue {
 | |
|     std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
 | |
| 
 | |
|   public:
 | |
|     RegReductionPriorityQueue() :
 | |
|     Queue(SF(this)) {}
 | |
|     
 | |
|     virtual void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
 | |
|                            std::vector<SUnit> &sunits) {}
 | |
| 
 | |
|     virtual void addNode(const SUnit *SU) {}
 | |
| 
 | |
|     virtual void updateNode(const SUnit *SU) {}
 | |
| 
 | |
|     virtual void releaseState() {}
 | |
|     
 | |
|     virtual unsigned getNodePriority(const SUnit *SU) const {
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     unsigned size() const { return Queue.size(); }
 | |
| 
 | |
|     bool empty() const { return Queue.empty(); }
 | |
|     
 | |
|     void push(SUnit *U) {
 | |
|       Queue.push(U);
 | |
|     }
 | |
|     void push_all(const std::vector<SUnit *> &Nodes) {
 | |
|       for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | |
|         Queue.push(Nodes[i]);
 | |
|     }
 | |
|     
 | |
|     SUnit *pop() {
 | |
|       if (empty()) return NULL;
 | |
|       SUnit *V = Queue.top();
 | |
|       Queue.pop();
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     /// remove - This is a really inefficient way to remove a node from a
 | |
|     /// priority queue.  We should roll our own heap to make this better or
 | |
|     /// something.
 | |
|     void remove(SUnit *SU) {
 | |
|       std::vector<SUnit*> Temp;
 | |
|       
 | |
|       assert(!Queue.empty() && "Not in queue!");
 | |
|       while (Queue.top() != SU) {
 | |
|         Temp.push_back(Queue.top());
 | |
|         Queue.pop();
 | |
|         assert(!Queue.empty() && "Not in queue!");
 | |
|       }
 | |
| 
 | |
|       // Remove the node from the PQ.
 | |
|       Queue.pop();
 | |
|       
 | |
|       // Add all the other nodes back.
 | |
|       for (unsigned i = 0, e = Temp.size(); i != e; ++i)
 | |
|         Queue.push(Temp[i]);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<class SF>
 | |
|   class VISIBILITY_HIDDEN BURegReductionPriorityQueue
 | |
|    : public RegReductionPriorityQueue<SF> {
 | |
|     // SUnitMap SDNode to SUnit mapping (n -> n).
 | |
|     DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
 | |
| 
 | |
|     // SUnits - The SUnits for the current graph.
 | |
|     const std::vector<SUnit> *SUnits;
 | |
|     
 | |
|     // SethiUllmanNumbers - The SethiUllman number for each node.
 | |
|     std::vector<unsigned> SethiUllmanNumbers;
 | |
| 
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     ScheduleDAGRRList *scheduleDAG;
 | |
|   public:
 | |
|     explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii,
 | |
|                                          const TargetRegisterInfo *tri)
 | |
|       : TII(tii), TRI(tri), scheduleDAG(NULL) {}
 | |
| 
 | |
|     void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
 | |
|                    std::vector<SUnit> &sunits) {
 | |
|       SUnitMap = &sumap;
 | |
|       SUnits = &sunits;
 | |
|       // Add pseudo dependency edges for two-address nodes.
 | |
|       AddPseudoTwoAddrDeps();
 | |
|       // Calculate node priorities.
 | |
|       CalculateSethiUllmanNumbers();
 | |
|     }
 | |
| 
 | |
|     void addNode(const SUnit *SU) {
 | |
|       SethiUllmanNumbers.resize(SUnits->size(), 0);
 | |
|       CalcNodeSethiUllmanNumber(SU);
 | |
|     }
 | |
| 
 | |
|     void updateNode(const SUnit *SU) {
 | |
|       SethiUllmanNumbers[SU->NodeNum] = 0;
 | |
|       CalcNodeSethiUllmanNumber(SU);
 | |
|     }
 | |
| 
 | |
|     void releaseState() {
 | |
|       SUnits = 0;
 | |
|       SethiUllmanNumbers.clear();
 | |
|     }
 | |
| 
 | |
|     unsigned getNodePriority(const SUnit *SU) const {
 | |
|       assert(SU->NodeNum < SethiUllmanNumbers.size());
 | |
|       unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
 | |
|       if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
 | |
|         // CopyFromReg should be close to its def because it restricts
 | |
|         // allocation choices. But if it is a livein then perhaps we want it
 | |
|         // closer to its uses so it can be coalesced.
 | |
|         return 0xffff;
 | |
|       else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | |
|         // CopyToReg should be close to its uses to facilitate coalescing and
 | |
|         // avoid spilling.
 | |
|         return 0;
 | |
|       else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
 | |
|                Opc == TargetInstrInfo::INSERT_SUBREG)
 | |
|         // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
 | |
|         // facilitate coalescing.
 | |
|         return 0;
 | |
|       else if (SU->NumSuccs == 0)
 | |
|         // If SU does not have a use, i.e. it doesn't produce a value that would
 | |
|         // be consumed (e.g. store), then it terminates a chain of computation.
 | |
|         // Give it a large SethiUllman number so it will be scheduled right
 | |
|         // before its predecessors that it doesn't lengthen their live ranges.
 | |
|         return 0xffff;
 | |
|       else if (SU->NumPreds == 0)
 | |
|         // If SU does not have a def, schedule it close to its uses because it
 | |
|         // does not lengthen any live ranges.
 | |
|         return 0;
 | |
|       else
 | |
|         return SethiUllmanNumbers[SU->NodeNum];
 | |
|     }
 | |
| 
 | |
|     void setScheduleDAG(ScheduleDAGRRList *scheduleDag) { 
 | |
|       scheduleDAG = scheduleDag; 
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     bool canClobber(const SUnit *SU, const SUnit *Op);
 | |
|     void AddPseudoTwoAddrDeps();
 | |
|     void CalculateSethiUllmanNumbers();
 | |
|     unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
 | |
|   };
 | |
| 
 | |
| 
 | |
|   template<class SF>
 | |
|   class VISIBILITY_HIDDEN TDRegReductionPriorityQueue
 | |
|    : public RegReductionPriorityQueue<SF> {
 | |
|     // SUnitMap SDNode to SUnit mapping (n -> n).
 | |
|     DenseMap<SDNode*, std::vector<SUnit*> > *SUnitMap;
 | |
| 
 | |
|     // SUnits - The SUnits for the current graph.
 | |
|     const std::vector<SUnit> *SUnits;
 | |
|     
 | |
|     // SethiUllmanNumbers - The SethiUllman number for each node.
 | |
|     std::vector<unsigned> SethiUllmanNumbers;
 | |
| 
 | |
|   public:
 | |
|     TDRegReductionPriorityQueue() {}
 | |
| 
 | |
|     void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
 | |
|                    std::vector<SUnit> &sunits) {
 | |
|       SUnitMap = &sumap;
 | |
|       SUnits = &sunits;
 | |
|       // Calculate node priorities.
 | |
|       CalculateSethiUllmanNumbers();
 | |
|     }
 | |
| 
 | |
|     void addNode(const SUnit *SU) {
 | |
|       SethiUllmanNumbers.resize(SUnits->size(), 0);
 | |
|       CalcNodeSethiUllmanNumber(SU);
 | |
|     }
 | |
| 
 | |
|     void updateNode(const SUnit *SU) {
 | |
|       SethiUllmanNumbers[SU->NodeNum] = 0;
 | |
|       CalcNodeSethiUllmanNumber(SU);
 | |
|     }
 | |
| 
 | |
|     void releaseState() {
 | |
|       SUnits = 0;
 | |
|       SethiUllmanNumbers.clear();
 | |
|     }
 | |
| 
 | |
|     unsigned getNodePriority(const SUnit *SU) const {
 | |
|       assert(SU->NodeNum < SethiUllmanNumbers.size());
 | |
|       return SethiUllmanNumbers[SU->NodeNum];
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     void CalculateSethiUllmanNumbers();
 | |
|     unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// closestSucc - Returns the scheduled cycle of the successor which is
 | |
| /// closet to the current cycle.
 | |
| static unsigned closestSucc(const SUnit *SU) {
 | |
|   unsigned MaxCycle = 0;
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     unsigned Cycle = I->Dep->Cycle;
 | |
|     // If there are bunch of CopyToRegs stacked up, they should be considered
 | |
|     // to be at the same position.
 | |
|     if (I->Dep->Node && I->Dep->Node->getOpcode() == ISD::CopyToReg)
 | |
|       Cycle = closestSucc(I->Dep)+1;
 | |
|     if (Cycle > MaxCycle)
 | |
|       MaxCycle = Cycle;
 | |
|   }
 | |
|   return MaxCycle;
 | |
| }
 | |
| 
 | |
| /// calcMaxScratches - Returns an cost estimate of the worse case requirement
 | |
| /// for scratch registers. Live-in operands and live-out results don't count
 | |
| /// since they are "fixed".
 | |
| static unsigned calcMaxScratches(const SUnit *SU) {
 | |
|   unsigned Scratches = 0;
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl) continue;  // ignore chain preds
 | |
|     if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyFromReg)
 | |
|       Scratches++;
 | |
|   }
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl) continue;  // ignore chain succs
 | |
|     if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyToReg)
 | |
|       Scratches += 10;
 | |
|   }
 | |
|   return Scratches;
 | |
| }
 | |
| 
 | |
| // Bottom up
 | |
| bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | |
|   // There used to be a special tie breaker here that looked for
 | |
|   // two-address instructions and preferred the instruction with a
 | |
|   // def&use operand.  The special case triggered diagnostics when
 | |
|   // _GLIBCXX_DEBUG was enabled because it broke the strict weak
 | |
|   // ordering that priority_queue requires. It didn't help much anyway
 | |
|   // because AddPseudoTwoAddrDeps already covers many of the cases
 | |
|   // where it would have applied.  In addition, it's counter-intuitive
 | |
|   // that a tie breaker would be the first thing attempted.  There's a
 | |
|   // "real" tie breaker below that is the operation of last resort.
 | |
|   // The fact that the "special tie breaker" would trigger when there
 | |
|   // wasn't otherwise a tie is what broke the strict weak ordering
 | |
|   // constraint.
 | |
| 
 | |
|   unsigned LPriority = SPQ->getNodePriority(left);
 | |
|   unsigned RPriority = SPQ->getNodePriority(right);
 | |
|   if (LPriority != RPriority)
 | |
|     return LPriority > RPriority;
 | |
| 
 | |
|   // Try schedule def + use closer when Sethi-Ullman numbers are the same.
 | |
|   // e.g.
 | |
|   // t1 = op t2, c1
 | |
|   // t3 = op t4, c2
 | |
|   //
 | |
|   // and the following instructions are both ready.
 | |
|   // t2 = op c3
 | |
|   // t4 = op c4
 | |
|   //
 | |
|   // Then schedule t2 = op first.
 | |
|   // i.e.
 | |
|   // t4 = op c4
 | |
|   // t2 = op c3
 | |
|   // t1 = op t2, c1
 | |
|   // t3 = op t4, c2
 | |
|   //
 | |
|   // This creates more short live intervals.
 | |
|   unsigned LDist = closestSucc(left);
 | |
|   unsigned RDist = closestSucc(right);
 | |
|   if (LDist != RDist)
 | |
|     return LDist < RDist;
 | |
| 
 | |
|   // Intuitively, it's good to push down instructions whose results are
 | |
|   // liveout so their long live ranges won't conflict with other values
 | |
|   // which are needed inside the BB. Further prioritize liveout instructions
 | |
|   // by the number of operands which are calculated within the BB.
 | |
|   unsigned LScratch = calcMaxScratches(left);
 | |
|   unsigned RScratch = calcMaxScratches(right);
 | |
|   if (LScratch != RScratch)
 | |
|     return LScratch > RScratch;
 | |
| 
 | |
|   if (left->Height != right->Height)
 | |
|     return left->Height > right->Height;
 | |
|   
 | |
|   if (left->Depth != right->Depth)
 | |
|     return left->Depth < right->Depth;
 | |
| 
 | |
|   if (left->CycleBound != right->CycleBound)
 | |
|     return left->CycleBound > right->CycleBound;
 | |
| 
 | |
|   // FIXME: No strict ordering.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| template<class SF> bool
 | |
| BURegReductionPriorityQueue<SF>::canClobber(const SUnit *SU, const SUnit *Op) {
 | |
|   if (SU->isTwoAddress) {
 | |
|     unsigned Opc = SU->Node->getTargetOpcode();
 | |
|     const TargetInstrDesc &TID = TII->get(Opc);
 | |
|     unsigned NumRes = TID.getNumDefs();
 | |
|     unsigned NumOps = TID.getNumOperands() - NumRes;
 | |
|     for (unsigned i = 0; i != NumOps; ++i) {
 | |
|       if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
 | |
|         SDNode *DU = SU->Node->getOperand(i).Val;
 | |
|         if ((*SUnitMap).find(DU) != (*SUnitMap).end() &&
 | |
|             Op == (*SUnitMap)[DU][SU->InstanceNo])
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// hasCopyToRegUse - Return true if SU has a value successor that is a
 | |
| /// CopyToReg node.
 | |
| static bool hasCopyToRegUse(SUnit *SU) {
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl) continue;
 | |
|     SUnit *SuccSU = I->Dep;
 | |
|     if (SuccSU->Node && SuccSU->Node->getOpcode() == ISD::CopyToReg)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
 | |
| /// physical register def.
 | |
| static bool canClobberPhysRegDefs(SUnit *SuccSU, SUnit *SU,
 | |
|                                   const TargetInstrInfo *TII,
 | |
|                                   const TargetRegisterInfo *TRI) {
 | |
|   SDNode *N = SuccSU->Node;
 | |
|   unsigned NumDefs = TII->get(N->getTargetOpcode()).getNumDefs();
 | |
|   const unsigned *ImpDefs = TII->get(N->getTargetOpcode()).getImplicitDefs();
 | |
|   if (!ImpDefs)
 | |
|     return false;
 | |
|   const unsigned *SUImpDefs =
 | |
|     TII->get(SU->Node->getTargetOpcode()).getImplicitDefs();
 | |
|   if (!SUImpDefs)
 | |
|     return false;
 | |
|   for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
 | |
|     MVT::ValueType VT = N->getValueType(i);
 | |
|     if (VT == MVT::Flag || VT == MVT::Other)
 | |
|       continue;
 | |
|     unsigned Reg = ImpDefs[i - NumDefs];
 | |
|     for (;*SUImpDefs; ++SUImpDefs) {
 | |
|       unsigned SUReg = *SUImpDefs;
 | |
|       if (TRI->regsOverlap(Reg, SUReg))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
 | |
| /// it as a def&use operand. Add a pseudo control edge from it to the other
 | |
| /// node (if it won't create a cycle) so the two-address one will be scheduled
 | |
| /// first (lower in the schedule). If both nodes are two-address, favor the
 | |
| /// one that has a CopyToReg use (more likely to be a loop induction update).
 | |
| /// If both are two-address, but one is commutable while the other is not
 | |
| /// commutable, favor the one that's not commutable.
 | |
| template<class SF>
 | |
| void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
 | |
|     SUnit *SU = (SUnit *)&((*SUnits)[i]);
 | |
|     if (!SU->isTwoAddress)
 | |
|       continue;
 | |
| 
 | |
|     SDNode *Node = SU->Node;
 | |
|     if (!Node || !Node->isTargetOpcode() || SU->FlaggedNodes.size() > 0)
 | |
|       continue;
 | |
| 
 | |
|     unsigned Opc = Node->getTargetOpcode();
 | |
|     const TargetInstrDesc &TID = TII->get(Opc);
 | |
|     unsigned NumRes = TID.getNumDefs();
 | |
|     unsigned NumOps = TID.getNumOperands() - NumRes;
 | |
|     for (unsigned j = 0; j != NumOps; ++j) {
 | |
|       if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) != -1) {
 | |
|         SDNode *DU = SU->Node->getOperand(j).Val;
 | |
|         if ((*SUnitMap).find(DU) == (*SUnitMap).end())
 | |
|           continue;
 | |
|         SUnit *DUSU = (*SUnitMap)[DU][SU->InstanceNo];
 | |
|         if (!DUSU) continue;
 | |
|         for (SUnit::succ_iterator I = DUSU->Succs.begin(),E = DUSU->Succs.end();
 | |
|              I != E; ++I) {
 | |
|           if (I->isCtrl) continue;
 | |
|           SUnit *SuccSU = I->Dep;
 | |
|           if (SuccSU == SU)
 | |
|             continue;
 | |
|           // Be conservative. Ignore if nodes aren't at roughly the same
 | |
|           // depth and height.
 | |
|           if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1)
 | |
|             continue;
 | |
|           if (!SuccSU->Node || !SuccSU->Node->isTargetOpcode())
 | |
|             continue;
 | |
|           // Don't constrain nodes with physical register defs if the
 | |
|           // predecessor can clobber them.
 | |
|           if (SuccSU->hasPhysRegDefs) {
 | |
|             if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
 | |
|               continue;
 | |
|           }
 | |
|           // Don't constraint extract_subreg / insert_subreg these may be
 | |
|           // coalesced away. We don't them close to their uses.
 | |
|           unsigned SuccOpc = SuccSU->Node->getTargetOpcode();
 | |
|           if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
 | |
|               SuccOpc == TargetInstrInfo::INSERT_SUBREG)
 | |
|             continue;
 | |
|           if ((!canClobber(SuccSU, DUSU) ||
 | |
|                (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
 | |
|                (!SU->isCommutable && SuccSU->isCommutable)) &&
 | |
|               !scheduleDAG->IsReachable(SuccSU, SU)) {
 | |
|             DOUT << "Adding an edge from SU # " << SU->NodeNum
 | |
|                  << " to SU #" << SuccSU->NodeNum << "\n";
 | |
|             scheduleDAG->AddPred(SU, SuccSU, true, true);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number. 
 | |
| /// Smaller number is the higher priority.
 | |
| template<class SF>
 | |
| unsigned BURegReductionPriorityQueue<SF>::
 | |
| CalcNodeSethiUllmanNumber(const SUnit *SU) {
 | |
|   unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
 | |
|   if (SethiUllmanNumber != 0)
 | |
|     return SethiUllmanNumber;
 | |
| 
 | |
|   unsigned Extra = 0;
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl) continue;  // ignore chain preds
 | |
|     SUnit *PredSU = I->Dep;
 | |
|     unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
 | |
|     if (PredSethiUllman > SethiUllmanNumber) {
 | |
|       SethiUllmanNumber = PredSethiUllman;
 | |
|       Extra = 0;
 | |
|     } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
 | |
|       ++Extra;
 | |
|   }
 | |
| 
 | |
|   SethiUllmanNumber += Extra;
 | |
| 
 | |
|   if (SethiUllmanNumber == 0)
 | |
|     SethiUllmanNumber = 1;
 | |
|   
 | |
|   return SethiUllmanNumber;
 | |
| }
 | |
| 
 | |
| /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
 | |
| /// scheduling units.
 | |
| template<class SF>
 | |
| void BURegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
 | |
|   SethiUllmanNumbers.assign(SUnits->size(), 0);
 | |
|   
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | |
|     CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
 | |
| }
 | |
| 
 | |
| /// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
 | |
| /// predecessors of the successors of the SUnit SU. Stop when the provided
 | |
| /// limit is exceeded.
 | |
| static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU, 
 | |
|                                                     unsigned Limit) {
 | |
|   unsigned Sum = 0;
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     SUnit *SuccSU = I->Dep;
 | |
|     for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
 | |
|          EE = SuccSU->Preds.end(); II != EE; ++II) {
 | |
|       SUnit *PredSU = II->Dep;
 | |
|       if (!PredSU->isScheduled)
 | |
|         if (++Sum > Limit)
 | |
|           return Sum;
 | |
|     }
 | |
|   }
 | |
|   return Sum;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Top down
 | |
| bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | |
|   unsigned LPriority = SPQ->getNodePriority(left);
 | |
|   unsigned RPriority = SPQ->getNodePriority(right);
 | |
|   bool LIsTarget = left->Node && left->Node->isTargetOpcode();
 | |
|   bool RIsTarget = right->Node && right->Node->isTargetOpcode();
 | |
|   bool LIsFloater = LIsTarget && left->NumPreds == 0;
 | |
|   bool RIsFloater = RIsTarget && right->NumPreds == 0;
 | |
|   unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
 | |
|   unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
 | |
| 
 | |
|   if (left->NumSuccs == 0 && right->NumSuccs != 0)
 | |
|     return false;
 | |
|   else if (left->NumSuccs != 0 && right->NumSuccs == 0)
 | |
|     return true;
 | |
| 
 | |
|   if (LIsFloater)
 | |
|     LBonus -= 2;
 | |
|   if (RIsFloater)
 | |
|     RBonus -= 2;
 | |
|   if (left->NumSuccs == 1)
 | |
|     LBonus += 2;
 | |
|   if (right->NumSuccs == 1)
 | |
|     RBonus += 2;
 | |
| 
 | |
|   if (LPriority+LBonus != RPriority+RBonus)
 | |
|     return LPriority+LBonus < RPriority+RBonus;
 | |
| 
 | |
|   if (left->Depth != right->Depth)
 | |
|     return left->Depth < right->Depth;
 | |
| 
 | |
|   if (left->NumSuccsLeft != right->NumSuccsLeft)
 | |
|     return left->NumSuccsLeft > right->NumSuccsLeft;
 | |
| 
 | |
|   if (left->CycleBound != right->CycleBound)
 | |
|     return left->CycleBound > right->CycleBound;
 | |
| 
 | |
|   // FIXME: No strict ordering.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number. 
 | |
| /// Smaller number is the higher priority.
 | |
| template<class SF>
 | |
| unsigned TDRegReductionPriorityQueue<SF>::
 | |
| CalcNodeSethiUllmanNumber(const SUnit *SU) {
 | |
|   unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
 | |
|   if (SethiUllmanNumber != 0)
 | |
|     return SethiUllmanNumber;
 | |
| 
 | |
|   unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
 | |
|   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | |
|     SethiUllmanNumber = 0xffff;
 | |
|   else if (SU->NumSuccsLeft == 0)
 | |
|     // If SU does not have a use, i.e. it doesn't produce a value that would
 | |
|     // be consumed (e.g. store), then it terminates a chain of computation.
 | |
|     // Give it a small SethiUllman number so it will be scheduled right before
 | |
|     // its predecessors that it doesn't lengthen their live ranges.
 | |
|     SethiUllmanNumber = 0;
 | |
|   else if (SU->NumPredsLeft == 0 &&
 | |
|            (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
 | |
|     SethiUllmanNumber = 0xffff;
 | |
|   else {
 | |
|     int Extra = 0;
 | |
|     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->isCtrl) continue;  // ignore chain preds
 | |
|       SUnit *PredSU = I->Dep;
 | |
|       unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
 | |
|       if (PredSethiUllman > SethiUllmanNumber) {
 | |
|         SethiUllmanNumber = PredSethiUllman;
 | |
|         Extra = 0;
 | |
|       } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
 | |
|         ++Extra;
 | |
|     }
 | |
| 
 | |
|     SethiUllmanNumber += Extra;
 | |
|   }
 | |
|   
 | |
|   return SethiUllmanNumber;
 | |
| }
 | |
| 
 | |
| /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
 | |
| /// scheduling units.
 | |
| template<class SF>
 | |
| void TDRegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
 | |
|   SethiUllmanNumbers.assign(SUnits->size(), 0);
 | |
|   
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | |
|     CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Public Constructor Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
 | |
|                                                     SelectionDAG *DAG,
 | |
|                                                     MachineBasicBlock *BB) {
 | |
|   const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo();
 | |
|   const TargetRegisterInfo *TRI = DAG->getTarget().getRegisterInfo();
 | |
|   
 | |
|   BURegReductionPriorityQueue<bu_ls_rr_sort> *priorityQueue = 
 | |
|     new BURegReductionPriorityQueue<bu_ls_rr_sort>(TII, TRI);
 | |
| 
 | |
|   ScheduleDAGRRList * scheduleDAG = 
 | |
|     new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true, priorityQueue);
 | |
|   priorityQueue->setScheduleDAG(scheduleDAG);
 | |
|   return scheduleDAG;  
 | |
| }
 | |
| 
 | |
| llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
 | |
|                                                     SelectionDAG *DAG,
 | |
|                                                     MachineBasicBlock *BB) {
 | |
|   return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false,
 | |
|                               new TDRegReductionPriorityQueue<td_ls_rr_sort>());
 | |
| }
 | |
| 
 |