mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21427 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			333 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Represent a range of possible values that may occur when the program is run
 | 
						|
// for an integral value.  This keeps track of a lower and upper bound for the
 | 
						|
// constant, which MAY wrap around the end of the numeric range.  To do this, it
 | 
						|
// keeps track of a [lower, upper) bound, which specifies an interval just like
 | 
						|
// STL iterators.  When used with boolean values, the following are important
 | 
						|
// ranges (other integral ranges use min/max values for special range values):
 | 
						|
//
 | 
						|
//  [F, F) = {}     = Empty set
 | 
						|
//  [T, F) = {T}
 | 
						|
//  [F, T) = {F}
 | 
						|
//  [T, T) = {F, T} = Full set
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Support/ConstantRange.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instruction.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static ConstantIntegral *Next(ConstantIntegral *CI) {
 | 
						|
  if (CI->getType() == Type::BoolTy)
 | 
						|
    return CI == ConstantBool::True ? ConstantBool::False : ConstantBool::True;
 | 
						|
 | 
						|
  Constant *Result = ConstantExpr::getAdd(CI,
 | 
						|
                                          ConstantInt::get(CI->getType(), 1));
 | 
						|
  return cast<ConstantIntegral>(Result);
 | 
						|
}
 | 
						|
 | 
						|
static bool LT(ConstantIntegral *A, ConstantIntegral *B) {
 | 
						|
  Constant *C = ConstantExpr::getSetLT(A, B);
 | 
						|
  assert(isa<ConstantBool>(C) && "Constant folding of integrals not impl??");
 | 
						|
  return cast<ConstantBool>(C)->getValue();
 | 
						|
}
 | 
						|
 | 
						|
static bool LTE(ConstantIntegral *A, ConstantIntegral *B) {
 | 
						|
  Constant *C = ConstantExpr::getSetLE(A, B);
 | 
						|
  assert(isa<ConstantBool>(C) && "Constant folding of integrals not impl??");
 | 
						|
  return cast<ConstantBool>(C)->getValue();
 | 
						|
}
 | 
						|
 | 
						|
static bool GT(ConstantIntegral *A, ConstantIntegral *B) { return LT(B, A); }
 | 
						|
 | 
						|
static ConstantIntegral *Min(ConstantIntegral *A, ConstantIntegral *B) {
 | 
						|
  return LT(A, B) ? A : B;
 | 
						|
}
 | 
						|
static ConstantIntegral *Max(ConstantIntegral *A, ConstantIntegral *B) {
 | 
						|
  return GT(A, B) ? A : B;
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize a full (the default) or empty set for the specified type.
 | 
						|
///
 | 
						|
ConstantRange::ConstantRange(const Type *Ty, bool Full) {
 | 
						|
  assert(Ty->isIntegral() &&
 | 
						|
         "Cannot make constant range of non-integral type!");
 | 
						|
  if (Full)
 | 
						|
    Lower = Upper = ConstantIntegral::getMaxValue(Ty);
 | 
						|
  else
 | 
						|
    Lower = Upper = ConstantIntegral::getMinValue(Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize a range to hold the single specified value.
 | 
						|
///
 | 
						|
ConstantRange::ConstantRange(Constant *V)
 | 
						|
  : Lower(cast<ConstantIntegral>(V)), Upper(Next(cast<ConstantIntegral>(V))) {
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize a range of values explicitly... this will assert out if
 | 
						|
/// Lower==Upper and Lower != Min or Max for its type (or if the two constants
 | 
						|
/// have different types)
 | 
						|
///
 | 
						|
ConstantRange::ConstantRange(Constant *L, Constant *U)
 | 
						|
  : Lower(cast<ConstantIntegral>(L)), Upper(cast<ConstantIntegral>(U)) {
 | 
						|
  assert(Lower->getType() == Upper->getType() &&
 | 
						|
         "Incompatible types for ConstantRange!");
 | 
						|
 | 
						|
  // Make sure that if L & U are equal that they are either Min or Max...
 | 
						|
  assert((L != U || (L == ConstantIntegral::getMaxValue(L->getType()) ||
 | 
						|
                     L == ConstantIntegral::getMinValue(L->getType()))) &&
 | 
						|
         "Lower == Upper, but they aren't min or max for type!");
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize a set of values that all satisfy the condition with C.
 | 
						|
///
 | 
						|
ConstantRange::ConstantRange(unsigned SetCCOpcode, ConstantIntegral *C) {
 | 
						|
  switch (SetCCOpcode) {
 | 
						|
  default: assert(0 && "Invalid SetCC opcode to ConstantRange ctor!");
 | 
						|
  case Instruction::SetEQ: Lower = C; Upper = Next(C); return;
 | 
						|
  case Instruction::SetNE: Upper = C; Lower = Next(C); return;
 | 
						|
  case Instruction::SetLT:
 | 
						|
    Lower = ConstantIntegral::getMinValue(C->getType());
 | 
						|
    Upper = C;
 | 
						|
    return;
 | 
						|
  case Instruction::SetGT:
 | 
						|
    Lower = Next(C);
 | 
						|
    Upper = ConstantIntegral::getMinValue(C->getType());  // Min = Next(Max)
 | 
						|
    return;
 | 
						|
  case Instruction::SetLE:
 | 
						|
    Lower = ConstantIntegral::getMinValue(C->getType());
 | 
						|
    Upper = Next(C);
 | 
						|
    return;
 | 
						|
  case Instruction::SetGE:
 | 
						|
    Lower = C;
 | 
						|
    Upper = ConstantIntegral::getMinValue(C->getType());  // Min = Next(Max)
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getType - Return the LLVM data type of this range.
 | 
						|
///
 | 
						|
const Type *ConstantRange::getType() const { return Lower->getType(); }
 | 
						|
 | 
						|
/// isFullSet - Return true if this set contains all of the elements possible
 | 
						|
/// for this data-type
 | 
						|
bool ConstantRange::isFullSet() const {
 | 
						|
  return Lower == Upper && Lower == ConstantIntegral::getMaxValue(getType());
 | 
						|
}
 | 
						|
 | 
						|
/// isEmptySet - Return true if this set contains no members.
 | 
						|
///
 | 
						|
bool ConstantRange::isEmptySet() const {
 | 
						|
  return Lower == Upper && Lower == ConstantIntegral::getMinValue(getType());
 | 
						|
}
 | 
						|
 | 
						|
/// isWrappedSet - Return true if this set wraps around the top of the range,
 | 
						|
/// for example: [100, 8)
 | 
						|
///
 | 
						|
bool ConstantRange::isWrappedSet() const {
 | 
						|
  return GT(Lower, Upper);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getSingleElement - If this set contains a single element, return it,
 | 
						|
/// otherwise return null.
 | 
						|
ConstantIntegral *ConstantRange::getSingleElement() const {
 | 
						|
  if (Upper == Next(Lower))  // Is it a single element range?
 | 
						|
    return Lower;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getSetSize - Return the number of elements in this set.
 | 
						|
///
 | 
						|
uint64_t ConstantRange::getSetSize() const {
 | 
						|
  if (isEmptySet()) return 0;
 | 
						|
  if (getType() == Type::BoolTy) {
 | 
						|
    if (Lower != Upper)  // One of T or F in the set...
 | 
						|
      return 1;
 | 
						|
    return 2;            // Must be full set...
 | 
						|
  }
 | 
						|
 | 
						|
  // Simply subtract the bounds...
 | 
						|
  Constant *Result = ConstantExpr::getSub(Upper, Lower);
 | 
						|
  return cast<ConstantInt>(Result)->getRawValue();
 | 
						|
}
 | 
						|
 | 
						|
/// contains - Return true if the specified value is in the set.
 | 
						|
///
 | 
						|
bool ConstantRange::contains(ConstantInt *Val) const {
 | 
						|
  if (Lower == Upper) {
 | 
						|
    if (isFullSet()) return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isWrappedSet())
 | 
						|
    return LTE(Lower, Val) && LT(Val, Upper);
 | 
						|
  return LTE(Lower, Val) || LT(Val, Upper);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// subtract - Subtract the specified constant from the endpoints of this
 | 
						|
/// constant range.
 | 
						|
ConstantRange ConstantRange::subtract(ConstantInt *CI) const {
 | 
						|
  assert(CI->getType() == getType() && getType()->isInteger() &&
 | 
						|
         "Cannot subtract from different type range or non-integer!");
 | 
						|
  // If the set is empty or full, don't modify the endpoints.
 | 
						|
  if (Lower == Upper) return *this;
 | 
						|
  return ConstantRange(ConstantExpr::getSub(Lower, CI),
 | 
						|
                       ConstantExpr::getSub(Upper, CI));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// intersect1Wrapped - This helper function is used to intersect two ranges when
 | 
						|
// it is known that LHS is wrapped and RHS isn't.
 | 
						|
//
 | 
						|
static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
 | 
						|
                                       const ConstantRange &RHS) {
 | 
						|
  assert(LHS.isWrappedSet() && !RHS.isWrappedSet());
 | 
						|
 | 
						|
  // Check to see if we overlap on the Left side of RHS...
 | 
						|
  //
 | 
						|
  if (LT(RHS.getLower(), LHS.getUpper())) {
 | 
						|
    // We do overlap on the left side of RHS, see if we overlap on the right of
 | 
						|
    // RHS...
 | 
						|
    if (GT(RHS.getUpper(), LHS.getLower())) {
 | 
						|
      // Ok, the result overlaps on both the left and right sides.  See if the
 | 
						|
      // resultant interval will be smaller if we wrap or not...
 | 
						|
      //
 | 
						|
      if (LHS.getSetSize() < RHS.getSetSize())
 | 
						|
        return LHS;
 | 
						|
      else
 | 
						|
        return RHS;
 | 
						|
 | 
						|
    } else {
 | 
						|
      // No overlap on the right, just on the left.
 | 
						|
      return ConstantRange(RHS.getLower(), LHS.getUpper());
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    // We don't overlap on the left side of RHS, see if we overlap on the right
 | 
						|
    // of RHS...
 | 
						|
    if (GT(RHS.getUpper(), LHS.getLower())) {
 | 
						|
      // Simple overlap...
 | 
						|
      return ConstantRange(LHS.getLower(), RHS.getUpper());
 | 
						|
    } else {
 | 
						|
      // No overlap...
 | 
						|
      return ConstantRange(LHS.getType(), false);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// intersect - Return the range that results from the intersection of this
 | 
						|
/// range with another range.
 | 
						|
///
 | 
						|
ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
 | 
						|
  assert(getType() == CR.getType() && "ConstantRange types don't agree!");
 | 
						|
  // Handle common special cases
 | 
						|
  if (isEmptySet() || CR.isFullSet())  return *this;
 | 
						|
  if (isFullSet()  || CR.isEmptySet()) return CR;
 | 
						|
 | 
						|
  if (!isWrappedSet()) {
 | 
						|
    if (!CR.isWrappedSet()) {
 | 
						|
      ConstantIntegral *L = Max(Lower, CR.Lower);
 | 
						|
      ConstantIntegral *U = Min(Upper, CR.Upper);
 | 
						|
 | 
						|
      if (LT(L, U))  // If range isn't empty...
 | 
						|
        return ConstantRange(L, U);
 | 
						|
      else
 | 
						|
        return ConstantRange(getType(), false);  // Otherwise, return empty set
 | 
						|
    } else
 | 
						|
      return intersect1Wrapped(CR, *this);
 | 
						|
  } else {   // We know "this" is wrapped...
 | 
						|
    if (!CR.isWrappedSet())
 | 
						|
      return intersect1Wrapped(*this, CR);
 | 
						|
    else {
 | 
						|
      // Both ranges are wrapped...
 | 
						|
      ConstantIntegral *L = Max(Lower, CR.Lower);
 | 
						|
      ConstantIntegral *U = Min(Upper, CR.Upper);
 | 
						|
      return ConstantRange(L, U);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
/// union - Return the range that results from the union of this range with
 | 
						|
/// another range.  The resultant range is guaranteed to include the elements of
 | 
						|
/// both sets, but may contain more.  For example, [3, 9) union [12,15) is [3,
 | 
						|
/// 15), which includes 9, 10, and 11, which were not included in either set
 | 
						|
/// before.
 | 
						|
///
 | 
						|
ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
 | 
						|
  assert(getType() == CR.getType() && "ConstantRange types don't agree!");
 | 
						|
 | 
						|
  assert(0 && "Range union not implemented yet!");
 | 
						|
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
/// zeroExtend - Return a new range in the specified integer type, which must
 | 
						|
/// be strictly larger than the current type.  The returned range will
 | 
						|
/// correspond to the possible range of values if the source range had been
 | 
						|
/// zero extended.
 | 
						|
ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
 | 
						|
  assert(getLower()->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
 | 
						|
         "Not a value extension");
 | 
						|
  if (isFullSet()) {
 | 
						|
    // Change a source full set into [0, 1 << 8*numbytes)
 | 
						|
    unsigned SrcTySize = getLower()->getType()->getPrimitiveSize();
 | 
						|
    return ConstantRange(Constant::getNullValue(Ty),
 | 
						|
                         ConstantUInt::get(Ty, 1ULL << SrcTySize*8));
 | 
						|
  }
 | 
						|
 | 
						|
  Constant *Lower = getLower();
 | 
						|
  Constant *Upper = getUpper();
 | 
						|
  if (Lower->getType()->isInteger() && !Lower->getType()->isUnsigned()) {
 | 
						|
    // Ensure we are doing a ZERO extension even if the input range is signed.
 | 
						|
    Lower = ConstantExpr::getCast(Lower, Ty->getUnsignedVersion());
 | 
						|
    Upper = ConstantExpr::getCast(Upper, Ty->getUnsignedVersion());
 | 
						|
  }
 | 
						|
 | 
						|
  return ConstantRange(ConstantExpr::getCast(Lower, Ty),
 | 
						|
                       ConstantExpr::getCast(Upper, Ty));
 | 
						|
}
 | 
						|
 | 
						|
/// truncate - Return a new range in the specified integer type, which must be
 | 
						|
/// strictly smaller than the current type.  The returned range will
 | 
						|
/// correspond to the possible range of values if the source range had been
 | 
						|
/// truncated to the specified type.
 | 
						|
ConstantRange ConstantRange::truncate(const Type *Ty) const {
 | 
						|
  assert(getLower()->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
 | 
						|
         "Not a value truncation");
 | 
						|
  uint64_t Size = 1ULL << Ty->getPrimitiveSize()*8;
 | 
						|
  if (isFullSet() || getSetSize() >= Size)
 | 
						|
    return ConstantRange(getType());
 | 
						|
 | 
						|
  return ConstantRange(ConstantExpr::getCast(getLower(), Ty),
 | 
						|
                       ConstantExpr::getCast(getUpper(), Ty));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// print - Print out the bounds to a stream...
 | 
						|
///
 | 
						|
void ConstantRange::print(std::ostream &OS) const {
 | 
						|
  OS << "[" << *Lower << "," << *Upper << " )";
 | 
						|
}
 | 
						|
 | 
						|
/// dump - Allow printing from a debugger easily...
 | 
						|
///
 | 
						|
void ConstantRange::dump() const {
 | 
						|
  print(std::cerr);
 | 
						|
}
 |