mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This fixes the testsuite failure on ppcf128-4.ll. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49994 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			4612 lines
		
	
	
		
			165 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4612 lines
		
	
	
		
			165 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the SelectionDAG class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/GlobalAlias.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// makeVTList - Return an instance of the SDVTList struct initialized with the
 | |
| /// specified members.
 | |
| static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
 | |
|   SDVTList Res = {VTs, NumVTs};
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| static const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
 | |
|   switch (VT) {
 | |
|   default: assert(0 && "Unknown FP format");
 | |
|   case MVT::f32:     return &APFloat::IEEEsingle;
 | |
|   case MVT::f64:     return &APFloat::IEEEdouble;
 | |
|   case MVT::f80:     return &APFloat::x87DoubleExtended;
 | |
|   case MVT::f128:    return &APFloat::IEEEquad;
 | |
|   case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              ConstantFPSDNode Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isExactlyValue - We don't rely on operator== working on double values, as
 | |
| /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
 | |
| /// As such, this method can be used to do an exact bit-for-bit comparison of
 | |
| /// two floating point values.
 | |
| bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
 | |
|   return Value.bitwiseIsEqual(V);
 | |
| }
 | |
| 
 | |
| bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT, 
 | |
|                                            const APFloat& Val) {
 | |
|   assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
 | |
|   
 | |
|   // PPC long double cannot be converted to any other type.
 | |
|   if (VT == MVT::ppcf128 ||
 | |
|       &Val.getSemantics() == &APFloat::PPCDoubleDouble)
 | |
|     return false;
 | |
|   
 | |
|   // convert modifies in place, so make a copy.
 | |
|   APFloat Val2 = APFloat(Val);
 | |
|   return Val2.convert(*MVTToAPFloatSemantics(VT),
 | |
|                       APFloat::rmNearestTiesToEven) == APFloat::opOK;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              ISD Namespace
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isBuildVectorAllOnes - Return true if the specified node is a
 | |
| /// BUILD_VECTOR where all of the elements are ~0 or undef.
 | |
| bool ISD::isBuildVectorAllOnes(const SDNode *N) {
 | |
|   // Look through a bit convert.
 | |
|   if (N->getOpcode() == ISD::BIT_CONVERT)
 | |
|     N = N->getOperand(0).Val;
 | |
|   
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
 | |
|   
 | |
|   unsigned i = 0, e = N->getNumOperands();
 | |
|   
 | |
|   // Skip over all of the undef values.
 | |
|   while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
 | |
|     ++i;
 | |
|   
 | |
|   // Do not accept an all-undef vector.
 | |
|   if (i == e) return false;
 | |
|   
 | |
|   // Do not accept build_vectors that aren't all constants or which have non-~0
 | |
|   // elements.
 | |
|   SDOperand NotZero = N->getOperand(i);
 | |
|   if (isa<ConstantSDNode>(NotZero)) {
 | |
|     if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
 | |
|       return false;
 | |
|   } else if (isa<ConstantFPSDNode>(NotZero)) {
 | |
|     if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
 | |
|                 convertToAPInt().isAllOnesValue())
 | |
|       return false;
 | |
|   } else
 | |
|     return false;
 | |
|   
 | |
|   // Okay, we have at least one ~0 value, check to see if the rest match or are
 | |
|   // undefs.
 | |
|   for (++i; i != e; ++i)
 | |
|     if (N->getOperand(i) != NotZero &&
 | |
|         N->getOperand(i).getOpcode() != ISD::UNDEF)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isBuildVectorAllZeros - Return true if the specified node is a
 | |
| /// BUILD_VECTOR where all of the elements are 0 or undef.
 | |
| bool ISD::isBuildVectorAllZeros(const SDNode *N) {
 | |
|   // Look through a bit convert.
 | |
|   if (N->getOpcode() == ISD::BIT_CONVERT)
 | |
|     N = N->getOperand(0).Val;
 | |
|   
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
 | |
|   
 | |
|   unsigned i = 0, e = N->getNumOperands();
 | |
|   
 | |
|   // Skip over all of the undef values.
 | |
|   while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
 | |
|     ++i;
 | |
|   
 | |
|   // Do not accept an all-undef vector.
 | |
|   if (i == e) return false;
 | |
|   
 | |
|   // Do not accept build_vectors that aren't all constants or which have non-~0
 | |
|   // elements.
 | |
|   SDOperand Zero = N->getOperand(i);
 | |
|   if (isa<ConstantSDNode>(Zero)) {
 | |
|     if (!cast<ConstantSDNode>(Zero)->isNullValue())
 | |
|       return false;
 | |
|   } else if (isa<ConstantFPSDNode>(Zero)) {
 | |
|     if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
 | |
|       return false;
 | |
|   } else
 | |
|     return false;
 | |
|   
 | |
|   // Okay, we have at least one ~0 value, check to see if the rest match or are
 | |
|   // undefs.
 | |
|   for (++i; i != e; ++i)
 | |
|     if (N->getOperand(i) != Zero &&
 | |
|         N->getOperand(i).getOpcode() != ISD::UNDEF)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isScalarToVector - Return true if the specified node is a
 | |
| /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
 | |
| /// element is not an undef.
 | |
| bool ISD::isScalarToVector(const SDNode *N) {
 | |
|   if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
 | |
|     return true;
 | |
| 
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR)
 | |
|     return false;
 | |
|   if (N->getOperand(0).getOpcode() == ISD::UNDEF)
 | |
|     return false;
 | |
|   unsigned NumElems = N->getNumOperands();
 | |
|   for (unsigned i = 1; i < NumElems; ++i) {
 | |
|     SDOperand V = N->getOperand(i);
 | |
|     if (V.getOpcode() != ISD::UNDEF)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isDebugLabel - Return true if the specified node represents a debug
 | |
| /// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
 | |
| /// is 0).
 | |
| bool ISD::isDebugLabel(const SDNode *N) {
 | |
|   SDOperand Zero;
 | |
|   if (N->getOpcode() == ISD::LABEL)
 | |
|     Zero = N->getOperand(2);
 | |
|   else if (N->isTargetOpcode() &&
 | |
|            N->getTargetOpcode() == TargetInstrInfo::LABEL)
 | |
|     // Chain moved to last operand.
 | |
|     Zero = N->getOperand(1);
 | |
|   else
 | |
|     return false;
 | |
|   return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
 | |
| }
 | |
| 
 | |
| /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
 | |
| /// when given the operation for (X op Y).
 | |
| ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
 | |
|   // To perform this operation, we just need to swap the L and G bits of the
 | |
|   // operation.
 | |
|   unsigned OldL = (Operation >> 2) & 1;
 | |
|   unsigned OldG = (Operation >> 1) & 1;
 | |
|   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
 | |
|                        (OldL << 1) |       // New G bit
 | |
|                        (OldG << 2));        // New L bit.
 | |
| }
 | |
| 
 | |
| /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
 | |
| /// 'op' is a valid SetCC operation.
 | |
| ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
 | |
|   unsigned Operation = Op;
 | |
|   if (isInteger)
 | |
|     Operation ^= 7;   // Flip L, G, E bits, but not U.
 | |
|   else
 | |
|     Operation ^= 15;  // Flip all of the condition bits.
 | |
|   if (Operation > ISD::SETTRUE2)
 | |
|     Operation &= ~8;     // Don't let N and U bits get set.
 | |
|   return ISD::CondCode(Operation);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isSignedOp - For an integer comparison, return 1 if the comparison is a
 | |
| /// signed operation and 2 if the result is an unsigned comparison.  Return zero
 | |
| /// if the operation does not depend on the sign of the input (setne and seteq).
 | |
| static int isSignedOp(ISD::CondCode Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: assert(0 && "Illegal integer setcc operation!");
 | |
|   case ISD::SETEQ:
 | |
|   case ISD::SETNE: return 0;
 | |
|   case ISD::SETLT:
 | |
|   case ISD::SETLE:
 | |
|   case ISD::SETGT:
 | |
|   case ISD::SETGE: return 1;
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETUGE: return 2;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getSetCCOrOperation - Return the result of a logical OR between different
 | |
| /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
 | |
| /// returns SETCC_INVALID if it is not possible to represent the resultant
 | |
| /// comparison.
 | |
| ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
 | |
|                                        bool isInteger) {
 | |
|   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
 | |
|     // Cannot fold a signed integer setcc with an unsigned integer setcc.
 | |
|     return ISD::SETCC_INVALID;
 | |
| 
 | |
|   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
 | |
| 
 | |
|   // If the N and U bits get set then the resultant comparison DOES suddenly
 | |
|   // care about orderedness, and is true when ordered.
 | |
|   if (Op > ISD::SETTRUE2)
 | |
|     Op &= ~16;     // Clear the U bit if the N bit is set.
 | |
|   
 | |
|   // Canonicalize illegal integer setcc's.
 | |
|   if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
 | |
|     Op = ISD::SETNE;
 | |
|   
 | |
|   return ISD::CondCode(Op);
 | |
| }
 | |
| 
 | |
| /// getSetCCAndOperation - Return the result of a logical AND between different
 | |
| /// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
 | |
| /// function returns zero if it is not possible to represent the resultant
 | |
| /// comparison.
 | |
| ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
 | |
|                                         bool isInteger) {
 | |
|   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
 | |
|     // Cannot fold a signed setcc with an unsigned setcc.
 | |
|     return ISD::SETCC_INVALID;
 | |
| 
 | |
|   // Combine all of the condition bits.
 | |
|   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
 | |
|   
 | |
|   // Canonicalize illegal integer setcc's.
 | |
|   if (isInteger) {
 | |
|     switch (Result) {
 | |
|     default: break;
 | |
|     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
 | |
|     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
 | |
|     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
 | |
|     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| const TargetMachine &SelectionDAG::getTarget() const {
 | |
|   return TLI.getTargetMachine();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           SDNode Profile Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
 | |
| ///
 | |
| static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
 | |
|   ID.AddInteger(OpC);
 | |
| }
 | |
| 
 | |
| /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
 | |
| /// solely with their pointer.
 | |
| void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
 | |
|   ID.AddPointer(VTList.VTs);  
 | |
| }
 | |
| 
 | |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
 | |
| ///
 | |
| static void AddNodeIDOperands(FoldingSetNodeID &ID,
 | |
|                               SDOperandPtr Ops, unsigned NumOps) {
 | |
|   for (; NumOps; --NumOps, ++Ops) {
 | |
|     ID.AddPointer(Ops->Val);
 | |
|     ID.AddInteger(Ops->ResNo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void AddNodeIDNode(FoldingSetNodeID &ID,
 | |
|                           unsigned short OpC, SDVTList VTList, 
 | |
|                           SDOperandPtr OpList, unsigned N) {
 | |
|   AddNodeIDOpcode(ID, OpC);
 | |
|   AddNodeIDValueTypes(ID, VTList);
 | |
|   AddNodeIDOperands(ID, OpList, N);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
 | |
| /// data.
 | |
| static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
 | |
|   AddNodeIDOpcode(ID, N->getOpcode());
 | |
|   // Add the return value info.
 | |
|   AddNodeIDValueTypes(ID, N->getVTList());
 | |
|   // Add the operand info.
 | |
|   AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
 | |
| 
 | |
|   // Handle SDNode leafs with special info.
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;  // Normal nodes don't need extra info.
 | |
|   case ISD::ARG_FLAGS:
 | |
|     ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
 | |
|     break;
 | |
|   case ISD::TargetConstant:
 | |
|   case ISD::Constant:
 | |
|     ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
 | |
|     break;
 | |
|   case ISD::TargetConstantFP:
 | |
|   case ISD::ConstantFP: {
 | |
|     ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::TargetGlobalAddress:
 | |
|   case ISD::GlobalAddress:
 | |
|   case ISD::TargetGlobalTLSAddress:
 | |
|   case ISD::GlobalTLSAddress: {
 | |
|     GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
 | |
|     ID.AddPointer(GA->getGlobal());
 | |
|     ID.AddInteger(GA->getOffset());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BasicBlock:
 | |
|     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
 | |
|     break;
 | |
|   case ISD::Register:
 | |
|     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
 | |
|     break;
 | |
|   case ISD::SRCVALUE:
 | |
|     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
 | |
|     break;
 | |
|   case ISD::MEMOPERAND: {
 | |
|     const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
 | |
|     ID.AddPointer(MO.getValue());
 | |
|     ID.AddInteger(MO.getFlags());
 | |
|     ID.AddInteger(MO.getOffset());
 | |
|     ID.AddInteger(MO.getSize());
 | |
|     ID.AddInteger(MO.getAlignment());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FrameIndex:
 | |
|   case ISD::TargetFrameIndex:
 | |
|     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
 | |
|     break;
 | |
|   case ISD::JumpTable:
 | |
|   case ISD::TargetJumpTable:
 | |
|     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
 | |
|     break;
 | |
|   case ISD::ConstantPool:
 | |
|   case ISD::TargetConstantPool: {
 | |
|     ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
 | |
|     ID.AddInteger(CP->getAlignment());
 | |
|     ID.AddInteger(CP->getOffset());
 | |
|     if (CP->isMachineConstantPoolEntry())
 | |
|       CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
 | |
|     else
 | |
|       ID.AddPointer(CP->getConstVal());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::LOAD: {
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(N);
 | |
|     ID.AddInteger(LD->getAddressingMode());
 | |
|     ID.AddInteger(LD->getExtensionType());
 | |
|     ID.AddInteger((unsigned int)(LD->getMemoryVT()));
 | |
|     ID.AddInteger(LD->getAlignment());
 | |
|     ID.AddInteger(LD->isVolatile());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::STORE: {
 | |
|     StoreSDNode *ST = cast<StoreSDNode>(N);
 | |
|     ID.AddInteger(ST->getAddressingMode());
 | |
|     ID.AddInteger(ST->isTruncatingStore());
 | |
|     ID.AddInteger((unsigned int)(ST->getMemoryVT()));
 | |
|     ID.AddInteger(ST->getAlignment());
 | |
|     ID.AddInteger(ST->isVolatile());
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              SelectionDAG Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// RemoveDeadNodes - This method deletes all unreachable nodes in the
 | |
| /// SelectionDAG.
 | |
| void SelectionDAG::RemoveDeadNodes() {
 | |
|   // Create a dummy node (which is not added to allnodes), that adds a reference
 | |
|   // to the root node, preventing it from being deleted.
 | |
|   HandleSDNode Dummy(getRoot());
 | |
| 
 | |
|   SmallVector<SDNode*, 128> DeadNodes;
 | |
|   
 | |
|   // Add all obviously-dead nodes to the DeadNodes worklist.
 | |
|   for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
 | |
|     if (I->use_empty())
 | |
|       DeadNodes.push_back(I);
 | |
| 
 | |
|   // Process the worklist, deleting the nodes and adding their uses to the
 | |
|   // worklist.
 | |
|   while (!DeadNodes.empty()) {
 | |
|     SDNode *N = DeadNodes.back();
 | |
|     DeadNodes.pop_back();
 | |
|     
 | |
|     // Take the node out of the appropriate CSE map.
 | |
|     RemoveNodeFromCSEMaps(N);
 | |
| 
 | |
|     // Next, brutally remove the operand list.  This is safe to do, as there are
 | |
|     // no cycles in the graph.
 | |
|     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
 | |
|       SDNode *Operand = I->getVal();
 | |
|       Operand->removeUser(std::distance(N->op_begin(), I), N);
 | |
|       
 | |
|       // Now that we removed this operand, see if there are no uses of it left.
 | |
|       if (Operand->use_empty())
 | |
|         DeadNodes.push_back(Operand);
 | |
|     }
 | |
|     if (N->OperandsNeedDelete) {
 | |
|       delete[] N->OperandList;
 | |
|     }
 | |
|     N->OperandList = 0;
 | |
|     N->NumOperands = 0;
 | |
|     
 | |
|     // Finally, remove N itself.
 | |
|     AllNodes.erase(N);
 | |
|   }
 | |
|   
 | |
|   // If the root changed (e.g. it was a dead load, update the root).
 | |
|   setRoot(Dummy.getValue());
 | |
| }
 | |
| 
 | |
| void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
 | |
|   SmallVector<SDNode*, 16> DeadNodes;
 | |
|   DeadNodes.push_back(N);
 | |
| 
 | |
|   // Process the worklist, deleting the nodes and adding their uses to the
 | |
|   // worklist.
 | |
|   while (!DeadNodes.empty()) {
 | |
|     SDNode *N = DeadNodes.back();
 | |
|     DeadNodes.pop_back();
 | |
|     
 | |
|     if (UpdateListener)
 | |
|       UpdateListener->NodeDeleted(N);
 | |
|     
 | |
|     // Take the node out of the appropriate CSE map.
 | |
|     RemoveNodeFromCSEMaps(N);
 | |
| 
 | |
|     // Next, brutally remove the operand list.  This is safe to do, as there are
 | |
|     // no cycles in the graph.
 | |
|     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
 | |
|       SDNode *Operand = I->getVal();
 | |
|       Operand->removeUser(std::distance(N->op_begin(), I), N);
 | |
|       
 | |
|       // Now that we removed this operand, see if there are no uses of it left.
 | |
|       if (Operand->use_empty())
 | |
|         DeadNodes.push_back(Operand);
 | |
|     }
 | |
|     if (N->OperandsNeedDelete) {
 | |
|       delete[] N->OperandList;
 | |
|     }
 | |
|     N->OperandList = 0;
 | |
|     N->NumOperands = 0;
 | |
|     
 | |
|     // Finally, remove N itself.
 | |
|     AllNodes.erase(N);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAG::DeleteNode(SDNode *N) {
 | |
|   assert(N->use_empty() && "Cannot delete a node that is not dead!");
 | |
| 
 | |
|   // First take this out of the appropriate CSE map.
 | |
|   RemoveNodeFromCSEMaps(N);
 | |
| 
 | |
|   // Finally, remove uses due to operands of this node, remove from the 
 | |
|   // AllNodes list, and delete the node.
 | |
|   DeleteNodeNotInCSEMaps(N);
 | |
| }
 | |
| 
 | |
| void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
 | |
| 
 | |
|   // Remove it from the AllNodes list.
 | |
|   AllNodes.remove(N);
 | |
|     
 | |
|   // Drop all of the operands and decrement used nodes use counts.
 | |
|   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
 | |
|     I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
 | |
|   if (N->OperandsNeedDelete) {
 | |
|     delete[] N->OperandList;
 | |
|   }
 | |
|   N->OperandList = 0;
 | |
|   N->NumOperands = 0;
 | |
|   
 | |
|   delete N;
 | |
| }
 | |
| 
 | |
| /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
 | |
| /// correspond to it.  This is useful when we're about to delete or repurpose
 | |
| /// the node.  We don't want future request for structurally identical nodes
 | |
| /// to return N anymore.
 | |
| void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
 | |
|   bool Erased = false;
 | |
|   switch (N->getOpcode()) {
 | |
|   case ISD::HANDLENODE: return;  // noop.
 | |
|   case ISD::STRING:
 | |
|     Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
 | |
|     break;
 | |
|   case ISD::CONDCODE:
 | |
|     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
 | |
|            "Cond code doesn't exist!");
 | |
|     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
 | |
|     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
 | |
|     break;
 | |
|   case ISD::ExternalSymbol:
 | |
|     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
 | |
|     break;
 | |
|   case ISD::TargetExternalSymbol:
 | |
|     Erased =
 | |
|       TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
 | |
|     break;
 | |
|   case ISD::VALUETYPE: {
 | |
|     MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
 | |
|     if (MVT::isExtendedVT(VT)) {
 | |
|       Erased = ExtendedValueTypeNodes.erase(VT);
 | |
|     } else {
 | |
|       Erased = ValueTypeNodes[VT] != 0;
 | |
|       ValueTypeNodes[VT] = 0;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     // Remove it from the CSE Map.
 | |
|     Erased = CSEMap.RemoveNode(N);
 | |
|     break;
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   // Verify that the node was actually in one of the CSE maps, unless it has a 
 | |
|   // flag result (which cannot be CSE'd) or is one of the special cases that are
 | |
|   // not subject to CSE.
 | |
|   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
 | |
|       !N->isTargetOpcode()) {
 | |
|     N->dump(this);
 | |
|     cerr << "\n";
 | |
|     assert(0 && "Node is not in map!");
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
 | |
| /// has been taken out and modified in some way.  If the specified node already
 | |
| /// exists in the CSE maps, do not modify the maps, but return the existing node
 | |
| /// instead.  If it doesn't exist, add it and return null.
 | |
| ///
 | |
| SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
 | |
|   assert(N->getNumOperands() && "This is a leaf node!");
 | |
|   if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
 | |
|     return 0;    // Never add these nodes.
 | |
|   
 | |
|   // Check that remaining values produced are not flags.
 | |
|   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
 | |
|     if (N->getValueType(i) == MVT::Flag)
 | |
|       return 0;   // Never CSE anything that produces a flag.
 | |
|   
 | |
|   SDNode *New = CSEMap.GetOrInsertNode(N);
 | |
|   if (New != N) return New;  // Node already existed.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
 | |
| /// were replaced with those specified.  If this node is never memoized, 
 | |
| /// return null, otherwise return a pointer to the slot it would take.  If a
 | |
| /// node already exists with these operands, the slot will be non-null.
 | |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
 | |
|                                            void *&InsertPos) {
 | |
|   if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
 | |
|     return 0;    // Never add these nodes.
 | |
|   
 | |
|   // Check that remaining values produced are not flags.
 | |
|   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
 | |
|     if (N->getValueType(i) == MVT::Flag)
 | |
|       return 0;   // Never CSE anything that produces a flag.
 | |
|   
 | |
|   SDOperand Ops[] = { Op };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
 | |
|   return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
 | |
| }
 | |
| 
 | |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
 | |
| /// were replaced with those specified.  If this node is never memoized, 
 | |
| /// return null, otherwise return a pointer to the slot it would take.  If a
 | |
| /// node already exists with these operands, the slot will be non-null.
 | |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 
 | |
|                                            SDOperand Op1, SDOperand Op2,
 | |
|                                            void *&InsertPos) {
 | |
|   if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
 | |
|     return 0;    // Never add these nodes.
 | |
|   
 | |
|   // Check that remaining values produced are not flags.
 | |
|   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
 | |
|     if (N->getValueType(i) == MVT::Flag)
 | |
|       return 0;   // Never CSE anything that produces a flag.
 | |
|                                               
 | |
|   SDOperand Ops[] = { Op1, Op2 };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
 | |
|   return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
 | |
| /// were replaced with those specified.  If this node is never memoized, 
 | |
| /// return null, otherwise return a pointer to the slot it would take.  If a
 | |
| /// node already exists with these operands, the slot will be non-null.
 | |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 
 | |
|                                            SDOperandPtr Ops,unsigned NumOps,
 | |
|                                            void *&InsertPos) {
 | |
|   if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
 | |
|     return 0;    // Never add these nodes.
 | |
|   
 | |
|   // Check that remaining values produced are not flags.
 | |
|   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
 | |
|     if (N->getValueType(i) == MVT::Flag)
 | |
|       return 0;   // Never CSE anything that produces a flag.
 | |
|   
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
 | |
|   
 | |
|   if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     ID.AddInteger(LD->getAddressingMode());
 | |
|     ID.AddInteger(LD->getExtensionType());
 | |
|     ID.AddInteger((unsigned int)(LD->getMemoryVT()));
 | |
|     ID.AddInteger(LD->getAlignment());
 | |
|     ID.AddInteger(LD->isVolatile());
 | |
|   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     ID.AddInteger(ST->getAddressingMode());
 | |
|     ID.AddInteger(ST->isTruncatingStore());
 | |
|     ID.AddInteger((unsigned int)(ST->getMemoryVT()));
 | |
|     ID.AddInteger(ST->getAlignment());
 | |
|     ID.AddInteger(ST->isVolatile());
 | |
|   }
 | |
|   
 | |
|   return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
 | |
| }
 | |
| 
 | |
| 
 | |
| SelectionDAG::~SelectionDAG() {
 | |
|   while (!AllNodes.empty()) {
 | |
|     SDNode *N = AllNodes.begin();
 | |
|     N->SetNextInBucket(0);
 | |
|     if (N->OperandsNeedDelete) {
 | |
|       delete [] N->OperandList;
 | |
|     }
 | |
|     N->OperandList = 0;
 | |
|     N->NumOperands = 0;
 | |
|     AllNodes.pop_front();
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
 | |
|   if (Op.getValueType() == VT) return Op;
 | |
|   APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
 | |
|                                    MVT::getSizeInBits(VT));
 | |
|   return getNode(ISD::AND, Op.getValueType(), Op,
 | |
|                  getConstant(Imm, Op.getValueType()));
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getString(const std::string &Val) {
 | |
|   StringSDNode *&N = StringNodes[Val];
 | |
|   if (!N) {
 | |
|     N = new StringSDNode(Val);
 | |
|     AllNodes.push_back(N);
 | |
|   }
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
 | |
|   MVT::ValueType EltVT =
 | |
|     MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
 | |
| 
 | |
|   return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
 | |
|   assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
 | |
| 
 | |
|   MVT::ValueType EltVT =
 | |
|     MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
 | |
|   
 | |
|   assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
 | |
|          "APInt size does not match type size!");
 | |
| 
 | |
|   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
 | |
|   ID.Add(Val);
 | |
|   void *IP = 0;
 | |
|   SDNode *N = NULL;
 | |
|   if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
 | |
|     if (!MVT::isVector(VT))
 | |
|       return SDOperand(N, 0);
 | |
|   if (!N) {
 | |
|     N = new ConstantSDNode(isT, Val, EltVT);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|     AllNodes.push_back(N);
 | |
|   }
 | |
| 
 | |
|   SDOperand Result(N, 0);
 | |
|   if (MVT::isVector(VT)) {
 | |
|     SmallVector<SDOperand, 8> Ops;
 | |
|     Ops.assign(MVT::getVectorNumElements(VT), Result);
 | |
|     Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
 | |
|   return getConstant(Val, TLI.getPointerTy(), isTarget);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
 | |
|                                       bool isTarget) {
 | |
|   assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
 | |
|                                 
 | |
|   MVT::ValueType EltVT =
 | |
|     MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
 | |
| 
 | |
|   // Do the map lookup using the actual bit pattern for the floating point
 | |
|   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
 | |
|   // we don't have issues with SNANs.
 | |
|   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
 | |
|   ID.Add(V);
 | |
|   void *IP = 0;
 | |
|   SDNode *N = NULL;
 | |
|   if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
 | |
|     if (!MVT::isVector(VT))
 | |
|       return SDOperand(N, 0);
 | |
|   if (!N) {
 | |
|     N = new ConstantFPSDNode(isTarget, V, EltVT);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|     AllNodes.push_back(N);
 | |
|   }
 | |
| 
 | |
|   SDOperand Result(N, 0);
 | |
|   if (MVT::isVector(VT)) {
 | |
|     SmallVector<SDOperand, 8> Ops;
 | |
|     Ops.assign(MVT::getVectorNumElements(VT), Result);
 | |
|     Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
 | |
|                                       bool isTarget) {
 | |
|   MVT::ValueType EltVT =
 | |
|     MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
 | |
|   if (EltVT==MVT::f32)
 | |
|     return getConstantFP(APFloat((float)Val), VT, isTarget);
 | |
|   else
 | |
|     return getConstantFP(APFloat(Val), VT, isTarget);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
 | |
|                                          MVT::ValueType VT, int Offset,
 | |
|                                          bool isTargetGA) {
 | |
|   unsigned Opc;
 | |
| 
 | |
|   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
 | |
|   if (!GVar) {
 | |
|     // If GV is an alias then use the aliasee for determining thread-localness.
 | |
|     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
 | |
|       GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
 | |
|   }
 | |
| 
 | |
|   if (GVar && GVar->isThreadLocal())
 | |
|     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
 | |
|   else
 | |
|     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
 | |
|   ID.AddPointer(GV);
 | |
|   ID.AddInteger(Offset);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|    return SDOperand(E, 0);
 | |
|   SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
 | |
|                                       bool isTarget) {
 | |
|   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
 | |
|   ID.AddInteger(FI);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
|   SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
 | |
|   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
 | |
|   ID.AddInteger(JTI);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
|   SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
 | |
|                                         unsigned Alignment, int Offset,
 | |
|                                         bool isTarget) {
 | |
|   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
 | |
|   ID.AddInteger(Alignment);
 | |
|   ID.AddInteger(Offset);
 | |
|   ID.AddPointer(C);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
|   SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
 | |
|                                         MVT::ValueType VT,
 | |
|                                         unsigned Alignment, int Offset,
 | |
|                                         bool isTarget) {
 | |
|   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
 | |
|   ID.AddInteger(Alignment);
 | |
|   ID.AddInteger(Offset);
 | |
|   C->AddSelectionDAGCSEId(ID);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
|   SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), (SDOperand*)0, 0);
 | |
|   ID.AddPointer(MBB);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
|   SDNode *N = new BasicBlockSDNode(MBB);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), (SDOperand*)0, 0);
 | |
|   ID.AddInteger(Flags.getRawBits());
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
|   SDNode *N = new ARG_FLAGSSDNode(Flags);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
 | |
|   if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
 | |
|     ValueTypeNodes.resize(VT+1);
 | |
| 
 | |
|   SDNode *&N = MVT::isExtendedVT(VT) ?
 | |
|     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
 | |
| 
 | |
|   if (N) return SDOperand(N, 0);
 | |
|   N = new VTSDNode(VT);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
 | |
|   SDNode *&N = ExternalSymbols[Sym];
 | |
|   if (N) return SDOperand(N, 0);
 | |
|   N = new ExternalSymbolSDNode(false, Sym, VT);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
 | |
|                                                 MVT::ValueType VT) {
 | |
|   SDNode *&N = TargetExternalSymbols[Sym];
 | |
|   if (N) return SDOperand(N, 0);
 | |
|   N = new ExternalSymbolSDNode(true, Sym, VT);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
 | |
|   if ((unsigned)Cond >= CondCodeNodes.size())
 | |
|     CondCodeNodes.resize(Cond+1);
 | |
|   
 | |
|   if (CondCodeNodes[Cond] == 0) {
 | |
|     CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
 | |
|     AllNodes.push_back(CondCodeNodes[Cond]);
 | |
|   }
 | |
|   return SDOperand(CondCodeNodes[Cond], 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::Register, getVTList(VT), (SDOperand*)0, 0);
 | |
|   ID.AddInteger(RegNo);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
|   SDNode *N = new RegisterSDNode(RegNo, VT);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getSrcValue(const Value *V) {
 | |
|   assert((!V || isa<PointerType>(V->getType())) &&
 | |
|          "SrcValue is not a pointer?");
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), (SDOperand*)0, 0);
 | |
|   ID.AddPointer(V);
 | |
| 
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
| 
 | |
|   SDNode *N = new SrcValueSDNode(V);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
 | |
|   const Value *v = MO.getValue();
 | |
|   assert((!v || isa<PointerType>(v->getType())) &&
 | |
|          "SrcValue is not a pointer?");
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), (SDOperand*)0, 0);
 | |
|   ID.AddPointer(v);
 | |
|   ID.AddInteger(MO.getFlags());
 | |
|   ID.AddInteger(MO.getOffset());
 | |
|   ID.AddInteger(MO.getSize());
 | |
|   ID.AddInteger(MO.getAlignment());
 | |
| 
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
| 
 | |
|   SDNode *N = new MemOperandSDNode(MO);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| /// CreateStackTemporary - Create a stack temporary, suitable for holding the
 | |
| /// specified value type.
 | |
| SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
 | |
|   MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
 | |
|   unsigned ByteSize = MVT::getSizeInBits(VT)/8;
 | |
|   const Type *Ty = MVT::getTypeForValueType(VT);
 | |
|   unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
 | |
|   int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
 | |
|   return getFrameIndex(FrameIdx, TLI.getPointerTy());
 | |
| }
 | |
| 
 | |
| 
 | |
| SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
 | |
|                                   SDOperand N2, ISD::CondCode Cond) {
 | |
|   // These setcc operations always fold.
 | |
|   switch (Cond) {
 | |
|   default: break;
 | |
|   case ISD::SETFALSE:
 | |
|   case ISD::SETFALSE2: return getConstant(0, VT);
 | |
|   case ISD::SETTRUE:
 | |
|   case ISD::SETTRUE2:  return getConstant(1, VT);
 | |
|     
 | |
|   case ISD::SETOEQ:
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETOGE:
 | |
|   case ISD::SETOLT:
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETONE:
 | |
|   case ISD::SETO:
 | |
|   case ISD::SETUO:
 | |
|   case ISD::SETUEQ:
 | |
|   case ISD::SETUNE:
 | |
|     assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
 | |
|     const APInt &C2 = N2C->getAPIntValue();
 | |
|     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
 | |
|       const APInt &C1 = N1C->getAPIntValue();
 | |
|       
 | |
|       switch (Cond) {
 | |
|       default: assert(0 && "Unknown integer setcc!");
 | |
|       case ISD::SETEQ:  return getConstant(C1 == C2, VT);
 | |
|       case ISD::SETNE:  return getConstant(C1 != C2, VT);
 | |
|       case ISD::SETULT: return getConstant(C1.ult(C2), VT);
 | |
|       case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
 | |
|       case ISD::SETULE: return getConstant(C1.ule(C2), VT);
 | |
|       case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
 | |
|       case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
 | |
|       case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
 | |
|       case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
 | |
|       case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
 | |
|     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
 | |
|       // No compile time operations on this type yet.
 | |
|       if (N1C->getValueType(0) == MVT::ppcf128)
 | |
|         return SDOperand();
 | |
| 
 | |
|       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
 | |
|       switch (Cond) {
 | |
|       default: break;
 | |
|       case ISD::SETEQ:  if (R==APFloat::cmpUnordered) 
 | |
|                           return getNode(ISD::UNDEF, VT);
 | |
|                         // fall through
 | |
|       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
 | |
|       case ISD::SETNE:  if (R==APFloat::cmpUnordered) 
 | |
|                           return getNode(ISD::UNDEF, VT);
 | |
|                         // fall through
 | |
|       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
 | |
|                                            R==APFloat::cmpLessThan, VT);
 | |
|       case ISD::SETLT:  if (R==APFloat::cmpUnordered) 
 | |
|                           return getNode(ISD::UNDEF, VT);
 | |
|                         // fall through
 | |
|       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
 | |
|       case ISD::SETGT:  if (R==APFloat::cmpUnordered) 
 | |
|                           return getNode(ISD::UNDEF, VT);
 | |
|                         // fall through
 | |
|       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
 | |
|       case ISD::SETLE:  if (R==APFloat::cmpUnordered) 
 | |
|                           return getNode(ISD::UNDEF, VT);
 | |
|                         // fall through
 | |
|       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
 | |
|                                            R==APFloat::cmpEqual, VT);
 | |
|       case ISD::SETGE:  if (R==APFloat::cmpUnordered) 
 | |
|                           return getNode(ISD::UNDEF, VT);
 | |
|                         // fall through
 | |
|       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
 | |
|                                            R==APFloat::cmpEqual, VT);
 | |
|       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
 | |
|       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
 | |
|       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
 | |
|                                            R==APFloat::cmpEqual, VT);
 | |
|       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
 | |
|       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
 | |
|                                            R==APFloat::cmpLessThan, VT);
 | |
|       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
 | |
|                                            R==APFloat::cmpUnordered, VT);
 | |
|       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
 | |
|       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
 | |
|       }
 | |
|     } else {
 | |
|       // Ensure that the constant occurs on the RHS.
 | |
|       return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Could not fold it.
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
 | |
| /// use this predicate to simplify operations downstream.
 | |
| bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
 | |
|   unsigned BitWidth = Op.getValueSizeInBits();
 | |
|   return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
 | |
| }
 | |
| 
 | |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
 | |
| /// this predicate to simplify operations downstream.  Mask is known to be zero
 | |
| /// for bits that V cannot have.
 | |
| bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask, 
 | |
|                                      unsigned Depth) const {
 | |
|   APInt KnownZero, KnownOne;
 | |
|   ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
 | |
|   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|   return (KnownZero & Mask) == Mask;
 | |
| }
 | |
| 
 | |
| /// ComputeMaskedBits - Determine which of the bits specified in Mask are
 | |
| /// known to be either zero or one and return them in the KnownZero/KnownOne
 | |
| /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
 | |
| /// processing.
 | |
| void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask, 
 | |
|                                      APInt &KnownZero, APInt &KnownOne,
 | |
|                                      unsigned Depth) const {
 | |
|   unsigned BitWidth = Mask.getBitWidth();
 | |
|   assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
 | |
|          "Mask size mismatches value type size!");
 | |
| 
 | |
|   KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
 | |
|   if (Depth == 6 || Mask == 0)
 | |
|     return;  // Limit search depth.
 | |
|   
 | |
|   APInt KnownZero2, KnownOne2;
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::Constant:
 | |
|     // We know all of the bits for a constant!
 | |
|     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
 | |
|     KnownZero = ~KnownOne & Mask;
 | |
|     return;
 | |
|   case ISD::AND:
 | |
|     // If either the LHS or the RHS are Zero, the result is zero.
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
 | |
|                       KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
| 
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     KnownZero |= KnownZero2;
 | |
|     return;
 | |
|   case ISD::OR:
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
 | |
|                       KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     KnownZero &= KnownZero2;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     KnownOne |= KnownOne2;
 | |
|     return;
 | |
|   case ISD::XOR: {
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
 | |
|     KnownZero = KnownZeroOut;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SELECT:
 | |
|     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     return;
 | |
|   case ISD::SELECT_CC:
 | |
|     ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     return;
 | |
|   case ISD::SETCC:
 | |
|     // If we know the result of a setcc has the top bits zero, use this info.
 | |
|     if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
 | |
|         BitWidth > 1)
 | |
|       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
 | |
|     return;
 | |
|   case ISD::SHL:
 | |
|     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned ShAmt = SA->getValue();
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         return;
 | |
| 
 | |
|       ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
 | |
|                         KnownZero, KnownOne, Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero <<= ShAmt;
 | |
|       KnownOne  <<= ShAmt;
 | |
|       // low bits known zero.
 | |
|       KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
 | |
|     }
 | |
|     return;
 | |
|   case ISD::SRL:
 | |
|     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned ShAmt = SA->getValue();
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         return;
 | |
| 
 | |
|       ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
 | |
|                         KnownZero, KnownOne, Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero = KnownZero.lshr(ShAmt);
 | |
|       KnownOne  = KnownOne.lshr(ShAmt);
 | |
| 
 | |
|       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
 | |
|       KnownZero |= HighBits;  // High bits known zero.
 | |
|     }
 | |
|     return;
 | |
|   case ISD::SRA:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned ShAmt = SA->getValue();
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         return;
 | |
| 
 | |
|       APInt InDemandedMask = (Mask << ShAmt);
 | |
|       // If any of the demanded bits are produced by the sign extension, we also
 | |
|       // demand the input sign bit.
 | |
|       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
 | |
|       if (HighBits.getBoolValue())
 | |
|         InDemandedMask |= APInt::getSignBit(BitWidth);
 | |
|       
 | |
|       ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
 | |
|                         Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero = KnownZero.lshr(ShAmt);
 | |
|       KnownOne  = KnownOne.lshr(ShAmt);
 | |
|       
 | |
|       // Handle the sign bits.
 | |
|       APInt SignBit = APInt::getSignBit(BitWidth);
 | |
|       SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
 | |
|       
 | |
|       if (KnownZero.intersects(SignBit)) {
 | |
|         KnownZero |= HighBits;  // New bits are known zero.
 | |
|       } else if (KnownOne.intersects(SignBit)) {
 | |
|         KnownOne  |= HighBits;  // New bits are known one.
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     unsigned EBits = MVT::getSizeInBits(EVT);
 | |
|     
 | |
|     // Sign extension.  Compute the demanded bits in the result that are not 
 | |
|     // present in the input.
 | |
|     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
 | |
| 
 | |
|     APInt InSignBit = APInt::getSignBit(EBits);
 | |
|     APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
 | |
|     
 | |
|     // If the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     InSignBit.zext(BitWidth);
 | |
|     if (NewBits.getBoolValue())
 | |
|       InputDemandedBits |= InSignBit;
 | |
|     
 | |
|     ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
 | |
|                       KnownZero, KnownOne, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If the sign bit of the input is known set or clear, then we know the
 | |
|     // top bits of the result.
 | |
|     if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
 | |
|       KnownZero |= NewBits;
 | |
|       KnownOne  &= ~NewBits;
 | |
|     } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
 | |
|       KnownOne  |= NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     } else {                              // Input sign bit unknown
 | |
|       KnownZero &= ~NewBits;
 | |
|       KnownOne  &= ~NewBits;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::CTTZ:
 | |
|   case ISD::CTLZ:
 | |
|   case ISD::CTPOP: {
 | |
|     unsigned LowBits = Log2_32(BitWidth)+1;
 | |
|     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
 | |
|     KnownOne  = APInt(BitWidth, 0);
 | |
|     return;
 | |
|   }
 | |
|   case ISD::LOAD: {
 | |
|     if (ISD::isZEXTLoad(Op.Val)) {
 | |
|       LoadSDNode *LD = cast<LoadSDNode>(Op);
 | |
|       MVT::ValueType VT = LD->getMemoryVT();
 | |
|       unsigned MemBits = MVT::getSizeInBits(VT);
 | |
|       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ZERO_EXTEND: {
 | |
|     MVT::ValueType InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = MVT::getSizeInBits(InVT);
 | |
|     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
 | |
|     APInt InMask    = Mask;
 | |
|     InMask.trunc(InBits);
 | |
|     KnownZero.trunc(InBits);
 | |
|     KnownOne.trunc(InBits);
 | |
|     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
 | |
|     KnownZero.zext(BitWidth);
 | |
|     KnownOne.zext(BitWidth);
 | |
|     KnownZero |= NewBits;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND: {
 | |
|     MVT::ValueType InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = MVT::getSizeInBits(InVT);
 | |
|     APInt InSignBit = APInt::getSignBit(InBits);
 | |
|     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
 | |
|     APInt InMask = Mask;
 | |
|     InMask.trunc(InBits);
 | |
| 
 | |
|     // If any of the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded. Temporarily set this bit in the mask for our callee.
 | |
|     if (NewBits.getBoolValue())
 | |
|       InMask |= InSignBit;
 | |
| 
 | |
|     KnownZero.trunc(InBits);
 | |
|     KnownOne.trunc(InBits);
 | |
|     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
 | |
| 
 | |
|     // Note if the sign bit is known to be zero or one.
 | |
|     bool SignBitKnownZero = KnownZero.isNegative();
 | |
|     bool SignBitKnownOne  = KnownOne.isNegative();
 | |
|     assert(!(SignBitKnownZero && SignBitKnownOne) &&
 | |
|            "Sign bit can't be known to be both zero and one!");
 | |
| 
 | |
|     // If the sign bit wasn't actually demanded by our caller, we don't
 | |
|     // want it set in the KnownZero and KnownOne result values. Reset the
 | |
|     // mask and reapply it to the result values.
 | |
|     InMask = Mask;
 | |
|     InMask.trunc(InBits);
 | |
|     KnownZero &= InMask;
 | |
|     KnownOne  &= InMask;
 | |
| 
 | |
|     KnownZero.zext(BitWidth);
 | |
|     KnownOne.zext(BitWidth);
 | |
| 
 | |
|     // If the sign bit is known zero or one, the top bits match.
 | |
|     if (SignBitKnownZero)
 | |
|       KnownZero |= NewBits;
 | |
|     else if (SignBitKnownOne)
 | |
|       KnownOne  |= NewBits;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ANY_EXTEND: {
 | |
|     MVT::ValueType InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = MVT::getSizeInBits(InVT);
 | |
|     APInt InMask = Mask;
 | |
|     InMask.trunc(InBits);
 | |
|     KnownZero.trunc(InBits);
 | |
|     KnownOne.trunc(InBits);
 | |
|     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
 | |
|     KnownZero.zext(BitWidth);
 | |
|     KnownOne.zext(BitWidth);
 | |
|     return;
 | |
|   }
 | |
|   case ISD::TRUNCATE: {
 | |
|     MVT::ValueType InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = MVT::getSizeInBits(InVT);
 | |
|     APInt InMask = Mask;
 | |
|     InMask.zext(InBits);
 | |
|     KnownZero.zext(InBits);
 | |
|     KnownOne.zext(InBits);
 | |
|     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     KnownZero.trunc(BitWidth);
 | |
|     KnownOne.trunc(BitWidth);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::AssertZext: {
 | |
|     MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, 
 | |
|                       KnownOne, Depth+1);
 | |
|     KnownZero |= (~InMask) & Mask;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::FGETSIGN:
 | |
|     // All bits are zero except the low bit.
 | |
|     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
 | |
|     return;
 | |
|   
 | |
|   case ISD::ADD: {
 | |
|     // If either the LHS or the RHS are Zero, the result is zero.
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-0 bits are known if clear or set in both the low clear bits
 | |
|     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
 | |
|     // low 3 bits clear.
 | |
|     unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(), 
 | |
|                                      KnownZero2.countTrailingOnes());
 | |
|     
 | |
|     KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
 | |
|     KnownOne = APInt(BitWidth, 0);
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SUB: {
 | |
|     ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
 | |
|     if (!CLHS) return;
 | |
| 
 | |
|     // We know that the top bits of C-X are clear if X contains less bits
 | |
|     // than C (i.e. no wrap-around can happen).  For example, 20-X is
 | |
|     // positive if we can prove that X is >= 0 and < 16.
 | |
|     if (CLHS->getAPIntValue().isNonNegative()) {
 | |
|       unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
 | |
|       // NLZ can't be BitWidth with no sign bit
 | |
|       APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
 | |
|       ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
 | |
| 
 | |
|       // If all of the MaskV bits are known to be zero, then we know the output
 | |
|       // top bits are zero, because we now know that the output is from [0-C].
 | |
|       if ((KnownZero & MaskV) == MaskV) {
 | |
|         unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
 | |
|         // Top bits known zero.
 | |
|         KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
 | |
|         KnownOne = APInt(BitWidth, 0);   // No one bits known.
 | |
|       } else {
 | |
|         KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   default:
 | |
|     // Allow the target to implement this method for its nodes.
 | |
|     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|   case ISD::INTRINSIC_W_CHAIN:
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|       TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ComputeNumSignBits - Return the number of times the sign bit of the
 | |
| /// register is replicated into the other bits.  We know that at least 1 bit
 | |
| /// is always equal to the sign bit (itself), but other cases can give us
 | |
| /// information.  For example, immediately after an "SRA X, 2", we know that
 | |
| /// the top 3 bits are all equal to each other, so we return 3.
 | |
| unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
 | |
|   MVT::ValueType VT = Op.getValueType();
 | |
|   assert(MVT::isInteger(VT) && "Invalid VT!");
 | |
|   unsigned VTBits = MVT::getSizeInBits(VT);
 | |
|   unsigned Tmp, Tmp2;
 | |
|   
 | |
|   if (Depth == 6)
 | |
|     return 1;  // Limit search depth.
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::AssertSext:
 | |
|     Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
 | |
|     return VTBits-Tmp+1;
 | |
|   case ISD::AssertZext:
 | |
|     Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
 | |
|     return VTBits-Tmp;
 | |
|     
 | |
|   case ISD::Constant: {
 | |
|     const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
 | |
|     // If negative, return # leading ones.
 | |
|     if (Val.isNegative())
 | |
|       return Val.countLeadingOnes();
 | |
|     
 | |
|     // Return # leading zeros.
 | |
|     return Val.countLeadingZeros();
 | |
|   }
 | |
|     
 | |
|   case ISD::SIGN_EXTEND:
 | |
|     Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
 | |
|     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
 | |
|     
 | |
|   case ISD::SIGN_EXTEND_INREG:
 | |
|     // Max of the input and what this extends.
 | |
|     Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
 | |
|     Tmp = VTBits-Tmp+1;
 | |
|     
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     return std::max(Tmp, Tmp2);
 | |
| 
 | |
|   case ISD::SRA:
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     // SRA X, C   -> adds C sign bits.
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       Tmp += C->getValue();
 | |
|       if (Tmp > VTBits) Tmp = VTBits;
 | |
|     }
 | |
|     return Tmp;
 | |
|   case ISD::SHL:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       // shl destroys sign bits.
 | |
|       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|       if (C->getValue() >= VTBits ||      // Bad shift.
 | |
|           C->getValue() >= Tmp) break;    // Shifted all sign bits out.
 | |
|       return Tmp - C->getValue();
 | |
|     }
 | |
|     break;
 | |
|   case ISD::AND:
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:    // NOT is handled here.
 | |
|     // Logical binary ops preserve the number of sign bits.
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     return std::min(Tmp, Tmp2);
 | |
| 
 | |
|   case ISD::SELECT:
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     return std::min(Tmp, Tmp2);
 | |
|     
 | |
|   case ISD::SETCC:
 | |
|     // If setcc returns 0/-1, all bits are sign bits.
 | |
|     if (TLI.getSetCCResultContents() ==
 | |
|         TargetLowering::ZeroOrNegativeOneSetCCResult)
 | |
|       return VTBits;
 | |
|     break;
 | |
|   case ISD::ROTL:
 | |
|   case ISD::ROTR:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned RotAmt = C->getValue() & (VTBits-1);
 | |
|       
 | |
|       // Handle rotate right by N like a rotate left by 32-N.
 | |
|       if (Op.getOpcode() == ISD::ROTR)
 | |
|         RotAmt = (VTBits-RotAmt) & (VTBits-1);
 | |
| 
 | |
|       // If we aren't rotating out all of the known-in sign bits, return the
 | |
|       // number that are left.  This handles rotl(sext(x), 1) for example.
 | |
|       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|       if (Tmp > RotAmt+1) return Tmp-RotAmt;
 | |
|     }
 | |
|     break;
 | |
|   case ISD::ADD:
 | |
|     // Add can have at most one carry bit.  Thus we know that the output
 | |
|     // is, at worst, one more bit than the inputs.
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|       
 | |
|     // Special case decrementing a value (ADD X, -1):
 | |
|     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
 | |
|       if (CRHS->isAllOnesValue()) {
 | |
|         APInt KnownZero, KnownOne;
 | |
|         APInt Mask = APInt::getAllOnesValue(VTBits);
 | |
|         ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | |
|         
 | |
|         // If the input is known to be 0 or 1, the output is 0/-1, which is all
 | |
|         // sign bits set.
 | |
|         if ((KnownZero | APInt(VTBits, 1)) == Mask)
 | |
|           return VTBits;
 | |
|         
 | |
|         // If we are subtracting one from a positive number, there is no carry
 | |
|         // out of the result.
 | |
|         if (KnownZero.isNegative())
 | |
|           return Tmp;
 | |
|       }
 | |
|       
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     if (Tmp2 == 1) return 1;
 | |
|       return std::min(Tmp, Tmp2)-1;
 | |
|     break;
 | |
|     
 | |
|   case ISD::SUB:
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     if (Tmp2 == 1) return 1;
 | |
|       
 | |
|     // Handle NEG.
 | |
|     if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
 | |
|       if (CLHS->isNullValue()) {
 | |
|         APInt KnownZero, KnownOne;
 | |
|         APInt Mask = APInt::getAllOnesValue(VTBits);
 | |
|         ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|         // If the input is known to be 0 or 1, the output is 0/-1, which is all
 | |
|         // sign bits set.
 | |
|         if ((KnownZero | APInt(VTBits, 1)) == Mask)
 | |
|           return VTBits;
 | |
|         
 | |
|         // If the input is known to be positive (the sign bit is known clear),
 | |
|         // the output of the NEG has the same number of sign bits as the input.
 | |
|         if (KnownZero.isNegative())
 | |
|           return Tmp2;
 | |
|         
 | |
|         // Otherwise, we treat this like a SUB.
 | |
|       }
 | |
|     
 | |
|     // Sub can have at most one carry bit.  Thus we know that the output
 | |
|     // is, at worst, one more bit than the inputs.
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|       return std::min(Tmp, Tmp2)-1;
 | |
|     break;
 | |
|   case ISD::TRUNCATE:
 | |
|     // FIXME: it's tricky to do anything useful for this, but it is an important
 | |
|     // case for targets like X86.
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // Handle LOADX separately here. EXTLOAD case will fallthrough.
 | |
|   if (Op.getOpcode() == ISD::LOAD) {
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(Op);
 | |
|     unsigned ExtType = LD->getExtensionType();
 | |
|     switch (ExtType) {
 | |
|     default: break;
 | |
|     case ISD::SEXTLOAD:    // '17' bits known
 | |
|       Tmp = MVT::getSizeInBits(LD->getMemoryVT());
 | |
|       return VTBits-Tmp+1;
 | |
|     case ISD::ZEXTLOAD:    // '16' bits known
 | |
|       Tmp = MVT::getSizeInBits(LD->getMemoryVT());
 | |
|       return VTBits-Tmp;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Allow the target to implement this method for its nodes.
 | |
|   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | |
|       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 
 | |
|       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | |
|       Op.getOpcode() == ISD::INTRINSIC_VOID) {
 | |
|     unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
 | |
|     if (NumBits > 1) return NumBits;
 | |
|   }
 | |
|   
 | |
|   // Finally, if we can prove that the top bits of the result are 0's or 1's,
 | |
|   // use this information.
 | |
|   APInt KnownZero, KnownOne;
 | |
|   APInt Mask = APInt::getAllOnesValue(VTBits);
 | |
|   ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
 | |
|   
 | |
|   if (KnownZero.isNegative()) {        // sign bit is 0
 | |
|     Mask = KnownZero;
 | |
|   } else if (KnownOne.isNegative()) {  // sign bit is 1;
 | |
|     Mask = KnownOne;
 | |
|   } else {
 | |
|     // Nothing known.
 | |
|     return 1;
 | |
|   }
 | |
|   
 | |
|   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
 | |
|   // the number of identical bits in the top of the input value.
 | |
|   Mask = ~Mask;
 | |
|   Mask <<= Mask.getBitWidth()-VTBits;
 | |
|   // Return # leading zeros.  We use 'min' here in case Val was zero before
 | |
|   // shifting.  We don't want to return '64' as for an i32 "0".
 | |
|   return std::min(VTBits, Mask.countLeadingZeros());
 | |
| }
 | |
| 
 | |
| 
 | |
| bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
 | |
|   GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
 | |
|   if (!GA) return false;
 | |
|   GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
 | |
|   if (!GV) return false;
 | |
|   MachineModuleInfo *MMI = getMachineModuleInfo();
 | |
|   return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getNode - Gets or creates the specified node.
 | |
| ///
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opcode, getVTList(VT), (SDOperand*)0, 0);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
|   SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
 | |
|                                 SDOperand Operand) {
 | |
|   // Constant fold unary operations with an integer constant operand.
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
 | |
|     const APInt &Val = C->getAPIntValue();
 | |
|     unsigned BitWidth = MVT::getSizeInBits(VT);
 | |
|     switch (Opcode) {
 | |
|     default: break;
 | |
|     case ISD::SIGN_EXTEND:
 | |
|       return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
 | |
|     case ISD::ANY_EXTEND:
 | |
|     case ISD::ZERO_EXTEND:
 | |
|     case ISD::TRUNCATE:
 | |
|       return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
 | |
|     case ISD::UINT_TO_FP:
 | |
|     case ISD::SINT_TO_FP: {
 | |
|       const uint64_t zero[] = {0, 0};
 | |
|       // No compile time operations on this type.
 | |
|       if (VT==MVT::ppcf128)
 | |
|         break;
 | |
|       APFloat apf = APFloat(APInt(BitWidth, 2, zero));
 | |
|       (void)apf.convertFromAPInt(Val, 
 | |
|                                  Opcode==ISD::SINT_TO_FP,
 | |
|                                  APFloat::rmNearestTiesToEven);
 | |
|       return getConstantFP(apf, VT);
 | |
|     }
 | |
|     case ISD::BIT_CONVERT:
 | |
|       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
 | |
|         return getConstantFP(Val.bitsToFloat(), VT);
 | |
|       else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
 | |
|         return getConstantFP(Val.bitsToDouble(), VT);
 | |
|       break;
 | |
|     case ISD::BSWAP:
 | |
|       return getConstant(Val.byteSwap(), VT);
 | |
|     case ISD::CTPOP:
 | |
|       return getConstant(Val.countPopulation(), VT);
 | |
|     case ISD::CTLZ:
 | |
|       return getConstant(Val.countLeadingZeros(), VT);
 | |
|     case ISD::CTTZ:
 | |
|       return getConstant(Val.countTrailingZeros(), VT);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Constant fold unary operations with a floating point constant operand.
 | |
|   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
 | |
|     APFloat V = C->getValueAPF();    // make copy
 | |
|     if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
 | |
|       switch (Opcode) {
 | |
|       case ISD::FNEG:
 | |
|         V.changeSign();
 | |
|         return getConstantFP(V, VT);
 | |
|       case ISD::FABS:
 | |
|         V.clearSign();
 | |
|         return getConstantFP(V, VT);
 | |
|       case ISD::FP_ROUND:
 | |
|       case ISD::FP_EXTEND:
 | |
|         // This can return overflow, underflow, or inexact; we don't care.
 | |
|         // FIXME need to be more flexible about rounding mode.
 | |
|         (void)V.convert(*MVTToAPFloatSemantics(VT),
 | |
|                         APFloat::rmNearestTiesToEven);
 | |
|         return getConstantFP(V, VT);
 | |
|       case ISD::FP_TO_SINT:
 | |
|       case ISD::FP_TO_UINT: {
 | |
|         integerPart x;
 | |
|         assert(integerPartWidth >= 64);
 | |
|         // FIXME need to be more flexible about rounding mode.
 | |
|         APFloat::opStatus s = V.convertToInteger(&x, 64U,
 | |
|                               Opcode==ISD::FP_TO_SINT,
 | |
|                               APFloat::rmTowardZero);
 | |
|         if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
 | |
|           break;
 | |
|         return getConstant(x, VT);
 | |
|       }
 | |
|       case ISD::BIT_CONVERT:
 | |
|         if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
 | |
|           return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
 | |
|         else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
 | |
|           return getConstant(V.convertToAPInt().getZExtValue(), VT);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned OpOpcode = Operand.Val->getOpcode();
 | |
|   switch (Opcode) {
 | |
|   case ISD::TokenFactor:
 | |
|   case ISD::MERGE_VALUES:
 | |
|     return Operand;         // Factor or merge of one node?  No need.
 | |
|   case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
 | |
|   case ISD::FP_EXTEND:
 | |
|     assert(MVT::isFloatingPoint(VT) &&
 | |
|            MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
 | |
|     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
 | |
|     if (Operand.getOpcode() == ISD::UNDEF)
 | |
|       return getNode(ISD::UNDEF, VT);
 | |
|     break;
 | |
|   case ISD::SIGN_EXTEND:
 | |
|     assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
 | |
|            "Invalid SIGN_EXTEND!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop extension
 | |
|     assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
 | |
|            && "Invalid sext node, dst < src!");
 | |
|     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
 | |
|       return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
 | |
|     break;
 | |
|   case ISD::ZERO_EXTEND:
 | |
|     assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
 | |
|            "Invalid ZERO_EXTEND!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop extension
 | |
|     assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
 | |
|            && "Invalid zext node, dst < src!");
 | |
|     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
 | |
|       return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
 | |
|     break;
 | |
|   case ISD::ANY_EXTEND:
 | |
|     assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
 | |
|            "Invalid ANY_EXTEND!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop extension
 | |
|     assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
 | |
|            && "Invalid anyext node, dst < src!");
 | |
|     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
 | |
|       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
 | |
|       return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
 | |
|     break;
 | |
|   case ISD::TRUNCATE:
 | |
|     assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
 | |
|            "Invalid TRUNCATE!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop truncate
 | |
|     assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
 | |
|            && "Invalid truncate node, src < dst!");
 | |
|     if (OpOpcode == ISD::TRUNCATE)
 | |
|       return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
 | |
|     else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
 | |
|              OpOpcode == ISD::ANY_EXTEND) {
 | |
|       // If the source is smaller than the dest, we still need an extend.
 | |
|       if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
 | |
|           < MVT::getSizeInBits(VT))
 | |
|         return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
 | |
|       else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
 | |
|                > MVT::getSizeInBits(VT))
 | |
|         return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
 | |
|       else
 | |
|         return Operand.Val->getOperand(0);
 | |
|     }
 | |
|     break;
 | |
|   case ISD::BIT_CONVERT:
 | |
|     // Basic sanity checking.
 | |
|     assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
 | |
|            && "Cannot BIT_CONVERT between types of different sizes!");
 | |
|     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
 | |
|     if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
 | |
|       return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
 | |
|     if (OpOpcode == ISD::UNDEF)
 | |
|       return getNode(ISD::UNDEF, VT);
 | |
|     break;
 | |
|   case ISD::SCALAR_TO_VECTOR:
 | |
|     assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
 | |
|            MVT::getVectorElementType(VT) == Operand.getValueType() &&
 | |
|            "Illegal SCALAR_TO_VECTOR node!");
 | |
|     if (OpOpcode == ISD::UNDEF)
 | |
|       return getNode(ISD::UNDEF, VT);
 | |
|     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
 | |
|     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
 | |
|         isa<ConstantSDNode>(Operand.getOperand(1)) &&
 | |
|         Operand.getConstantOperandVal(1) == 0 &&
 | |
|         Operand.getOperand(0).getValueType() == VT)
 | |
|       return Operand.getOperand(0);
 | |
|     break;
 | |
|   case ISD::FNEG:
 | |
|     if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
 | |
|       return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
 | |
|                      Operand.Val->getOperand(0));
 | |
|     if (OpOpcode == ISD::FNEG)  // --X -> X
 | |
|       return Operand.Val->getOperand(0);
 | |
|     break;
 | |
|   case ISD::FABS:
 | |
|     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
 | |
|       return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   if (VT != MVT::Flag) { // Don't CSE flag producing nodes
 | |
|     FoldingSetNodeID ID;
 | |
|     SDOperand Ops[1] = { Operand };
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return SDOperand(E, 0);
 | |
|     N = new UnarySDNode(Opcode, VTs, Operand);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = new UnarySDNode(Opcode, VTs, Operand);
 | |
|   }
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
 | |
|                                 SDOperand N1, SDOperand N2) {
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
 | |
|   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case ISD::TokenFactor:
 | |
|     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
 | |
|            N2.getValueType() == MVT::Other && "Invalid token factor!");
 | |
|     // Fold trivial token factors.
 | |
|     if (N1.getOpcode() == ISD::EntryToken) return N2;
 | |
|     if (N2.getOpcode() == ISD::EntryToken) return N1;
 | |
|     break;
 | |
|   case ISD::AND:
 | |
|     assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
 | |
|            N1.getValueType() == VT && "Binary operator types must match!");
 | |
|     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
 | |
|     // worth handling here.
 | |
|     if (N2C && N2C->isNullValue())
 | |
|       return N2;
 | |
|     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
 | |
|       return N1;
 | |
|     break;
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:
 | |
|     assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
 | |
|            N1.getValueType() == VT && "Binary operator types must match!");
 | |
|     // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
 | |
|     // worth handling here.
 | |
|     if (N2C && N2C->isNullValue())
 | |
|       return N1;
 | |
|     break;
 | |
|   case ISD::UDIV:
 | |
|   case ISD::UREM:
 | |
|   case ISD::MULHU:
 | |
|   case ISD::MULHS:
 | |
|     assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
 | |
|     // fall through
 | |
|   case ISD::ADD:
 | |
|   case ISD::SUB:
 | |
|   case ISD::MUL:
 | |
|   case ISD::SDIV:
 | |
|   case ISD::SREM:
 | |
|   case ISD::FADD:
 | |
|   case ISD::FSUB:
 | |
|   case ISD::FMUL:
 | |
|   case ISD::FDIV:
 | |
|   case ISD::FREM:
 | |
|     assert(N1.getValueType() == N2.getValueType() &&
 | |
|            N1.getValueType() == VT && "Binary operator types must match!");
 | |
|     break;
 | |
|   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
 | |
|     assert(N1.getValueType() == VT &&
 | |
|            MVT::isFloatingPoint(N1.getValueType()) && 
 | |
|            MVT::isFloatingPoint(N2.getValueType()) &&
 | |
|            "Invalid FCOPYSIGN!");
 | |
|     break;
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:
 | |
|   case ISD::ROTL:
 | |
|   case ISD::ROTR:
 | |
|     assert(VT == N1.getValueType() &&
 | |
|            "Shift operators return type must be the same as their first arg");
 | |
|     assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
 | |
|            VT != MVT::i1 && "Shifts only work on integers");
 | |
|     break;
 | |
|   case ISD::FP_ROUND_INREG: {
 | |
|     MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
 | |
|     assert(VT == N1.getValueType() && "Not an inreg round!");
 | |
|     assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
 | |
|            "Cannot FP_ROUND_INREG integer types");
 | |
|     assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
 | |
|            "Not rounding down!");
 | |
|     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FP_ROUND:
 | |
|     assert(MVT::isFloatingPoint(VT) &&
 | |
|            MVT::isFloatingPoint(N1.getValueType()) &&
 | |
|            MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
 | |
|            isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
 | |
|     if (N1.getValueType() == VT) return N1;  // noop conversion.
 | |
|     break;
 | |
|   case ISD::AssertSext:
 | |
|   case ISD::AssertZext: {
 | |
|     MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
 | |
|     assert(VT == N1.getValueType() && "Not an inreg extend!");
 | |
|     assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
 | |
|            "Cannot *_EXTEND_INREG FP types");
 | |
|     assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
 | |
|            "Not extending!");
 | |
|     if (VT == EVT) return N1; // noop assertion.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
 | |
|     assert(VT == N1.getValueType() && "Not an inreg extend!");
 | |
|     assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
 | |
|            "Cannot *_EXTEND_INREG FP types");
 | |
|     assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
 | |
|            "Not extending!");
 | |
|     if (EVT == VT) return N1;  // Not actually extending
 | |
| 
 | |
|     if (N1C) {
 | |
|       APInt Val = N1C->getAPIntValue();
 | |
|       unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
 | |
|       Val <<= Val.getBitWidth()-FromBits;
 | |
|       Val = Val.ashr(Val.getBitWidth()-FromBits);
 | |
|       return getConstant(Val, VT);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::EXTRACT_VECTOR_ELT:
 | |
|     assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
 | |
| 
 | |
|     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
 | |
|     if (N1.getOpcode() == ISD::UNDEF)
 | |
|       return getNode(ISD::UNDEF, VT);
 | |
|       
 | |
|     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
 | |
|     // expanding copies of large vectors from registers.
 | |
|     if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
 | |
|         N1.getNumOperands() > 0) {
 | |
|       unsigned Factor =
 | |
|         MVT::getVectorNumElements(N1.getOperand(0).getValueType());
 | |
|       return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
 | |
|                      N1.getOperand(N2C->getValue() / Factor),
 | |
|                      getConstant(N2C->getValue() % Factor, N2.getValueType()));
 | |
|     }
 | |
| 
 | |
|     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
 | |
|     // expanding large vector constants.
 | |
|     if (N1.getOpcode() == ISD::BUILD_VECTOR)
 | |
|       return N1.getOperand(N2C->getValue());
 | |
|       
 | |
|     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
 | |
|     // operations are lowered to scalars.
 | |
|     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
 | |
|       if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
 | |
|         if (IEC == N2C)
 | |
|           return N1.getOperand(1);
 | |
|         else
 | |
|           return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
 | |
|       }
 | |
|     break;
 | |
|   case ISD::EXTRACT_ELEMENT:
 | |
|     assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
 | |
|     assert(!MVT::isVector(N1.getValueType()) &&
 | |
|            MVT::isInteger(N1.getValueType()) &&
 | |
|            !MVT::isVector(VT) && MVT::isInteger(VT) &&
 | |
|            "EXTRACT_ELEMENT only applies to integers!");
 | |
| 
 | |
|     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
 | |
|     // 64-bit integers into 32-bit parts.  Instead of building the extract of
 | |
|     // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 
 | |
|     if (N1.getOpcode() == ISD::BUILD_PAIR)
 | |
|       return N1.getOperand(N2C->getValue());
 | |
| 
 | |
|     // EXTRACT_ELEMENT of a constant int is also very common.
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
 | |
|       unsigned ElementSize = MVT::getSizeInBits(VT);
 | |
|       unsigned Shift = ElementSize * N2C->getValue();
 | |
|       APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
 | |
|       return getConstant(ShiftedVal.trunc(ElementSize), VT);
 | |
|     }
 | |
|     break;
 | |
|   case ISD::EXTRACT_SUBVECTOR:
 | |
|     if (N1.getValueType() == VT) // Trivial extraction.
 | |
|       return N1;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (N1C) {
 | |
|     if (N2C) {
 | |
|       APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
 | |
|       switch (Opcode) {
 | |
|       case ISD::ADD: return getConstant(C1 + C2, VT);
 | |
|       case ISD::SUB: return getConstant(C1 - C2, VT);
 | |
|       case ISD::MUL: return getConstant(C1 * C2, VT);
 | |
|       case ISD::UDIV:
 | |
|         if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
 | |
|         break;
 | |
|       case ISD::UREM :
 | |
|         if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
 | |
|         break;
 | |
|       case ISD::SDIV :
 | |
|         if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
 | |
|         break;
 | |
|       case ISD::SREM :
 | |
|         if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
 | |
|         break;
 | |
|       case ISD::AND  : return getConstant(C1 & C2, VT);
 | |
|       case ISD::OR   : return getConstant(C1 | C2, VT);
 | |
|       case ISD::XOR  : return getConstant(C1 ^ C2, VT);
 | |
|       case ISD::SHL  : return getConstant(C1 << C2, VT);
 | |
|       case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
 | |
|       case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
 | |
|       case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
 | |
|       case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
 | |
|       default: break;
 | |
|       }
 | |
|     } else {      // Cannonicalize constant to RHS if commutative
 | |
|       if (isCommutativeBinOp(Opcode)) {
 | |
|         std::swap(N1C, N2C);
 | |
|         std::swap(N1, N2);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Constant fold FP operations.
 | |
|   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
 | |
|   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
 | |
|   if (N1CFP) {
 | |
|     if (!N2CFP && isCommutativeBinOp(Opcode)) {
 | |
|       // Cannonicalize constant to RHS if commutative
 | |
|       std::swap(N1CFP, N2CFP);
 | |
|       std::swap(N1, N2);
 | |
|     } else if (N2CFP && VT != MVT::ppcf128) {
 | |
|       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
 | |
|       APFloat::opStatus s;
 | |
|       switch (Opcode) {
 | |
|       case ISD::FADD: 
 | |
|         s = V1.add(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (s != APFloat::opInvalidOp)
 | |
|           return getConstantFP(V1, VT);
 | |
|         break;
 | |
|       case ISD::FSUB: 
 | |
|         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (s!=APFloat::opInvalidOp)
 | |
|           return getConstantFP(V1, VT);
 | |
|         break;
 | |
|       case ISD::FMUL:
 | |
|         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (s!=APFloat::opInvalidOp)
 | |
|           return getConstantFP(V1, VT);
 | |
|         break;
 | |
|       case ISD::FDIV:
 | |
|         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
 | |
|           return getConstantFP(V1, VT);
 | |
|         break;
 | |
|       case ISD::FREM :
 | |
|         s = V1.mod(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
 | |
|           return getConstantFP(V1, VT);
 | |
|         break;
 | |
|       case ISD::FCOPYSIGN:
 | |
|         V1.copySign(V2);
 | |
|         return getConstantFP(V1, VT);
 | |
|       default: break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Canonicalize an UNDEF to the RHS, even over a constant.
 | |
|   if (N1.getOpcode() == ISD::UNDEF) {
 | |
|     if (isCommutativeBinOp(Opcode)) {
 | |
|       std::swap(N1, N2);
 | |
|     } else {
 | |
|       switch (Opcode) {
 | |
|       case ISD::FP_ROUND_INREG:
 | |
|       case ISD::SIGN_EXTEND_INREG:
 | |
|       case ISD::SUB:
 | |
|       case ISD::FSUB:
 | |
|       case ISD::FDIV:
 | |
|       case ISD::FREM:
 | |
|       case ISD::SRA:
 | |
|         return N1;     // fold op(undef, arg2) -> undef
 | |
|       case ISD::UDIV:
 | |
|       case ISD::SDIV:
 | |
|       case ISD::UREM:
 | |
|       case ISD::SREM:
 | |
|       case ISD::SRL:
 | |
|       case ISD::SHL:
 | |
|         if (!MVT::isVector(VT)) 
 | |
|           return getConstant(0, VT);    // fold op(undef, arg2) -> 0
 | |
|         // For vectors, we can't easily build an all zero vector, just return
 | |
|         // the LHS.
 | |
|         return N2;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Fold a bunch of operators when the RHS is undef. 
 | |
|   if (N2.getOpcode() == ISD::UNDEF) {
 | |
|     switch (Opcode) {
 | |
|     case ISD::XOR:
 | |
|       if (N1.getOpcode() == ISD::UNDEF)
 | |
|         // Handle undef ^ undef -> 0 special case. This is a common
 | |
|         // idiom (misuse).
 | |
|         return getConstant(0, VT);
 | |
|       // fallthrough
 | |
|     case ISD::ADD:
 | |
|     case ISD::ADDC:
 | |
|     case ISD::ADDE:
 | |
|     case ISD::SUB:
 | |
|     case ISD::FADD:
 | |
|     case ISD::FSUB:
 | |
|     case ISD::FMUL:
 | |
|     case ISD::FDIV:
 | |
|     case ISD::FREM:
 | |
|     case ISD::UDIV:
 | |
|     case ISD::SDIV:
 | |
|     case ISD::UREM:
 | |
|     case ISD::SREM:
 | |
|       return N2;       // fold op(arg1, undef) -> undef
 | |
|     case ISD::MUL: 
 | |
|     case ISD::AND:
 | |
|     case ISD::SRL:
 | |
|     case ISD::SHL:
 | |
|       if (!MVT::isVector(VT)) 
 | |
|         return getConstant(0, VT);  // fold op(arg1, undef) -> 0
 | |
|       // For vectors, we can't easily build an all zero vector, just return
 | |
|       // the LHS.
 | |
|       return N1;
 | |
|     case ISD::OR:
 | |
|       if (!MVT::isVector(VT)) 
 | |
|         return getConstant(MVT::getIntVTBitMask(VT), VT);
 | |
|       // For vectors, we can't easily build an all one vector, just return
 | |
|       // the LHS.
 | |
|       return N1;
 | |
|     case ISD::SRA:
 | |
|       return N1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Memoize this node if possible.
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   if (VT != MVT::Flag) {
 | |
|     SDOperand Ops[] = { N1, N2 };
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return SDOperand(E, 0);
 | |
|     N = new BinarySDNode(Opcode, VTs, N1, N2);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = new BinarySDNode(Opcode, VTs, N1, N2);
 | |
|   }
 | |
| 
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
 | |
|                                 SDOperand N1, SDOperand N2, SDOperand N3) {
 | |
|   // Perform various simplifications.
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
 | |
|   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
 | |
|   switch (Opcode) {
 | |
|   case ISD::SETCC: {
 | |
|     // Use FoldSetCC to simplify SETCC's.
 | |
|     SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
 | |
|     if (Simp.Val) return Simp;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SELECT:
 | |
|     if (N1C) {
 | |
|      if (N1C->getValue())
 | |
|         return N2;             // select true, X, Y -> X
 | |
|       else
 | |
|         return N3;             // select false, X, Y -> Y
 | |
|     }
 | |
| 
 | |
|     if (N2 == N3) return N2;   // select C, X, X -> X
 | |
|     break;
 | |
|   case ISD::BRCOND:
 | |
|     if (N2C) {
 | |
|       if (N2C->getValue()) // Unconditional branch
 | |
|         return getNode(ISD::BR, MVT::Other, N1, N3);
 | |
|       else
 | |
|         return N1;         // Never-taken branch
 | |
|     }
 | |
|     break;
 | |
|   case ISD::VECTOR_SHUFFLE:
 | |
|     assert(VT == N1.getValueType() && VT == N2.getValueType() &&
 | |
|            MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
 | |
|            N3.getOpcode() == ISD::BUILD_VECTOR &&
 | |
|            MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
 | |
|            "Illegal VECTOR_SHUFFLE node!");
 | |
|     break;
 | |
|   case ISD::BIT_CONVERT:
 | |
|     // Fold bit_convert nodes from a type to themselves.
 | |
|     if (N1.getValueType() == VT)
 | |
|       return N1;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Memoize node if it doesn't produce a flag.
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   if (VT != MVT::Flag) {
 | |
|     SDOperand Ops[] = { N1, N2, N3 };
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return SDOperand(E, 0);
 | |
|     N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
 | |
|   }
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
 | |
|                                 SDOperand N1, SDOperand N2, SDOperand N3,
 | |
|                                 SDOperand N4) {
 | |
|   SDOperand Ops[] = { N1, N2, N3, N4 };
 | |
|   return getNode(Opcode, VT, Ops, 4);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
 | |
|                                 SDOperand N1, SDOperand N2, SDOperand N3,
 | |
|                                 SDOperand N4, SDOperand N5) {
 | |
|   SDOperand Ops[] = { N1, N2, N3, N4, N5 };
 | |
|   return getNode(Opcode, VT, Ops, 5);
 | |
| }
 | |
| 
 | |
| /// getMemsetValue - Vectorized representation of the memset value
 | |
| /// operand.
 | |
| static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
 | |
|                                 SelectionDAG &DAG) {
 | |
|   MVT::ValueType CurVT = VT;
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
 | |
|     uint64_t Val   = C->getValue() & 255;
 | |
|     unsigned Shift = 8;
 | |
|     while (CurVT != MVT::i8) {
 | |
|       Val = (Val << Shift) | Val;
 | |
|       Shift <<= 1;
 | |
|       CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
 | |
|     }
 | |
|     return DAG.getConstant(Val, VT);
 | |
|   } else {
 | |
|     Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
 | |
|     unsigned Shift = 8;
 | |
|     while (CurVT != MVT::i8) {
 | |
|       Value =
 | |
|         DAG.getNode(ISD::OR, VT,
 | |
|                     DAG.getNode(ISD::SHL, VT, Value,
 | |
|                                 DAG.getConstant(Shift, MVT::i8)), Value);
 | |
|       Shift <<= 1;
 | |
|       CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
 | |
|     }
 | |
| 
 | |
|     return Value;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
 | |
| /// used when a memcpy is turned into a memset when the source is a constant
 | |
| /// string ptr.
 | |
| static SDOperand getMemsetStringVal(MVT::ValueType VT,
 | |
|                                     SelectionDAG &DAG,
 | |
|                                     const TargetLowering &TLI,
 | |
|                                     std::string &Str, unsigned Offset) {
 | |
|   uint64_t Val = 0;
 | |
|   unsigned MSB = MVT::getSizeInBits(VT) / 8;
 | |
|   if (TLI.isLittleEndian())
 | |
|     Offset = Offset + MSB - 1;
 | |
|   for (unsigned i = 0; i != MSB; ++i) {
 | |
|     Val = (Val << 8) | (unsigned char)Str[Offset];
 | |
|     Offset += TLI.isLittleEndian() ? -1 : 1;
 | |
|   }
 | |
|   return DAG.getConstant(Val, VT);
 | |
| }
 | |
| 
 | |
| /// getMemBasePlusOffset - Returns base and offset node for the 
 | |
| static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
 | |
|                                       SelectionDAG &DAG) {
 | |
|   MVT::ValueType VT = Base.getValueType();
 | |
|   return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
 | |
| }
 | |
| 
 | |
| /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
 | |
| /// to replace the memset / memcpy is below the threshold. It also returns the
 | |
| /// types of the sequence of memory ops to perform memset / memcpy.
 | |
| static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
 | |
|                                      unsigned Limit, uint64_t Size,
 | |
|                                      unsigned Align,
 | |
|                                      const TargetLowering &TLI) {
 | |
|   MVT::ValueType VT;
 | |
| 
 | |
|   if (TLI.allowsUnalignedMemoryAccesses()) {
 | |
|     VT = MVT::i64;
 | |
|   } else {
 | |
|     switch (Align & 7) {
 | |
|     case 0:
 | |
|       VT = MVT::i64;
 | |
|       break;
 | |
|     case 4:
 | |
|       VT = MVT::i32;
 | |
|       break;
 | |
|     case 2:
 | |
|       VT = MVT::i16;
 | |
|       break;
 | |
|     default:
 | |
|       VT = MVT::i8;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MVT::ValueType LVT = MVT::i64;
 | |
|   while (!TLI.isTypeLegal(LVT))
 | |
|     LVT = (MVT::ValueType)((unsigned)LVT - 1);
 | |
|   assert(MVT::isInteger(LVT));
 | |
| 
 | |
|   if (VT > LVT)
 | |
|     VT = LVT;
 | |
| 
 | |
|   unsigned NumMemOps = 0;
 | |
|   while (Size != 0) {
 | |
|     unsigned VTSize = MVT::getSizeInBits(VT) / 8;
 | |
|     while (VTSize > Size) {
 | |
|       VT = (MVT::ValueType)((unsigned)VT - 1);
 | |
|       VTSize >>= 1;
 | |
|     }
 | |
|     assert(MVT::isInteger(VT));
 | |
| 
 | |
|     if (++NumMemOps > Limit)
 | |
|       return false;
 | |
|     MemOps.push_back(VT);
 | |
|     Size -= VTSize;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
 | |
|                                          SDOperand Chain, SDOperand Dst,
 | |
|                                          SDOperand Src, uint64_t Size,
 | |
|                                          unsigned Align,
 | |
|                                          bool AlwaysInline,
 | |
|                                          const Value *DstSV, uint64_t DstOff,
 | |
|                                          const Value *SrcSV, uint64_t SrcOff) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   // Expand memcpy to a series of store ops if the size operand falls below
 | |
|   // a certain threshold.
 | |
|   std::vector<MVT::ValueType> MemOps;
 | |
|   uint64_t Limit = -1;
 | |
|   if (!AlwaysInline)
 | |
|     Limit = TLI.getMaxStoresPerMemcpy();
 | |
|   if (!MeetsMaxMemopRequirement(MemOps, Limit, Size, Align, TLI))
 | |
|     return SDOperand();
 | |
| 
 | |
|   SmallVector<SDOperand, 8> OutChains;
 | |
| 
 | |
|   unsigned NumMemOps = MemOps.size();
 | |
|   unsigned SrcDelta = 0;
 | |
|   GlobalAddressSDNode *G = NULL;
 | |
|   std::string Str;
 | |
|   bool CopyFromStr = false;
 | |
| 
 | |
|   if (Src.getOpcode() == ISD::GlobalAddress)
 | |
|     G = cast<GlobalAddressSDNode>(Src);
 | |
|   else if (Src.getOpcode() == ISD::ADD &&
 | |
|            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
 | |
|            Src.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
 | |
|     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
 | |
|   }
 | |
|   if (G) {
 | |
|     GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
 | |
|     if (GV && GV->isConstant()) {
 | |
|       Str = GV->getStringValue(false);
 | |
|       if (!Str.empty()) {
 | |
|         CopyFromStr = true;
 | |
|         SrcOff += SrcDelta;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|     MVT::ValueType VT = MemOps[i];
 | |
|     unsigned VTSize = MVT::getSizeInBits(VT) / 8;
 | |
|     SDOperand Value, Store;
 | |
| 
 | |
|     if (CopyFromStr) {
 | |
|       Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
 | |
|       Store =
 | |
|         DAG.getStore(Chain, Value,
 | |
|                      getMemBasePlusOffset(Dst, DstOff, DAG),
 | |
|                      DstSV, DstOff);
 | |
|     } else {
 | |
|       Value = DAG.getLoad(VT, Chain,
 | |
|                           getMemBasePlusOffset(Src, SrcOff, DAG),
 | |
|                           SrcSV, SrcOff, false, Align);
 | |
|       Store =
 | |
|         DAG.getStore(Chain, Value,
 | |
|                      getMemBasePlusOffset(Dst, DstOff, DAG),
 | |
|                      DstSV, DstOff, false, Align);
 | |
|     }
 | |
|     OutChains.push_back(Store);
 | |
|     SrcOff += VTSize;
 | |
|     DstOff += VTSize;
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                      &OutChains[0], OutChains.size());
 | |
| }
 | |
| 
 | |
| static SDOperand getMemsetStores(SelectionDAG &DAG,
 | |
|                                  SDOperand Chain, SDOperand Dst,
 | |
|                                  SDOperand Src, uint64_t Size,
 | |
|                                  unsigned Align,
 | |
|                                  const Value *DstSV, uint64_t DstOff) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   // Expand memset to a series of load/store ops if the size operand
 | |
|   // falls below a certain threshold.
 | |
|   std::vector<MVT::ValueType> MemOps;
 | |
|   if (!MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
 | |
|                                 Size, Align, TLI))
 | |
|     return SDOperand();
 | |
| 
 | |
|   SmallVector<SDOperand, 8> OutChains;
 | |
| 
 | |
|   unsigned NumMemOps = MemOps.size();
 | |
|   for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|     MVT::ValueType VT = MemOps[i];
 | |
|     unsigned VTSize = MVT::getSizeInBits(VT) / 8;
 | |
|     SDOperand Value = getMemsetValue(Src, VT, DAG);
 | |
|     SDOperand Store = DAG.getStore(Chain, Value,
 | |
|                                    getMemBasePlusOffset(Dst, DstOff, DAG),
 | |
|                                    DstSV, DstOff);
 | |
|     OutChains.push_back(Store);
 | |
|     DstOff += VTSize;
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                      &OutChains[0], OutChains.size());
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
 | |
|                                   SDOperand Src, SDOperand Size,
 | |
|                                   unsigned Align, bool AlwaysInline,
 | |
|                                   const Value *DstSV, uint64_t DstOff,
 | |
|                                   const Value *SrcSV, uint64_t SrcOff) {
 | |
| 
 | |
|   // Check to see if we should lower the memcpy to loads and stores first.
 | |
|   // For cases within the target-specified limits, this is the best choice.
 | |
|   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
 | |
|   if (ConstantSize) {
 | |
|     // Memcpy with size zero? Just return the original chain.
 | |
|     if (ConstantSize->isNullValue())
 | |
|       return Chain;
 | |
| 
 | |
|     SDOperand Result =
 | |
|       getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
 | |
|                               Align, false, DstSV, DstOff, SrcSV, SrcOff);
 | |
|     if (Result.Val)
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   // Then check to see if we should lower the memcpy with target-specific
 | |
|   // code. If the target chooses to do this, this is the next best.
 | |
|   SDOperand Result =
 | |
|     TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
 | |
|                                 AlwaysInline,
 | |
|                                 DstSV, DstOff, SrcSV, SrcOff);
 | |
|   if (Result.Val)
 | |
|     return Result;
 | |
| 
 | |
|   // If we really need inline code and the target declined to provide it,
 | |
|   // use a (potentially long) sequence of loads and stores.
 | |
|   if (AlwaysInline) {
 | |
|     assert(ConstantSize && "AlwaysInline requires a constant size!");
 | |
|     return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
 | |
|                                    ConstantSize->getValue(), Align, true,
 | |
|                                    DstSV, DstOff, SrcSV, SrcOff);
 | |
|   }
 | |
| 
 | |
|   // Emit a library call.
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Entry.Ty = TLI.getTargetData()->getIntPtrType();
 | |
|   Entry.Node = Dst; Args.push_back(Entry);
 | |
|   Entry.Node = Src; Args.push_back(Entry);
 | |
|   Entry.Node = Size; Args.push_back(Entry);
 | |
|   std::pair<SDOperand,SDOperand> CallResult =
 | |
|     TLI.LowerCallTo(Chain, Type::VoidTy,
 | |
|                     false, false, false, CallingConv::C, false,
 | |
|                     getExternalSymbol("memcpy", TLI.getPointerTy()),
 | |
|                     Args, *this);
 | |
|   return CallResult.second;
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
 | |
|                                    SDOperand Src, SDOperand Size,
 | |
|                                    unsigned Align,
 | |
|                                    const Value *DstSV, uint64_t DstOff,
 | |
|                                    const Value *SrcSV, uint64_t SrcOff) {
 | |
| 
 | |
|   // TODO: Optimize small memmove cases with simple loads and stores,
 | |
|   // ensuring that all loads precede all stores. This can cause severe
 | |
|   // register pressure, so targets should be careful with the size limit.
 | |
| 
 | |
|   // Then check to see if we should lower the memmove with target-specific
 | |
|   // code. If the target chooses to do this, this is the next best.
 | |
|   SDOperand Result =
 | |
|     TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
 | |
|                                  DstSV, DstOff, SrcSV, SrcOff);
 | |
|   if (Result.Val)
 | |
|     return Result;
 | |
| 
 | |
|   // Emit a library call.
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Entry.Ty = TLI.getTargetData()->getIntPtrType();
 | |
|   Entry.Node = Dst; Args.push_back(Entry);
 | |
|   Entry.Node = Src; Args.push_back(Entry);
 | |
|   Entry.Node = Size; Args.push_back(Entry);
 | |
|   std::pair<SDOperand,SDOperand> CallResult =
 | |
|     TLI.LowerCallTo(Chain, Type::VoidTy,
 | |
|                     false, false, false, CallingConv::C, false,
 | |
|                     getExternalSymbol("memmove", TLI.getPointerTy()),
 | |
|                     Args, *this);
 | |
|   return CallResult.second;
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
 | |
|                                   SDOperand Src, SDOperand Size,
 | |
|                                   unsigned Align,
 | |
|                                   const Value *DstSV, uint64_t DstOff) {
 | |
| 
 | |
|   // Check to see if we should lower the memset to stores first.
 | |
|   // For cases within the target-specified limits, this is the best choice.
 | |
|   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
 | |
|   if (ConstantSize) {
 | |
|     // Memset with size zero? Just return the original chain.
 | |
|     if (ConstantSize->isNullValue())
 | |
|       return Chain;
 | |
| 
 | |
|     SDOperand Result =
 | |
|       getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
 | |
|                       DstSV, DstOff);
 | |
|     if (Result.Val)
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   // Then check to see if we should lower the memset with target-specific
 | |
|   // code. If the target chooses to do this, this is the next best.
 | |
|   SDOperand Result =
 | |
|     TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
 | |
|                                 DstSV, DstOff);
 | |
|   if (Result.Val)
 | |
|     return Result;
 | |
| 
 | |
|   // Emit a library call.
 | |
|   const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Entry.Node = Dst; Entry.Ty = IntPtrTy;
 | |
|   Args.push_back(Entry);
 | |
|   // Extend or truncate the argument to be an i32 value for the call.
 | |
|   if (Src.getValueType() > MVT::i32)
 | |
|     Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
 | |
|   else
 | |
|     Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
 | |
|   Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
 | |
|   Args.push_back(Entry);
 | |
|   Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
 | |
|   Args.push_back(Entry);
 | |
|   std::pair<SDOperand,SDOperand> CallResult =
 | |
|     TLI.LowerCallTo(Chain, Type::VoidTy,
 | |
|                     false, false, false, CallingConv::C, false,
 | |
|                     getExternalSymbol("memset", TLI.getPointerTy()),
 | |
|                     Args, *this);
 | |
|   return CallResult.second;
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain, 
 | |
|                                   SDOperand Ptr, SDOperand Cmp, 
 | |
|                                   SDOperand Swp, MVT::ValueType VT) {
 | |
|   assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
 | |
|   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
 | |
|   SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
 | |
|   FoldingSetNodeID ID;
 | |
|   SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
 | |
|   AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
 | |
|   ID.AddInteger((unsigned int)VT);
 | |
|   void* IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
|   SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain, 
 | |
|                                   SDOperand Ptr, SDOperand Val, 
 | |
|                                   MVT::ValueType VT) {
 | |
|   assert((Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_SWAP)
 | |
|          && "Invalid Atomic Op");
 | |
|   SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
 | |
|   FoldingSetNodeID ID;
 | |
|   SDOperand Ops[] = {Chain, Ptr, Val};
 | |
|   AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
 | |
|   ID.AddInteger((unsigned int)VT);
 | |
|   void* IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
|   SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
 | |
|                       MVT::ValueType VT, SDOperand Chain,
 | |
|                       SDOperand Ptr, SDOperand Offset,
 | |
|                       const Value *SV, int SVOffset, MVT::ValueType EVT,
 | |
|                       bool isVolatile, unsigned Alignment) {
 | |
|   if (Alignment == 0) { // Ensure that codegen never sees alignment 0
 | |
|     const Type *Ty = 0;
 | |
|     if (VT != MVT::iPTR) {
 | |
|       Ty = MVT::getTypeForValueType(VT);
 | |
|     } else if (SV) {
 | |
|       const PointerType *PT = dyn_cast<PointerType>(SV->getType());
 | |
|       assert(PT && "Value for load must be a pointer");
 | |
|       Ty = PT->getElementType();
 | |
|     }
 | |
|     assert(Ty && "Could not get type information for load");
 | |
|     Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
 | |
|   }
 | |
| 
 | |
|   if (VT == EVT) {
 | |
|     ExtType = ISD::NON_EXTLOAD;
 | |
|   } else if (ExtType == ISD::NON_EXTLOAD) {
 | |
|     assert(VT == EVT && "Non-extending load from different memory type!");
 | |
|   } else {
 | |
|     // Extending load.
 | |
|     if (MVT::isVector(VT))
 | |
|       assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
 | |
|     else
 | |
|       assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
 | |
|              "Should only be an extending load, not truncating!");
 | |
|     assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
 | |
|            "Cannot sign/zero extend a FP/Vector load!");
 | |
|     assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
 | |
|            "Cannot convert from FP to Int or Int -> FP!");
 | |
|   }
 | |
| 
 | |
|   bool Indexed = AM != ISD::UNINDEXED;
 | |
|   assert(Indexed || Offset.getOpcode() == ISD::UNDEF &&
 | |
|          "Unindexed load with an offset!");
 | |
| 
 | |
|   SDVTList VTs = Indexed ?
 | |
|     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
 | |
|   SDOperand Ops[] = { Chain, Ptr, Offset };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
 | |
|   ID.AddInteger(AM);
 | |
|   ID.AddInteger(ExtType);
 | |
|   ID.AddInteger((unsigned int)EVT);
 | |
|   ID.AddInteger(Alignment);
 | |
|   ID.AddInteger(isVolatile);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
|   SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
 | |
|                              Alignment, isVolatile);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
 | |
|                                 SDOperand Chain, SDOperand Ptr,
 | |
|                                 const Value *SV, int SVOffset,
 | |
|                                 bool isVolatile, unsigned Alignment) {
 | |
|   SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
 | |
|   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
 | |
|                  SV, SVOffset, VT, isVolatile, Alignment);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
 | |
|                                    SDOperand Chain, SDOperand Ptr,
 | |
|                                    const Value *SV,
 | |
|                                    int SVOffset, MVT::ValueType EVT,
 | |
|                                    bool isVolatile, unsigned Alignment) {
 | |
|   SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
 | |
|   return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
 | |
|                  SV, SVOffset, EVT, isVolatile, Alignment);
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
 | |
|                              SDOperand Offset, ISD::MemIndexedMode AM) {
 | |
|   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
 | |
|   assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
 | |
|          "Load is already a indexed load!");
 | |
|   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
 | |
|                  LD->getChain(), Base, Offset, LD->getSrcValue(),
 | |
|                  LD->getSrcValueOffset(), LD->getMemoryVT(),
 | |
|                  LD->isVolatile(), LD->getAlignment());
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
 | |
|                                  SDOperand Ptr, const Value *SV, int SVOffset,
 | |
|                                  bool isVolatile, unsigned Alignment) {
 | |
|   MVT::ValueType VT = Val.getValueType();
 | |
| 
 | |
|   if (Alignment == 0) { // Ensure that codegen never sees alignment 0
 | |
|     const Type *Ty = 0;
 | |
|     if (VT != MVT::iPTR) {
 | |
|       Ty = MVT::getTypeForValueType(VT);
 | |
|     } else if (SV) {
 | |
|       const PointerType *PT = dyn_cast<PointerType>(SV->getType());
 | |
|       assert(PT && "Value for store must be a pointer");
 | |
|       Ty = PT->getElementType();
 | |
|     }
 | |
|     assert(Ty && "Could not get type information for store");
 | |
|     Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
 | |
|   }
 | |
|   SDVTList VTs = getVTList(MVT::Other);
 | |
|   SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
 | |
|   SDOperand Ops[] = { Chain, Val, Ptr, Undef };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
 | |
|   ID.AddInteger(ISD::UNINDEXED);
 | |
|   ID.AddInteger(false);
 | |
|   ID.AddInteger((unsigned int)VT);
 | |
|   ID.AddInteger(Alignment);
 | |
|   ID.AddInteger(isVolatile);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
|   SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
 | |
|                               VT, SV, SVOffset, Alignment, isVolatile);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
 | |
|                                       SDOperand Ptr, const Value *SV,
 | |
|                                       int SVOffset, MVT::ValueType SVT,
 | |
|                                       bool isVolatile, unsigned Alignment) {
 | |
|   MVT::ValueType VT = Val.getValueType();
 | |
| 
 | |
|   if (VT == SVT)
 | |
|     return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
 | |
| 
 | |
|   assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
 | |
|          "Not a truncation?");
 | |
|   assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
 | |
|          "Can't do FP-INT conversion!");
 | |
| 
 | |
|   if (Alignment == 0) { // Ensure that codegen never sees alignment 0
 | |
|     const Type *Ty = 0;
 | |
|     if (VT != MVT::iPTR) {
 | |
|       Ty = MVT::getTypeForValueType(VT);
 | |
|     } else if (SV) {
 | |
|       const PointerType *PT = dyn_cast<PointerType>(SV->getType());
 | |
|       assert(PT && "Value for store must be a pointer");
 | |
|       Ty = PT->getElementType();
 | |
|     }
 | |
|     assert(Ty && "Could not get type information for store");
 | |
|     Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
 | |
|   }
 | |
|   SDVTList VTs = getVTList(MVT::Other);
 | |
|   SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
 | |
|   SDOperand Ops[] = { Chain, Val, Ptr, Undef };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
 | |
|   ID.AddInteger(ISD::UNINDEXED);
 | |
|   ID.AddInteger(1);
 | |
|   ID.AddInteger((unsigned int)SVT);
 | |
|   ID.AddInteger(Alignment);
 | |
|   ID.AddInteger(isVolatile);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
|   SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
 | |
|                               SVT, SV, SVOffset, Alignment, isVolatile);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
 | |
|                               SDOperand Offset, ISD::MemIndexedMode AM) {
 | |
|   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
 | |
|   assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
 | |
|          "Store is already a indexed store!");
 | |
|   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
 | |
|   SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
 | |
|   ID.AddInteger(AM);
 | |
|   ID.AddInteger(ST->isTruncatingStore());
 | |
|   ID.AddInteger((unsigned int)(ST->getMemoryVT()));
 | |
|   ID.AddInteger(ST->getAlignment());
 | |
|   ID.AddInteger(ST->isVolatile());
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDOperand(E, 0);
 | |
|   SDNode *N = new StoreSDNode(Ops, VTs, AM,
 | |
|                               ST->isTruncatingStore(), ST->getMemoryVT(),
 | |
|                               ST->getSrcValue(), ST->getSrcValueOffset(),
 | |
|                               ST->getAlignment(), ST->isVolatile());
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
 | |
|                                  SDOperand Chain, SDOperand Ptr,
 | |
|                                  SDOperand SV) {
 | |
|   SDOperand Ops[] = { Chain, Ptr, SV };
 | |
|   return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
 | |
|                                 SDOperandPtr Ops, unsigned NumOps) {
 | |
|   switch (NumOps) {
 | |
|   case 0: return getNode(Opcode, VT);
 | |
|   case 1: return getNode(Opcode, VT, Ops[0]);
 | |
|   case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
 | |
|   case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
 | |
|   default: break;
 | |
|   }
 | |
|   
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case ISD::SELECT_CC: {
 | |
|     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
 | |
|     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
 | |
|            "LHS and RHS of condition must have same type!");
 | |
|     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
 | |
|            "True and False arms of SelectCC must have same type!");
 | |
|     assert(Ops[2].getValueType() == VT &&
 | |
|            "select_cc node must be of same type as true and false value!");
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BR_CC: {
 | |
|     assert(NumOps == 5 && "BR_CC takes 5 operands!");
 | |
|     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
 | |
|            "LHS/RHS of comparison should match types!");
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Memoize nodes.
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   if (VT != MVT::Flag) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return SDOperand(E, 0);
 | |
|     N = new SDNode(Opcode, VTs, Ops, NumOps);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = new SDNode(Opcode, VTs, Ops, NumOps);
 | |
|   }
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode,
 | |
|                                 std::vector<MVT::ValueType> &ResultTys,
 | |
|                                 SDOperandPtr Ops, unsigned NumOps) {
 | |
|   return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
 | |
|                  Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode,
 | |
|                                 const MVT::ValueType *VTs, unsigned NumVTs,
 | |
|                                 SDOperandPtr Ops, unsigned NumOps) {
 | |
|   if (NumVTs == 1)
 | |
|     return getNode(Opcode, VTs[0], Ops, NumOps);
 | |
|   return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
 | |
| }  
 | |
|   
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
 | |
|                                 SDOperandPtr Ops, unsigned NumOps) {
 | |
|   if (VTList.NumVTs == 1)
 | |
|     return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   // FIXME: figure out how to safely handle things like
 | |
|   // int foo(int x) { return 1 << (x & 255); }
 | |
|   // int bar() { return foo(256); }
 | |
| #if 0
 | |
|   case ISD::SRA_PARTS:
 | |
|   case ISD::SRL_PARTS:
 | |
|   case ISD::SHL_PARTS:
 | |
|     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
 | |
|         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
 | |
|       return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
 | |
|     else if (N3.getOpcode() == ISD::AND)
 | |
|       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
 | |
|         // If the and is only masking out bits that cannot effect the shift,
 | |
|         // eliminate the and.
 | |
|         unsigned NumBits = MVT::getSizeInBits(VT)*2;
 | |
|         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
 | |
|           return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
 | |
|       }
 | |
|     break;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   // Memoize the node unless it returns a flag.
 | |
|   SDNode *N;
 | |
|   if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return SDOperand(E, 0);
 | |
|     if (NumOps == 1)
 | |
|       N = new UnarySDNode(Opcode, VTList, Ops[0]);
 | |
|     else if (NumOps == 2)
 | |
|       N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
 | |
|     else if (NumOps == 3)
 | |
|       N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
 | |
|     else
 | |
|       N = new SDNode(Opcode, VTList, Ops, NumOps);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     if (NumOps == 1)
 | |
|       N = new UnarySDNode(Opcode, VTList, Ops[0]);
 | |
|     else if (NumOps == 2)
 | |
|       N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
 | |
|     else if (NumOps == 3)
 | |
|       N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
 | |
|     else
 | |
|       N = new SDNode(Opcode, VTList, Ops, NumOps);
 | |
|   }
 | |
|   AllNodes.push_back(N);
 | |
|   return SDOperand(N, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
 | |
|   return getNode(Opcode, VTList, (SDOperand*)0, 0);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
 | |
|                                 SDOperand N1) {
 | |
|   SDOperand Ops[] = { N1 };
 | |
|   return getNode(Opcode, VTList, Ops, 1);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
 | |
|                                 SDOperand N1, SDOperand N2) {
 | |
|   SDOperand Ops[] = { N1, N2 };
 | |
|   return getNode(Opcode, VTList, Ops, 2);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
 | |
|                                 SDOperand N1, SDOperand N2, SDOperand N3) {
 | |
|   SDOperand Ops[] = { N1, N2, N3 };
 | |
|   return getNode(Opcode, VTList, Ops, 3);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
 | |
|                                 SDOperand N1, SDOperand N2, SDOperand N3,
 | |
|                                 SDOperand N4) {
 | |
|   SDOperand Ops[] = { N1, N2, N3, N4 };
 | |
|   return getNode(Opcode, VTList, Ops, 4);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
 | |
|                                 SDOperand N1, SDOperand N2, SDOperand N3,
 | |
|                                 SDOperand N4, SDOperand N5) {
 | |
|   SDOperand Ops[] = { N1, N2, N3, N4, N5 };
 | |
|   return getNode(Opcode, VTList, Ops, 5);
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
 | |
|   return makeVTList(SDNode::getValueTypeList(VT), 1);
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
 | |
|   for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
 | |
|        E = VTList.end(); I != E; ++I) {
 | |
|     if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
 | |
|       return makeVTList(&(*I)[0], 2);
 | |
|   }
 | |
|   std::vector<MVT::ValueType> V;
 | |
|   V.push_back(VT1);
 | |
|   V.push_back(VT2);
 | |
|   VTList.push_front(V);
 | |
|   return makeVTList(&(*VTList.begin())[0], 2);
 | |
| }
 | |
| SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
 | |
|                                  MVT::ValueType VT3) {
 | |
|   for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
 | |
|        E = VTList.end(); I != E; ++I) {
 | |
|     if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
 | |
|         (*I)[2] == VT3)
 | |
|       return makeVTList(&(*I)[0], 3);
 | |
|   }
 | |
|   std::vector<MVT::ValueType> V;
 | |
|   V.push_back(VT1);
 | |
|   V.push_back(VT2);
 | |
|   V.push_back(VT3);
 | |
|   VTList.push_front(V);
 | |
|   return makeVTList(&(*VTList.begin())[0], 3);
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
 | |
|   switch (NumVTs) {
 | |
|     case 0: assert(0 && "Cannot have nodes without results!");
 | |
|     case 1: return getVTList(VTs[0]);
 | |
|     case 2: return getVTList(VTs[0], VTs[1]);
 | |
|     case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
 | |
|     default: break;
 | |
|   }
 | |
| 
 | |
|   for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
 | |
|        E = VTList.end(); I != E; ++I) {
 | |
|     if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
 | |
|    
 | |
|     bool NoMatch = false;
 | |
|     for (unsigned i = 2; i != NumVTs; ++i)
 | |
|       if (VTs[i] != (*I)[i]) {
 | |
|         NoMatch = true;
 | |
|         break;
 | |
|       }
 | |
|     if (!NoMatch)
 | |
|       return makeVTList(&*I->begin(), NumVTs);
 | |
|   }
 | |
|   
 | |
|   VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
 | |
|   return makeVTList(&*VTList.begin()->begin(), NumVTs);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
 | |
| /// specified operands.  If the resultant node already exists in the DAG,
 | |
| /// this does not modify the specified node, instead it returns the node that
 | |
| /// already exists.  If the resultant node does not exist in the DAG, the
 | |
| /// input node is returned.  As a degenerate case, if you specify the same
 | |
| /// input operands as the node already has, the input node is returned.
 | |
| SDOperand SelectionDAG::
 | |
| UpdateNodeOperands(SDOperand InN, SDOperand Op) {
 | |
|   SDNode *N = InN.Val;
 | |
|   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
 | |
|   
 | |
|   // Check to see if there is no change.
 | |
|   if (Op == N->getOperand(0)) return InN;
 | |
|   
 | |
|   // See if the modified node already exists.
 | |
|   void *InsertPos = 0;
 | |
|   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
 | |
|     return SDOperand(Existing, InN.ResNo);
 | |
|   
 | |
|   // Nope it doesn't.  Remove the node from it's current place in the maps.
 | |
|   if (InsertPos)
 | |
|     RemoveNodeFromCSEMaps(N);
 | |
|   
 | |
|   // Now we update the operands.
 | |
|   N->OperandList[0].getVal()->removeUser(0, N);
 | |
|   N->OperandList[0] = Op;
 | |
|   N->OperandList[0].setUser(N);
 | |
|   Op.Val->addUser(0, N);
 | |
|   
 | |
|   // If this gets put into a CSE map, add it.
 | |
|   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
 | |
|   return InN;
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::
 | |
| UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
 | |
|   SDNode *N = InN.Val;
 | |
|   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
 | |
|   
 | |
|   // Check to see if there is no change.
 | |
|   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
 | |
|     return InN;   // No operands changed, just return the input node.
 | |
|   
 | |
|   // See if the modified node already exists.
 | |
|   void *InsertPos = 0;
 | |
|   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
 | |
|     return SDOperand(Existing, InN.ResNo);
 | |
|   
 | |
|   // Nope it doesn't.  Remove the node from it's current place in the maps.
 | |
|   if (InsertPos)
 | |
|     RemoveNodeFromCSEMaps(N);
 | |
|   
 | |
|   // Now we update the operands.
 | |
|   if (N->OperandList[0] != Op1) {
 | |
|     N->OperandList[0].getVal()->removeUser(0, N);
 | |
|     N->OperandList[0] = Op1;
 | |
|     N->OperandList[0].setUser(N);
 | |
|     Op1.Val->addUser(0, N);
 | |
|   }
 | |
|   if (N->OperandList[1] != Op2) {
 | |
|     N->OperandList[1].getVal()->removeUser(1, N);
 | |
|     N->OperandList[1] = Op2;
 | |
|     N->OperandList[1].setUser(N);
 | |
|     Op2.Val->addUser(1, N);
 | |
|   }
 | |
|   
 | |
|   // If this gets put into a CSE map, add it.
 | |
|   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
 | |
|   return InN;
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::
 | |
| UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
 | |
|   SDOperand Ops[] = { Op1, Op2, Op3 };
 | |
|   return UpdateNodeOperands(N, Ops, 3);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::
 | |
| UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, 
 | |
|                    SDOperand Op3, SDOperand Op4) {
 | |
|   SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
 | |
|   return UpdateNodeOperands(N, Ops, 4);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::
 | |
| UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
 | |
|                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
 | |
|   SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
 | |
|   return UpdateNodeOperands(N, Ops, 5);
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAG::
 | |
| UpdateNodeOperands(SDOperand InN, SDOperandPtr Ops, unsigned NumOps) {
 | |
|   SDNode *N = InN.Val;
 | |
|   assert(N->getNumOperands() == NumOps &&
 | |
|          "Update with wrong number of operands");
 | |
|   
 | |
|   // Check to see if there is no change.
 | |
|   bool AnyChange = false;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     if (Ops[i] != N->getOperand(i)) {
 | |
|       AnyChange = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // No operands changed, just return the input node.
 | |
|   if (!AnyChange) return InN;
 | |
|   
 | |
|   // See if the modified node already exists.
 | |
|   void *InsertPos = 0;
 | |
|   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
 | |
|     return SDOperand(Existing, InN.ResNo);
 | |
|   
 | |
|   // Nope it doesn't.  Remove the node from it's current place in the maps.
 | |
|   if (InsertPos)
 | |
|     RemoveNodeFromCSEMaps(N);
 | |
|   
 | |
|   // Now we update the operands.
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     if (N->OperandList[i] != Ops[i]) {
 | |
|       N->OperandList[i].getVal()->removeUser(i, N);
 | |
|       N->OperandList[i] = Ops[i];
 | |
|       N->OperandList[i].setUser(N);
 | |
|       Ops[i].Val->addUser(i, N);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this gets put into a CSE map, add it.
 | |
|   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
 | |
|   return InN;
 | |
| }
 | |
| 
 | |
| /// MorphNodeTo - This frees the operands of the current node, resets the
 | |
| /// opcode, types, and operands to the specified value.  This should only be
 | |
| /// used by the SelectionDAG class.
 | |
| void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
 | |
|                          SDOperandPtr Ops, unsigned NumOps) {
 | |
|   NodeType = Opc;
 | |
|   ValueList = L.VTs;
 | |
|   NumValues = L.NumVTs;
 | |
|   
 | |
|   // Clear the operands list, updating used nodes to remove this from their
 | |
|   // use list.
 | |
|   for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
 | |
|     I->getVal()->removeUser(std::distance(op_begin(), I), this);
 | |
|   
 | |
|   // If NumOps is larger than the # of operands we currently have, reallocate
 | |
|   // the operand list.
 | |
|   if (NumOps > NumOperands) {
 | |
|     if (OperandsNeedDelete) {
 | |
|       delete [] OperandList;
 | |
|     }
 | |
|     OperandList = new SDUse[NumOps];
 | |
|     OperandsNeedDelete = true;
 | |
|   }
 | |
|   
 | |
|   // Assign the new operands.
 | |
|   NumOperands = NumOps;
 | |
|   
 | |
|   for (unsigned i = 0, e = NumOps; i != e; ++i) {
 | |
|     OperandList[i] = Ops[i];
 | |
|     OperandList[i].setUser(this);
 | |
|     SDNode *N = OperandList[i].getVal();
 | |
|     N->addUser(i, this);
 | |
|     ++N->UsesSize;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// SelectNodeTo - These are used for target selectors to *mutate* the
 | |
| /// specified node to have the specified return type, Target opcode, and
 | |
| /// operands.  Note that target opcodes are stored as
 | |
| /// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
 | |
| ///
 | |
| /// Note that SelectNodeTo returns the resultant node.  If there is already a
 | |
| /// node of the specified opcode and operands, it returns that node instead of
 | |
| /// the current one.
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
 | |
|                                    MVT::ValueType VT) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, (SDOperand*)0, 0);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return ON;
 | |
|    
 | |
|   RemoveNodeFromCSEMaps(N);
 | |
|   
 | |
|   N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, SDOperandPtr(), 0);
 | |
| 
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
 | |
|                                    MVT::ValueType VT, SDOperand Op1) {
 | |
|   // If an identical node already exists, use it.
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDOperand Ops[] = { Op1 };
 | |
|   
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return ON;
 | |
|                                        
 | |
|   RemoveNodeFromCSEMaps(N);
 | |
|   N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
 | |
|                                    MVT::ValueType VT, SDOperand Op1,
 | |
|                                    SDOperand Op2) {
 | |
|   // If an identical node already exists, use it.
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDOperand Ops[] = { Op1, Op2 };
 | |
|   
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return ON;
 | |
|                                        
 | |
|   RemoveNodeFromCSEMaps(N);
 | |
|   
 | |
|   N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
 | |
|   
 | |
|   CSEMap.InsertNode(N, IP);   // Memoize the new node.
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
 | |
|                                    MVT::ValueType VT, SDOperand Op1,
 | |
|                                    SDOperand Op2, SDOperand Op3) {
 | |
|   // If an identical node already exists, use it.
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDOperand Ops[] = { Op1, Op2, Op3 };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return ON;
 | |
|                                        
 | |
|   RemoveNodeFromCSEMaps(N);
 | |
|   
 | |
|   N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
 | |
| 
 | |
|   CSEMap.InsertNode(N, IP);   // Memoize the new node.
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
 | |
|                                    MVT::ValueType VT, SDOperandPtr Ops,
 | |
|                                    unsigned NumOps) {
 | |
|   // If an identical node already exists, use it.
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return ON;
 | |
|                                        
 | |
|   RemoveNodeFromCSEMaps(N);
 | |
|   N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
 | |
|   
 | |
|   CSEMap.InsertNode(N, IP);   // Memoize the new node.
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, 
 | |
|                                    MVT::ValueType VT1, MVT::ValueType VT2,
 | |
|                                    SDOperand Op1, SDOperand Op2) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   FoldingSetNodeID ID;
 | |
|   SDOperand Ops[] = { Op1, Op2 };
 | |
|   AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return ON;
 | |
| 
 | |
|   RemoveNodeFromCSEMaps(N);
 | |
|   N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
 | |
|   CSEMap.InsertNode(N, IP);   // Memoize the new node.
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
 | |
|                                    MVT::ValueType VT1, MVT::ValueType VT2,
 | |
|                                    SDOperand Op1, SDOperand Op2, 
 | |
|                                    SDOperand Op3) {
 | |
|   // If an identical node already exists, use it.
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDOperand Ops[] = { Op1, Op2, Op3 };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return ON;
 | |
| 
 | |
|   RemoveNodeFromCSEMaps(N);
 | |
| 
 | |
|   N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
 | |
|   CSEMap.InsertNode(N, IP);   // Memoize the new node.
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getTargetNode - These are used for target selectors to create a new node
 | |
| /// with specified return type(s), target opcode, and operands.
 | |
| ///
 | |
| /// Note that getTargetNode returns the resultant node.  If there is already a
 | |
| /// node of the specified opcode and operands, it returns that node instead of
 | |
| /// the current one.
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
 | |
|   return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
 | |
|                                     SDOperand Op1) {
 | |
|   return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
 | |
|                                     SDOperand Op1, SDOperand Op2) {
 | |
|   return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
 | |
|                                     SDOperand Op1, SDOperand Op2,
 | |
|                                     SDOperand Op3) {
 | |
|   return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
 | |
|                                     SDOperandPtr Ops, unsigned NumOps) {
 | |
|   return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
 | |
|                                     MVT::ValueType VT2) {
 | |
|   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
 | |
|   SDOperand Op;
 | |
|   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
 | |
|                                     MVT::ValueType VT2, SDOperand Op1) {
 | |
|   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
 | |
|   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
 | |
|                                     MVT::ValueType VT2, SDOperand Op1,
 | |
|                                     SDOperand Op2) {
 | |
|   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
 | |
|   SDOperand Ops[] = { Op1, Op2 };
 | |
|   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
 | |
|                                     MVT::ValueType VT2, SDOperand Op1,
 | |
|                                     SDOperand Op2, SDOperand Op3) {
 | |
|   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
 | |
|   SDOperand Ops[] = { Op1, Op2, Op3 };
 | |
|   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, 
 | |
|                                     MVT::ValueType VT2,
 | |
|                                     SDOperandPtr Ops, unsigned NumOps) {
 | |
|   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
 | |
|   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
 | |
|                                     MVT::ValueType VT2, MVT::ValueType VT3,
 | |
|                                     SDOperand Op1, SDOperand Op2) {
 | |
|   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
 | |
|   SDOperand Ops[] = { Op1, Op2 };
 | |
|   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
 | |
|                                     MVT::ValueType VT2, MVT::ValueType VT3,
 | |
|                                     SDOperand Op1, SDOperand Op2,
 | |
|                                     SDOperand Op3) {
 | |
|   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
 | |
|   SDOperand Ops[] = { Op1, Op2, Op3 };
 | |
|   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, 
 | |
|                                     MVT::ValueType VT2, MVT::ValueType VT3,
 | |
|                                     SDOperandPtr Ops, unsigned NumOps) {
 | |
|   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
 | |
|   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, 
 | |
|                                     MVT::ValueType VT2, MVT::ValueType VT3,
 | |
|                                     MVT::ValueType VT4,
 | |
|                                     SDOperandPtr Ops, unsigned NumOps) {
 | |
|   std::vector<MVT::ValueType> VTList;
 | |
|   VTList.push_back(VT1);
 | |
|   VTList.push_back(VT2);
 | |
|   VTList.push_back(VT3);
 | |
|   VTList.push_back(VT4);
 | |
|   const MVT::ValueType *VTs = getNodeValueTypes(VTList);
 | |
|   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
 | |
|                                     std::vector<MVT::ValueType> &ResultTys,
 | |
|                                     SDOperandPtr Ops, unsigned NumOps) {
 | |
|   const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
 | |
|   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
 | |
|                  Ops, NumOps).Val;
 | |
| }
 | |
| 
 | |
| /// getNodeIfExists - Get the specified node if it's already available, or
 | |
| /// else return NULL.
 | |
| SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
 | |
|                                       SDOperandPtr Ops, unsigned NumOps) {
 | |
|   if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return E;
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
 | |
| /// This can cause recursive merging of nodes in the DAG.
 | |
| ///
 | |
| /// This version assumes From has a single result value.
 | |
| ///
 | |
| void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
 | |
|                                       DAGUpdateListener *UpdateListener) {
 | |
|   SDNode *From = FromN.Val;
 | |
|   assert(From->getNumValues() == 1 && FromN.ResNo == 0 && 
 | |
|          "Cannot replace with this method!");
 | |
|   assert(From != To.Val && "Cannot replace uses of with self");
 | |
| 
 | |
|   while (!From->use_empty()) {
 | |
|     SDNode::use_iterator UI = From->use_begin();
 | |
|     SDNode *U = UI->getUser();
 | |
| 
 | |
|     // This node is about to morph, remove its old self from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(U);
 | |
|     int operandNum = 0;
 | |
|     for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
 | |
|          I != E; ++I, ++operandNum)
 | |
|       if (I->getVal() == From) {
 | |
|         From->removeUser(operandNum, U);
 | |
|         *I = To;
 | |
|         I->setUser(U);
 | |
|         To.Val->addUser(operandNum, U);
 | |
|       }    
 | |
| 
 | |
|     // Now that we have modified U, add it back to the CSE maps.  If it already
 | |
|     // exists there, recursively merge the results together.
 | |
|     if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
 | |
|       ReplaceAllUsesWith(U, Existing, UpdateListener);
 | |
|       // U is now dead.  Inform the listener if it exists and delete it.
 | |
|       if (UpdateListener) 
 | |
|         UpdateListener->NodeDeleted(U);
 | |
|       DeleteNodeNotInCSEMaps(U);
 | |
|     } else {
 | |
|       // If the node doesn't already exist, we updated it.  Inform a listener if
 | |
|       // it exists.
 | |
|       if (UpdateListener) 
 | |
|         UpdateListener->NodeUpdated(U);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
 | |
| /// This can cause recursive merging of nodes in the DAG.
 | |
| ///
 | |
| /// This version assumes From/To have matching types and numbers of result
 | |
| /// values.
 | |
| ///
 | |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
 | |
|                                       DAGUpdateListener *UpdateListener) {
 | |
|   assert(From != To && "Cannot replace uses of with self");
 | |
|   assert(From->getNumValues() == To->getNumValues() &&
 | |
|          "Cannot use this version of ReplaceAllUsesWith!");
 | |
|   if (From->getNumValues() == 1)   // If possible, use the faster version.
 | |
|     return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
 | |
|                               UpdateListener);
 | |
|   
 | |
|   while (!From->use_empty()) {
 | |
|     SDNode::use_iterator UI = From->use_begin();
 | |
|     SDNode *U = UI->getUser();
 | |
| 
 | |
|     // This node is about to morph, remove its old self from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(U);
 | |
|     int operandNum = 0;
 | |
|     for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
 | |
|          I != E; ++I, ++operandNum)
 | |
|       if (I->getVal() == From) {
 | |
|         From->removeUser(operandNum, U);
 | |
|         I->getVal() = To;
 | |
|         To->addUser(operandNum, U);
 | |
|       }
 | |
| 
 | |
|     // Now that we have modified U, add it back to the CSE maps.  If it already
 | |
|     // exists there, recursively merge the results together.
 | |
|     if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
 | |
|       ReplaceAllUsesWith(U, Existing, UpdateListener);
 | |
|       // U is now dead.  Inform the listener if it exists and delete it.
 | |
|       if (UpdateListener) 
 | |
|         UpdateListener->NodeDeleted(U);
 | |
|       DeleteNodeNotInCSEMaps(U);
 | |
|     } else {
 | |
|       // If the node doesn't already exist, we updated it.  Inform a listener if
 | |
|       // it exists.
 | |
|       if (UpdateListener) 
 | |
|         UpdateListener->NodeUpdated(U);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
 | |
| /// This can cause recursive merging of nodes in the DAG.
 | |
| ///
 | |
| /// This version can replace From with any result values.  To must match the
 | |
| /// number and types of values returned by From.
 | |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
 | |
|                                       SDOperandPtr To,
 | |
|                                       DAGUpdateListener *UpdateListener) {
 | |
|   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
 | |
|     return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
 | |
| 
 | |
|   while (!From->use_empty()) {
 | |
|     SDNode::use_iterator UI = From->use_begin();
 | |
|     SDNode *U = UI->getUser();
 | |
| 
 | |
|     // This node is about to morph, remove its old self from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(U);
 | |
|     int operandNum = 0;
 | |
|     for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
 | |
|          I != E; ++I, ++operandNum)
 | |
|       if (I->getVal() == From) {
 | |
|         const SDOperand &ToOp = To[I->getSDOperand().ResNo];
 | |
|         From->removeUser(operandNum, U);
 | |
|         *I = ToOp;
 | |
|         I->setUser(U);
 | |
|         ToOp.Val->addUser(operandNum, U);
 | |
|       }
 | |
| 
 | |
|     // Now that we have modified U, add it back to the CSE maps.  If it already
 | |
|     // exists there, recursively merge the results together.
 | |
|     if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
 | |
|       ReplaceAllUsesWith(U, Existing, UpdateListener);
 | |
|       // U is now dead.  Inform the listener if it exists and delete it.
 | |
|       if (UpdateListener) 
 | |
|         UpdateListener->NodeDeleted(U);
 | |
|       DeleteNodeNotInCSEMaps(U);
 | |
|     } else {
 | |
|       // If the node doesn't already exist, we updated it.  Inform a listener if
 | |
|       // it exists.
 | |
|       if (UpdateListener) 
 | |
|         UpdateListener->NodeUpdated(U);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
 | |
|   /// any deleted nodes from the set passed into its constructor and recursively
 | |
|   /// notifies another update listener if specified.
 | |
|   class ChainedSetUpdaterListener : 
 | |
|   public SelectionDAG::DAGUpdateListener {
 | |
|     SmallSetVector<SDNode*, 16> &Set;
 | |
|     SelectionDAG::DAGUpdateListener *Chain;
 | |
|   public:
 | |
|     ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
 | |
|                               SelectionDAG::DAGUpdateListener *chain)
 | |
|       : Set(set), Chain(chain) {}
 | |
|  
 | |
|     virtual void NodeDeleted(SDNode *N) {
 | |
|       Set.remove(N);
 | |
|       if (Chain) Chain->NodeDeleted(N);
 | |
|     }
 | |
|     virtual void NodeUpdated(SDNode *N) {
 | |
|       if (Chain) Chain->NodeUpdated(N);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
 | |
| /// uses of other values produced by From.Val alone.  The Deleted vector is
 | |
| /// handled the same way as for ReplaceAllUsesWith.
 | |
| void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
 | |
|                                              DAGUpdateListener *UpdateListener){
 | |
|   assert(From != To && "Cannot replace a value with itself");
 | |
|   
 | |
|   // Handle the simple, trivial, case efficiently.
 | |
|   if (From.Val->getNumValues() == 1) {
 | |
|     ReplaceAllUsesWith(From, To, UpdateListener);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (From.use_empty()) return;
 | |
| 
 | |
|   // Get all of the users of From.Val.  We want these in a nice,
 | |
|   // deterministically ordered and uniqued set, so we use a SmallSetVector.
 | |
|   SmallSetVector<SDNode*, 16> Users;
 | |
|   for (SDNode::use_iterator UI = From.Val->use_begin(), 
 | |
|       E = From.Val->use_end(); UI != E; ++UI) {
 | |
|     SDNode *User = UI->getUser();
 | |
|     if (!Users.count(User))
 | |
|       Users.insert(User);
 | |
|   }
 | |
| 
 | |
|   // When one of the recursive merges deletes nodes from the graph, we need to
 | |
|   // make sure that UpdateListener is notified *and* that the node is removed
 | |
|   // from Users if present.  CSUL does this.
 | |
|   ChainedSetUpdaterListener CSUL(Users, UpdateListener);
 | |
|   
 | |
|   while (!Users.empty()) {
 | |
|     // We know that this user uses some value of From.  If it is the right
 | |
|     // value, update it.
 | |
|     SDNode *User = Users.back();
 | |
|     Users.pop_back();
 | |
|     
 | |
|     // Scan for an operand that matches From.
 | |
|     SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
 | |
|     for (; Op != E; ++Op)
 | |
|       if (*Op == From) break;
 | |
|     
 | |
|     // If there are no matches, the user must use some other result of From.
 | |
|     if (Op == E) continue;
 | |
|       
 | |
|     // Okay, we know this user needs to be updated.  Remove its old self
 | |
|     // from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(User);
 | |
|     
 | |
|     // Update all operands that match "From" in case there are multiple uses.
 | |
|     for (; Op != E; ++Op) {
 | |
|       if (*Op == From) {
 | |
|         From.Val->removeUser(Op-User->op_begin(), User);
 | |
|         *Op = To;
 | |
|         Op->setUser(User);
 | |
|         To.Val->addUser(Op-User->op_begin(), User);
 | |
|       }
 | |
|     }
 | |
|                
 | |
|     // Now that we have modified User, add it back to the CSE maps.  If it
 | |
|     // already exists there, recursively merge the results together.
 | |
|     SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
 | |
|     if (!Existing) {
 | |
|       if (UpdateListener) UpdateListener->NodeUpdated(User);
 | |
|       continue;  // Continue on to next user.
 | |
|     }
 | |
|     
 | |
|     // If there was already an existing matching node, use ReplaceAllUsesWith
 | |
|     // to replace the dead one with the existing one.  This can cause
 | |
|     // recursive merging of other unrelated nodes down the line.  The merging
 | |
|     // can cause deletion of nodes that used the old value.  To handle this, we
 | |
|     // use CSUL to remove them from the Users set.
 | |
|     ReplaceAllUsesWith(User, Existing, &CSUL);
 | |
|     
 | |
|     // User is now dead.  Notify a listener if present.
 | |
|     if (UpdateListener) UpdateListener->NodeDeleted(User);
 | |
|     DeleteNodeNotInCSEMaps(User);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AssignNodeIds - Assign a unique node id for each node in the DAG based on
 | |
| /// their allnodes order. It returns the maximum id.
 | |
| unsigned SelectionDAG::AssignNodeIds() {
 | |
|   unsigned Id = 0;
 | |
|   for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
 | |
|     SDNode *N = I;
 | |
|     N->setNodeId(Id++);
 | |
|   }
 | |
|   return Id;
 | |
| }
 | |
| 
 | |
| /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
 | |
| /// based on their topological order. It returns the maximum id and a vector
 | |
| /// of the SDNodes* in assigned order by reference.
 | |
| unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
 | |
|   unsigned DAGSize = AllNodes.size();
 | |
|   std::vector<unsigned> InDegree(DAGSize);
 | |
|   std::vector<SDNode*> Sources;
 | |
| 
 | |
|   // Use a two pass approach to avoid using a std::map which is slow.
 | |
|   unsigned Id = 0;
 | |
|   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
 | |
|     SDNode *N = I;
 | |
|     N->setNodeId(Id++);
 | |
|     unsigned Degree = N->use_size();
 | |
|     InDegree[N->getNodeId()] = Degree;
 | |
|     if (Degree == 0)
 | |
|       Sources.push_back(N);
 | |
|   }
 | |
| 
 | |
|   TopOrder.clear();
 | |
|   while (!Sources.empty()) {
 | |
|     SDNode *N = Sources.back();
 | |
|     Sources.pop_back();
 | |
|     TopOrder.push_back(N);
 | |
|     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
 | |
|       SDNode *P = I->getVal();
 | |
|       unsigned Degree = --InDegree[P->getNodeId()];
 | |
|       if (Degree == 0)
 | |
|         Sources.push_back(P);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Second pass, assign the actual topological order as node ids.
 | |
|   Id = 0;
 | |
|   for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
 | |
|        TI != TE; ++TI)
 | |
|     (*TI)->setNodeId(Id++);
 | |
| 
 | |
|   return Id;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              SDNode Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Out-of-line virtual method to give class a home.
 | |
| void SDNode::ANCHOR() {}
 | |
| void UnarySDNode::ANCHOR() {}
 | |
| void BinarySDNode::ANCHOR() {}
 | |
| void TernarySDNode::ANCHOR() {}
 | |
| void HandleSDNode::ANCHOR() {}
 | |
| void StringSDNode::ANCHOR() {}
 | |
| void ConstantSDNode::ANCHOR() {}
 | |
| void ConstantFPSDNode::ANCHOR() {}
 | |
| void GlobalAddressSDNode::ANCHOR() {}
 | |
| void FrameIndexSDNode::ANCHOR() {}
 | |
| void JumpTableSDNode::ANCHOR() {}
 | |
| void ConstantPoolSDNode::ANCHOR() {}
 | |
| void BasicBlockSDNode::ANCHOR() {}
 | |
| void SrcValueSDNode::ANCHOR() {}
 | |
| void MemOperandSDNode::ANCHOR() {}
 | |
| void RegisterSDNode::ANCHOR() {}
 | |
| void ExternalSymbolSDNode::ANCHOR() {}
 | |
| void CondCodeSDNode::ANCHOR() {}
 | |
| void ARG_FLAGSSDNode::ANCHOR() {}
 | |
| void VTSDNode::ANCHOR() {}
 | |
| void LoadSDNode::ANCHOR() {}
 | |
| void StoreSDNode::ANCHOR() {}
 | |
| void AtomicSDNode::ANCHOR() {}
 | |
| 
 | |
| HandleSDNode::~HandleSDNode() {
 | |
|   SDVTList VTs = { 0, 0 };
 | |
|   MorphNodeTo(ISD::HANDLENODE, VTs, SDOperandPtr(), 0);  // Drops operand uses.
 | |
| }
 | |
| 
 | |
| GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
 | |
|                                          MVT::ValueType VT, int o)
 | |
|   : SDNode(isa<GlobalVariable>(GA) &&
 | |
|            cast<GlobalVariable>(GA)->isThreadLocal() ?
 | |
|            // Thread Local
 | |
|            (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
 | |
|            // Non Thread Local
 | |
|            (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
 | |
|            getSDVTList(VT)), Offset(o) {
 | |
|   TheGlobal = const_cast<GlobalValue*>(GA);
 | |
| }
 | |
| 
 | |
| /// getMemOperand - Return a MachineMemOperand object describing the memory
 | |
| /// reference performed by this load or store.
 | |
| MachineMemOperand LSBaseSDNode::getMemOperand() const {
 | |
|   int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
 | |
|   int Flags =
 | |
|     getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
 | |
|                                MachineMemOperand::MOStore;
 | |
|   if (IsVolatile) Flags |= MachineMemOperand::MOVolatile;
 | |
| 
 | |
|   // Check if the load references a frame index, and does not have
 | |
|   // an SV attached.
 | |
|   const FrameIndexSDNode *FI =
 | |
|     dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
 | |
|   if (!getSrcValue() && FI)
 | |
|     return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
 | |
|                              FI->getIndex(), Size, Alignment);
 | |
|   else
 | |
|     return MachineMemOperand(getSrcValue(), Flags,
 | |
|                              getSrcValueOffset(), Size, Alignment);
 | |
| }
 | |
| 
 | |
| /// Profile - Gather unique data for the node.
 | |
| ///
 | |
| void SDNode::Profile(FoldingSetNodeID &ID) {
 | |
|   AddNodeIDNode(ID, this);
 | |
| }
 | |
| 
 | |
| /// getValueTypeList - Return a pointer to the specified value type.
 | |
| ///
 | |
| const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
 | |
|   if (MVT::isExtendedVT(VT)) {
 | |
|     static std::set<MVT::ValueType> EVTs;
 | |
|     return &(*EVTs.insert(VT).first);
 | |
|   } else {
 | |
|     static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
 | |
|     VTs[VT] = VT;
 | |
|     return &VTs[VT];
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
 | |
| /// indicated value.  This method ignores uses of other values defined by this
 | |
| /// operation.
 | |
| bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
 | |
|   assert(Value < getNumValues() && "Bad value!");
 | |
| 
 | |
|   // If there is only one value, this is easy.
 | |
|   if (getNumValues() == 1)
 | |
|     return use_size() == NUses;
 | |
|   if (use_size() < NUses) return false;
 | |
| 
 | |
|   SDOperand TheValue(const_cast<SDNode *>(this), Value);
 | |
| 
 | |
|   SmallPtrSet<SDNode*, 32> UsersHandled;
 | |
| 
 | |
|   // TODO: Only iterate over uses of a given value of the node
 | |
|   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
 | |
|     if (*UI == TheValue) {
 | |
|       if (NUses == 0)
 | |
|         return false;
 | |
|       --NUses;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Found exactly the right number of uses?
 | |
|   return NUses == 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// hasAnyUseOfValue - Return true if there are any use of the indicated
 | |
| /// value. This method ignores uses of other values defined by this operation.
 | |
| bool SDNode::hasAnyUseOfValue(unsigned Value) const {
 | |
|   assert(Value < getNumValues() && "Bad value!");
 | |
| 
 | |
|   if (use_empty()) return false;
 | |
| 
 | |
|   SDOperand TheValue(const_cast<SDNode *>(this), Value);
 | |
| 
 | |
|   SmallPtrSet<SDNode*, 32> UsersHandled;
 | |
| 
 | |
|   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
 | |
|     SDNode *User = UI->getUser();
 | |
|     if (User->getNumOperands() == 1 ||
 | |
|         UsersHandled.insert(User))     // First time we've seen this?
 | |
|       for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
 | |
|         if (User->getOperand(i) == TheValue) {
 | |
|           return true;
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isOnlyUseOf - Return true if this node is the only use of N.
 | |
| ///
 | |
| bool SDNode::isOnlyUseOf(SDNode *N) const {
 | |
|   bool Seen = false;
 | |
|   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
 | |
|     SDNode *User = I->getUser();
 | |
|     if (User == this)
 | |
|       Seen = true;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return Seen;
 | |
| }
 | |
| 
 | |
| /// isOperand - Return true if this node is an operand of N.
 | |
| ///
 | |
| bool SDOperand::isOperandOf(SDNode *N) const {
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|     if (*this == N->getOperand(i))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SDNode::isOperandOf(SDNode *N) const {
 | |
|   for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
 | |
|     if (this == N->OperandList[i].getVal())
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// reachesChainWithoutSideEffects - Return true if this operand (which must
 | |
| /// be a chain) reaches the specified operand without crossing any 
 | |
| /// side-effecting instructions.  In practice, this looks through token
 | |
| /// factors and non-volatile loads.  In order to remain efficient, this only
 | |
| /// looks a couple of nodes in, it does not do an exhaustive search.
 | |
| bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest, 
 | |
|                                                unsigned Depth) const {
 | |
|   if (*this == Dest) return true;
 | |
|   
 | |
|   // Don't search too deeply, we just want to be able to see through
 | |
|   // TokenFactor's etc.
 | |
|   if (Depth == 0) return false;
 | |
|   
 | |
|   // If this is a token factor, all inputs to the TF happen in parallel.  If any
 | |
|   // of the operands of the TF reach dest, then we can do the xform.
 | |
|   if (getOpcode() == ISD::TokenFactor) {
 | |
|     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|       if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // Loads don't have side effects, look through them.
 | |
|   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
 | |
|     if (!Ld->isVolatile())
 | |
|       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
 | |
|                             SmallPtrSet<SDNode *, 32> &Visited) {
 | |
|   if (found || !Visited.insert(N))
 | |
|     return;
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
 | |
|     SDNode *Op = N->getOperand(i).Val;
 | |
|     if (Op == P) {
 | |
|       found = true;
 | |
|       return;
 | |
|     }
 | |
|     findPredecessor(Op, P, found, Visited);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isPredecessorOf - Return true if this node is a predecessor of N. This node
 | |
| /// is either an operand of N or it can be reached by recursively traversing
 | |
| /// up the operands.
 | |
| /// NOTE: this is an expensive method. Use it carefully.
 | |
| bool SDNode::isPredecessorOf(SDNode *N) const {
 | |
|   SmallPtrSet<SDNode *, 32> Visited;
 | |
|   bool found = false;
 | |
|   findPredecessor(N, this, found, Visited);
 | |
|   return found;
 | |
| }
 | |
| 
 | |
| uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
 | |
|   assert(Num < NumOperands && "Invalid child # of SDNode!");
 | |
|   return cast<ConstantSDNode>(OperandList[Num])->getValue();
 | |
| }
 | |
| 
 | |
| std::string SDNode::getOperationName(const SelectionDAG *G) const {
 | |
|   switch (getOpcode()) {
 | |
|   default:
 | |
|     if (getOpcode() < ISD::BUILTIN_OP_END)
 | |
|       return "<<Unknown DAG Node>>";
 | |
|     else {
 | |
|       if (G) {
 | |
|         if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
 | |
|           if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
 | |
|             return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
 | |
| 
 | |
|         TargetLowering &TLI = G->getTargetLoweringInfo();
 | |
|         const char *Name =
 | |
|           TLI.getTargetNodeName(getOpcode());
 | |
|         if (Name) return Name;
 | |
|       }
 | |
| 
 | |
|       return "<<Unknown Target Node>>";
 | |
|     }
 | |
|    
 | |
|   case ISD::PREFETCH:      return "Prefetch";
 | |
|   case ISD::MEMBARRIER:    return "MemBarrier";
 | |
|   case ISD::ATOMIC_LCS:    return "AtomicLCS";
 | |
|   case ISD::ATOMIC_LAS:    return "AtomicLAS";
 | |
|   case ISD::ATOMIC_SWAP:    return "AtomicSWAP";
 | |
|   case ISD::PCMARKER:      return "PCMarker";
 | |
|   case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
 | |
|   case ISD::SRCVALUE:      return "SrcValue";
 | |
|   case ISD::MEMOPERAND:    return "MemOperand";
 | |
|   case ISD::EntryToken:    return "EntryToken";
 | |
|   case ISD::TokenFactor:   return "TokenFactor";
 | |
|   case ISD::AssertSext:    return "AssertSext";
 | |
|   case ISD::AssertZext:    return "AssertZext";
 | |
| 
 | |
|   case ISD::STRING:        return "String";
 | |
|   case ISD::BasicBlock:    return "BasicBlock";
 | |
|   case ISD::ARG_FLAGS:     return "ArgFlags";
 | |
|   case ISD::VALUETYPE:     return "ValueType";
 | |
|   case ISD::Register:      return "Register";
 | |
| 
 | |
|   case ISD::Constant:      return "Constant";
 | |
|   case ISD::ConstantFP:    return "ConstantFP";
 | |
|   case ISD::GlobalAddress: return "GlobalAddress";
 | |
|   case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
 | |
|   case ISD::FrameIndex:    return "FrameIndex";
 | |
|   case ISD::JumpTable:     return "JumpTable";
 | |
|   case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
 | |
|   case ISD::RETURNADDR: return "RETURNADDR";
 | |
|   case ISD::FRAMEADDR: return "FRAMEADDR";
 | |
|   case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
 | |
|   case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
 | |
|   case ISD::EHSELECTION: return "EHSELECTION";
 | |
|   case ISD::EH_RETURN: return "EH_RETURN";
 | |
|   case ISD::ConstantPool:  return "ConstantPool";
 | |
|   case ISD::ExternalSymbol: return "ExternalSymbol";
 | |
|   case ISD::INTRINSIC_WO_CHAIN: {
 | |
|     unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
 | |
|     return Intrinsic::getName((Intrinsic::ID)IID);
 | |
|   }
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|   case ISD::INTRINSIC_W_CHAIN: {
 | |
|     unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
 | |
|     return Intrinsic::getName((Intrinsic::ID)IID);
 | |
|   }
 | |
| 
 | |
|   case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
 | |
|   case ISD::TargetConstant: return "TargetConstant";
 | |
|   case ISD::TargetConstantFP:return "TargetConstantFP";
 | |
|   case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
 | |
|   case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
 | |
|   case ISD::TargetFrameIndex: return "TargetFrameIndex";
 | |
|   case ISD::TargetJumpTable:  return "TargetJumpTable";
 | |
|   case ISD::TargetConstantPool:  return "TargetConstantPool";
 | |
|   case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
 | |
| 
 | |
|   case ISD::CopyToReg:     return "CopyToReg";
 | |
|   case ISD::CopyFromReg:   return "CopyFromReg";
 | |
|   case ISD::UNDEF:         return "undef";
 | |
|   case ISD::MERGE_VALUES:  return "merge_values";
 | |
|   case ISD::INLINEASM:     return "inlineasm";
 | |
|   case ISD::LABEL:         return "label";
 | |
|   case ISD::DECLARE:       return "declare";
 | |
|   case ISD::HANDLENODE:    return "handlenode";
 | |
|   case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
 | |
|   case ISD::CALL:          return "call";
 | |
|     
 | |
|   // Unary operators
 | |
|   case ISD::FABS:   return "fabs";
 | |
|   case ISD::FNEG:   return "fneg";
 | |
|   case ISD::FSQRT:  return "fsqrt";
 | |
|   case ISD::FSIN:   return "fsin";
 | |
|   case ISD::FCOS:   return "fcos";
 | |
|   case ISD::FPOWI:  return "fpowi";
 | |
|   case ISD::FPOW:   return "fpow";
 | |
| 
 | |
|   // Binary operators
 | |
|   case ISD::ADD:    return "add";
 | |
|   case ISD::SUB:    return "sub";
 | |
|   case ISD::MUL:    return "mul";
 | |
|   case ISD::MULHU:  return "mulhu";
 | |
|   case ISD::MULHS:  return "mulhs";
 | |
|   case ISD::SDIV:   return "sdiv";
 | |
|   case ISD::UDIV:   return "udiv";
 | |
|   case ISD::SREM:   return "srem";
 | |
|   case ISD::UREM:   return "urem";
 | |
|   case ISD::SMUL_LOHI:  return "smul_lohi";
 | |
|   case ISD::UMUL_LOHI:  return "umul_lohi";
 | |
|   case ISD::SDIVREM:    return "sdivrem";
 | |
|   case ISD::UDIVREM:    return "divrem";
 | |
|   case ISD::AND:    return "and";
 | |
|   case ISD::OR:     return "or";
 | |
|   case ISD::XOR:    return "xor";
 | |
|   case ISD::SHL:    return "shl";
 | |
|   case ISD::SRA:    return "sra";
 | |
|   case ISD::SRL:    return "srl";
 | |
|   case ISD::ROTL:   return "rotl";
 | |
|   case ISD::ROTR:   return "rotr";
 | |
|   case ISD::FADD:   return "fadd";
 | |
|   case ISD::FSUB:   return "fsub";
 | |
|   case ISD::FMUL:   return "fmul";
 | |
|   case ISD::FDIV:   return "fdiv";
 | |
|   case ISD::FREM:   return "frem";
 | |
|   case ISD::FCOPYSIGN: return "fcopysign";
 | |
|   case ISD::FGETSIGN:  return "fgetsign";
 | |
| 
 | |
|   case ISD::SETCC:       return "setcc";
 | |
|   case ISD::SELECT:      return "select";
 | |
|   case ISD::SELECT_CC:   return "select_cc";
 | |
|   case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
 | |
|   case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
 | |
|   case ISD::CONCAT_VECTORS:      return "concat_vectors";
 | |
|   case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
 | |
|   case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
 | |
|   case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
 | |
|   case ISD::CARRY_FALSE:         return "carry_false";
 | |
|   case ISD::ADDC:        return "addc";
 | |
|   case ISD::ADDE:        return "adde";
 | |
|   case ISD::SUBC:        return "subc";
 | |
|   case ISD::SUBE:        return "sube";
 | |
|   case ISD::SHL_PARTS:   return "shl_parts";
 | |
|   case ISD::SRA_PARTS:   return "sra_parts";
 | |
|   case ISD::SRL_PARTS:   return "srl_parts";
 | |
|   
 | |
|   case ISD::EXTRACT_SUBREG:     return "extract_subreg";
 | |
|   case ISD::INSERT_SUBREG:      return "insert_subreg";
 | |
|   
 | |
|   // Conversion operators.
 | |
|   case ISD::SIGN_EXTEND: return "sign_extend";
 | |
|   case ISD::ZERO_EXTEND: return "zero_extend";
 | |
|   case ISD::ANY_EXTEND:  return "any_extend";
 | |
|   case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
 | |
|   case ISD::TRUNCATE:    return "truncate";
 | |
|   case ISD::FP_ROUND:    return "fp_round";
 | |
|   case ISD::FLT_ROUNDS_: return "flt_rounds";
 | |
|   case ISD::FP_ROUND_INREG: return "fp_round_inreg";
 | |
|   case ISD::FP_EXTEND:   return "fp_extend";
 | |
| 
 | |
|   case ISD::SINT_TO_FP:  return "sint_to_fp";
 | |
|   case ISD::UINT_TO_FP:  return "uint_to_fp";
 | |
|   case ISD::FP_TO_SINT:  return "fp_to_sint";
 | |
|   case ISD::FP_TO_UINT:  return "fp_to_uint";
 | |
|   case ISD::BIT_CONVERT: return "bit_convert";
 | |
| 
 | |
|     // Control flow instructions
 | |
|   case ISD::BR:      return "br";
 | |
|   case ISD::BRIND:   return "brind";
 | |
|   case ISD::BR_JT:   return "br_jt";
 | |
|   case ISD::BRCOND:  return "brcond";
 | |
|   case ISD::BR_CC:   return "br_cc";
 | |
|   case ISD::RET:     return "ret";
 | |
|   case ISD::CALLSEQ_START:  return "callseq_start";
 | |
|   case ISD::CALLSEQ_END:    return "callseq_end";
 | |
| 
 | |
|     // Other operators
 | |
|   case ISD::LOAD:               return "load";
 | |
|   case ISD::STORE:              return "store";
 | |
|   case ISD::VAARG:              return "vaarg";
 | |
|   case ISD::VACOPY:             return "vacopy";
 | |
|   case ISD::VAEND:              return "vaend";
 | |
|   case ISD::VASTART:            return "vastart";
 | |
|   case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
 | |
|   case ISD::EXTRACT_ELEMENT:    return "extract_element";
 | |
|   case ISD::BUILD_PAIR:         return "build_pair";
 | |
|   case ISD::STACKSAVE:          return "stacksave";
 | |
|   case ISD::STACKRESTORE:       return "stackrestore";
 | |
|   case ISD::TRAP:               return "trap";
 | |
| 
 | |
|   // Bit manipulation
 | |
|   case ISD::BSWAP:   return "bswap";
 | |
|   case ISD::CTPOP:   return "ctpop";
 | |
|   case ISD::CTTZ:    return "cttz";
 | |
|   case ISD::CTLZ:    return "ctlz";
 | |
| 
 | |
|   // Debug info
 | |
|   case ISD::LOCATION: return "location";
 | |
|   case ISD::DEBUG_LOC: return "debug_loc";
 | |
| 
 | |
|   // Trampolines
 | |
|   case ISD::TRAMPOLINE: return "trampoline";
 | |
| 
 | |
|   case ISD::CONDCODE:
 | |
|     switch (cast<CondCodeSDNode>(this)->get()) {
 | |
|     default: assert(0 && "Unknown setcc condition!");
 | |
|     case ISD::SETOEQ:  return "setoeq";
 | |
|     case ISD::SETOGT:  return "setogt";
 | |
|     case ISD::SETOGE:  return "setoge";
 | |
|     case ISD::SETOLT:  return "setolt";
 | |
|     case ISD::SETOLE:  return "setole";
 | |
|     case ISD::SETONE:  return "setone";
 | |
| 
 | |
|     case ISD::SETO:    return "seto";
 | |
|     case ISD::SETUO:   return "setuo";
 | |
|     case ISD::SETUEQ:  return "setue";
 | |
|     case ISD::SETUGT:  return "setugt";
 | |
|     case ISD::SETUGE:  return "setuge";
 | |
|     case ISD::SETULT:  return "setult";
 | |
|     case ISD::SETULE:  return "setule";
 | |
|     case ISD::SETUNE:  return "setune";
 | |
| 
 | |
|     case ISD::SETEQ:   return "seteq";
 | |
|     case ISD::SETGT:   return "setgt";
 | |
|     case ISD::SETGE:   return "setge";
 | |
|     case ISD::SETLT:   return "setlt";
 | |
|     case ISD::SETLE:   return "setle";
 | |
|     case ISD::SETNE:   return "setne";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
 | |
|   switch (AM) {
 | |
|   default:
 | |
|     return "";
 | |
|   case ISD::PRE_INC:
 | |
|     return "<pre-inc>";
 | |
|   case ISD::PRE_DEC:
 | |
|     return "<pre-dec>";
 | |
|   case ISD::POST_INC:
 | |
|     return "<post-inc>";
 | |
|   case ISD::POST_DEC:
 | |
|     return "<post-dec>";
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::string ISD::ArgFlagsTy::getArgFlagsString() {
 | |
|   std::string S = "< ";
 | |
| 
 | |
|   if (isZExt())
 | |
|     S += "zext ";
 | |
|   if (isSExt())
 | |
|     S += "sext ";
 | |
|   if (isInReg())
 | |
|     S += "inreg ";
 | |
|   if (isSRet())
 | |
|     S += "sret ";
 | |
|   if (isByVal())
 | |
|     S += "byval ";
 | |
|   if (isNest())
 | |
|     S += "nest ";
 | |
|   if (getByValAlign())
 | |
|     S += "byval-align:" + utostr(getByValAlign()) + " ";
 | |
|   if (getOrigAlign())
 | |
|     S += "orig-align:" + utostr(getOrigAlign()) + " ";
 | |
|   if (getByValSize())
 | |
|     S += "byval-size:" + utostr(getByValSize()) + " ";
 | |
|   return S + ">";
 | |
| }
 | |
| 
 | |
| void SDNode::dump() const { dump(0); }
 | |
| void SDNode::dump(const SelectionDAG *G) const {
 | |
|   cerr << (void*)this << ": ";
 | |
| 
 | |
|   for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
 | |
|     if (i) cerr << ",";
 | |
|     if (getValueType(i) == MVT::Other)
 | |
|       cerr << "ch";
 | |
|     else
 | |
|       cerr << MVT::getValueTypeString(getValueType(i));
 | |
|   }
 | |
|   cerr << " = " << getOperationName(G);
 | |
| 
 | |
|   cerr << " ";
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     if (i) cerr << ", ";
 | |
|     cerr << (void*)getOperand(i).Val;
 | |
|     if (unsigned RN = getOperand(i).ResNo)
 | |
|       cerr << ":" << RN;
 | |
|   }
 | |
| 
 | |
|   if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
 | |
|     SDNode *Mask = getOperand(2).Val;
 | |
|     cerr << "<";
 | |
|     for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
 | |
|       if (i) cerr << ",";
 | |
|       if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
 | |
|         cerr << "u";
 | |
|       else
 | |
|         cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
 | |
|     }
 | |
|     cerr << ">";
 | |
|   }
 | |
| 
 | |
|   if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
 | |
|     cerr << "<" << CSDN->getValue() << ">";
 | |
|   } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
 | |
|     if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
 | |
|       cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
 | |
|     else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
 | |
|       cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
 | |
|     else {
 | |
|       cerr << "<APFloat(";
 | |
|       CSDN->getValueAPF().convertToAPInt().dump();
 | |
|       cerr << ")>";
 | |
|     }
 | |
|   } else if (const GlobalAddressSDNode *GADN =
 | |
|              dyn_cast<GlobalAddressSDNode>(this)) {
 | |
|     int offset = GADN->getOffset();
 | |
|     cerr << "<";
 | |
|     WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
 | |
|     if (offset > 0)
 | |
|       cerr << " + " << offset;
 | |
|     else
 | |
|       cerr << " " << offset;
 | |
|   } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
 | |
|     cerr << "<" << FIDN->getIndex() << ">";
 | |
|   } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
 | |
|     cerr << "<" << JTDN->getIndex() << ">";
 | |
|   } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
 | |
|     int offset = CP->getOffset();
 | |
|     if (CP->isMachineConstantPoolEntry())
 | |
|       cerr << "<" << *CP->getMachineCPVal() << ">";
 | |
|     else
 | |
|       cerr << "<" << *CP->getConstVal() << ">";
 | |
|     if (offset > 0)
 | |
|       cerr << " + " << offset;
 | |
|     else
 | |
|       cerr << " " << offset;
 | |
|   } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
 | |
|     cerr << "<";
 | |
|     const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
 | |
|     if (LBB)
 | |
|       cerr << LBB->getName() << " ";
 | |
|     cerr << (const void*)BBDN->getBasicBlock() << ">";
 | |
|   } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
 | |
|     if (G && R->getReg() &&
 | |
|         TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
 | |
|       cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
 | |
|     } else {
 | |
|       cerr << " #" << R->getReg();
 | |
|     }
 | |
|   } else if (const ExternalSymbolSDNode *ES =
 | |
|              dyn_cast<ExternalSymbolSDNode>(this)) {
 | |
|     cerr << "'" << ES->getSymbol() << "'";
 | |
|   } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
 | |
|     if (M->getValue())
 | |
|       cerr << "<" << M->getValue() << ">";
 | |
|     else
 | |
|       cerr << "<null>";
 | |
|   } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
 | |
|     if (M->MO.getValue())
 | |
|       cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
 | |
|     else
 | |
|       cerr << "<null:" << M->MO.getOffset() << ">";
 | |
|   } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
 | |
|     cerr << N->getArgFlags().getArgFlagsString();
 | |
|   } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
 | |
|     cerr << ":" << MVT::getValueTypeString(N->getVT());
 | |
|   } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
 | |
|     const Value *SrcValue = LD->getSrcValue();
 | |
|     int SrcOffset = LD->getSrcValueOffset();
 | |
|     cerr << " <";
 | |
|     if (SrcValue)
 | |
|       cerr << SrcValue;
 | |
|     else
 | |
|       cerr << "null";
 | |
|     cerr << ":" << SrcOffset << ">";
 | |
| 
 | |
|     bool doExt = true;
 | |
|     switch (LD->getExtensionType()) {
 | |
|     default: doExt = false; break;
 | |
|     case ISD::EXTLOAD:
 | |
|       cerr << " <anyext ";
 | |
|       break;
 | |
|     case ISD::SEXTLOAD:
 | |
|       cerr << " <sext ";
 | |
|       break;
 | |
|     case ISD::ZEXTLOAD:
 | |
|       cerr << " <zext ";
 | |
|       break;
 | |
|     }
 | |
|     if (doExt)
 | |
|       cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
 | |
| 
 | |
|     const char *AM = getIndexedModeName(LD->getAddressingMode());
 | |
|     if (*AM)
 | |
|       cerr << " " << AM;
 | |
|     if (LD->isVolatile())
 | |
|       cerr << " <volatile>";
 | |
|     cerr << " alignment=" << LD->getAlignment();
 | |
|   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
 | |
|     const Value *SrcValue = ST->getSrcValue();
 | |
|     int SrcOffset = ST->getSrcValueOffset();
 | |
|     cerr << " <";
 | |
|     if (SrcValue)
 | |
|       cerr << SrcValue;
 | |
|     else
 | |
|       cerr << "null";
 | |
|     cerr << ":" << SrcOffset << ">";
 | |
| 
 | |
|     if (ST->isTruncatingStore())
 | |
|       cerr << " <trunc "
 | |
|            << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
 | |
| 
 | |
|     const char *AM = getIndexedModeName(ST->getAddressingMode());
 | |
|     if (*AM)
 | |
|       cerr << " " << AM;
 | |
|     if (ST->isVolatile())
 | |
|       cerr << " <volatile>";
 | |
|     cerr << " alignment=" << ST->getAlignment();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|     if (N->getOperand(i).Val->hasOneUse())
 | |
|       DumpNodes(N->getOperand(i).Val, indent+2, G);
 | |
|     else
 | |
|       cerr << "\n" << std::string(indent+2, ' ')
 | |
|            << (void*)N->getOperand(i).Val << ": <multiple use>";
 | |
| 
 | |
| 
 | |
|   cerr << "\n" << std::string(indent, ' ');
 | |
|   N->dump(G);
 | |
| }
 | |
| 
 | |
| void SelectionDAG::dump() const {
 | |
|   cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
 | |
|   std::vector<const SDNode*> Nodes;
 | |
|   for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
 | |
|        I != E; ++I)
 | |
|     Nodes.push_back(I);
 | |
|   
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
| 
 | |
|   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
 | |
|     if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
 | |
|       DumpNodes(Nodes[i], 2, this);
 | |
|   }
 | |
| 
 | |
|   if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
 | |
| 
 | |
|   cerr << "\n\n";
 | |
| }
 | |
| 
 | |
| const Type *ConstantPoolSDNode::getType() const {
 | |
|   if (isMachineConstantPoolEntry())
 | |
|     return Val.MachineCPVal->getType();
 | |
|   return Val.ConstVal->getType();
 | |
| }
 |