mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-23 02:32:11 +00:00
8e003cdb99
Fixes two typos. Change-Id: I129f647de8933e1d8f0dc9941bcb91602edce7e2 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221148 91177308-0d34-0410-b5e6-96231b3b80d8
434 lines
15 KiB
C++
434 lines
15 KiB
C++
//===--- Allocator.h - Simple memory allocation abstraction -----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// This file defines the MallocAllocator and BumpPtrAllocator interfaces. Both
|
|
/// of these conform to an LLVM "Allocator" concept which consists of an
|
|
/// Allocate method accepting a size and alignment, and a Deallocate accepting
|
|
/// a pointer and size. Further, the LLVM "Allocator" concept has overloads of
|
|
/// Allocate and Deallocate for setting size and alignment based on the final
|
|
/// type. These overloads are typically provided by a base class template \c
|
|
/// AllocatorBase.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_SUPPORT_ALLOCATOR_H
|
|
#define LLVM_SUPPORT_ALLOCATOR_H
|
|
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/AlignOf.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Memory.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
|
|
namespace llvm {
|
|
|
|
/// \brief CRTP base class providing obvious overloads for the core \c
|
|
/// Allocate() methods of LLVM-style allocators.
|
|
///
|
|
/// This base class both documents the full public interface exposed by all
|
|
/// LLVM-style allocators, and redirects all of the overloads to a single core
|
|
/// set of methods which the derived class must define.
|
|
template <typename DerivedT> class AllocatorBase {
|
|
public:
|
|
/// \brief Allocate \a Size bytes of \a Alignment aligned memory. This method
|
|
/// must be implemented by \c DerivedT.
|
|
void *Allocate(size_t Size, size_t Alignment) {
|
|
#ifdef __clang__
|
|
static_assert(static_cast<void *(AllocatorBase::*)(size_t, size_t)>(
|
|
&AllocatorBase::Allocate) !=
|
|
static_cast<void *(DerivedT::*)(size_t, size_t)>(
|
|
&DerivedT::Allocate),
|
|
"Class derives from AllocatorBase without implementing the "
|
|
"core Allocate(size_t, size_t) overload!");
|
|
#endif
|
|
return static_cast<DerivedT *>(this)->Allocate(Size, Alignment);
|
|
}
|
|
|
|
/// \brief Deallocate \a Ptr to \a Size bytes of memory allocated by this
|
|
/// allocator.
|
|
void Deallocate(const void *Ptr, size_t Size) {
|
|
#ifdef __clang__
|
|
static_assert(static_cast<void (AllocatorBase::*)(const void *, size_t)>(
|
|
&AllocatorBase::Deallocate) !=
|
|
static_cast<void (DerivedT::*)(const void *, size_t)>(
|
|
&DerivedT::Deallocate),
|
|
"Class derives from AllocatorBase without implementing the "
|
|
"core Deallocate(void *) overload!");
|
|
#endif
|
|
return static_cast<DerivedT *>(this)->Deallocate(Ptr, Size);
|
|
}
|
|
|
|
// The rest of these methods are helpers that redirect to one of the above
|
|
// core methods.
|
|
|
|
/// \brief Allocate space for a sequence of objects without constructing them.
|
|
template <typename T> T *Allocate(size_t Num = 1) {
|
|
return static_cast<T *>(Allocate(Num * sizeof(T), AlignOf<T>::Alignment));
|
|
}
|
|
|
|
/// \brief Deallocate space for a sequence of objects without constructing them.
|
|
template <typename T>
|
|
typename std::enable_if<
|
|
!std::is_same<typename std::remove_cv<T>::type, void>::value, void>::type
|
|
Deallocate(T *Ptr, size_t Num = 1) {
|
|
Deallocate(static_cast<const void *>(Ptr), Num * sizeof(T));
|
|
}
|
|
};
|
|
|
|
class MallocAllocator : public AllocatorBase<MallocAllocator> {
|
|
public:
|
|
void Reset() {}
|
|
|
|
LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size,
|
|
size_t /*Alignment*/) {
|
|
return malloc(Size);
|
|
}
|
|
|
|
// Pull in base class overloads.
|
|
using AllocatorBase<MallocAllocator>::Allocate;
|
|
|
|
void Deallocate(const void *Ptr, size_t /*Size*/) {
|
|
free(const_cast<void *>(Ptr));
|
|
}
|
|
|
|
// Pull in base class overloads.
|
|
using AllocatorBase<MallocAllocator>::Deallocate;
|
|
|
|
void PrintStats() const {}
|
|
};
|
|
|
|
namespace detail {
|
|
|
|
// We call out to an external function to actually print the message as the
|
|
// printing code uses Allocator.h in its implementation.
|
|
void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
|
|
size_t TotalMemory);
|
|
} // End namespace detail.
|
|
|
|
/// \brief Allocate memory in an ever growing pool, as if by bump-pointer.
|
|
///
|
|
/// This isn't strictly a bump-pointer allocator as it uses backing slabs of
|
|
/// memory rather than relying on a boundless contiguous heap. However, it has
|
|
/// bump-pointer semantics in that it is a monotonically growing pool of memory
|
|
/// where every allocation is found by merely allocating the next N bytes in
|
|
/// the slab, or the next N bytes in the next slab.
|
|
///
|
|
/// Note that this also has a threshold for forcing allocations above a certain
|
|
/// size into their own slab.
|
|
///
|
|
/// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
|
|
/// object, which wraps malloc, to allocate memory, but it can be changed to
|
|
/// use a custom allocator.
|
|
template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
|
|
size_t SizeThreshold = SlabSize>
|
|
class BumpPtrAllocatorImpl
|
|
: public AllocatorBase<
|
|
BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold>> {
|
|
public:
|
|
static_assert(SizeThreshold <= SlabSize,
|
|
"The SizeThreshold must be at most the SlabSize to ensure "
|
|
"that objects larger than a slab go into their own memory "
|
|
"allocation.");
|
|
|
|
BumpPtrAllocatorImpl()
|
|
: CurPtr(nullptr), End(nullptr), BytesAllocated(0), Allocator() {}
|
|
template <typename T>
|
|
BumpPtrAllocatorImpl(T &&Allocator)
|
|
: CurPtr(nullptr), End(nullptr), BytesAllocated(0),
|
|
Allocator(std::forward<T &&>(Allocator)) {}
|
|
|
|
// Manually implement a move constructor as we must clear the old allocators
|
|
// slabs as a matter of correctness.
|
|
BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
|
|
: CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)),
|
|
CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
|
|
BytesAllocated(Old.BytesAllocated),
|
|
Allocator(std::move(Old.Allocator)) {
|
|
Old.CurPtr = Old.End = nullptr;
|
|
Old.BytesAllocated = 0;
|
|
Old.Slabs.clear();
|
|
Old.CustomSizedSlabs.clear();
|
|
}
|
|
|
|
~BumpPtrAllocatorImpl() {
|
|
DeallocateSlabs(Slabs.begin(), Slabs.end());
|
|
DeallocateCustomSizedSlabs();
|
|
}
|
|
|
|
BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
|
|
DeallocateSlabs(Slabs.begin(), Slabs.end());
|
|
DeallocateCustomSizedSlabs();
|
|
|
|
CurPtr = RHS.CurPtr;
|
|
End = RHS.End;
|
|
BytesAllocated = RHS.BytesAllocated;
|
|
Slabs = std::move(RHS.Slabs);
|
|
CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
|
|
Allocator = std::move(RHS.Allocator);
|
|
|
|
RHS.CurPtr = RHS.End = nullptr;
|
|
RHS.BytesAllocated = 0;
|
|
RHS.Slabs.clear();
|
|
RHS.CustomSizedSlabs.clear();
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Deallocate all but the current slab and reset the current pointer
|
|
/// to the beginning of it, freeing all memory allocated so far.
|
|
void Reset() {
|
|
if (Slabs.empty())
|
|
return;
|
|
|
|
// Reset the state.
|
|
BytesAllocated = 0;
|
|
CurPtr = (char *)Slabs.front();
|
|
End = CurPtr + SlabSize;
|
|
|
|
// Deallocate all but the first slab, and all custome sized slabs.
|
|
DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
|
|
Slabs.erase(std::next(Slabs.begin()), Slabs.end());
|
|
DeallocateCustomSizedSlabs();
|
|
CustomSizedSlabs.clear();
|
|
}
|
|
|
|
/// \brief Allocate space at the specified alignment.
|
|
LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, size_t Alignment) {
|
|
assert(Alignment > 0 && "0-byte alignnment is not allowed. Use 1 instead.");
|
|
|
|
// Keep track of how many bytes we've allocated.
|
|
BytesAllocated += Size;
|
|
|
|
size_t Adjustment = alignmentAdjustment(CurPtr, Alignment);
|
|
assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
|
|
|
|
// Check if we have enough space.
|
|
if (Adjustment + Size <= size_t(End - CurPtr)) {
|
|
char *AlignedPtr = CurPtr + Adjustment;
|
|
CurPtr = AlignedPtr + Size;
|
|
// Update the allocation point of this memory block in MemorySanitizer.
|
|
// Without this, MemorySanitizer messages for values originated from here
|
|
// will point to the allocation of the entire slab.
|
|
__msan_allocated_memory(AlignedPtr, Size);
|
|
return AlignedPtr;
|
|
}
|
|
|
|
// If Size is really big, allocate a separate slab for it.
|
|
size_t PaddedSize = Size + Alignment - 1;
|
|
if (PaddedSize > SizeThreshold) {
|
|
void *NewSlab = Allocator.Allocate(PaddedSize, 0);
|
|
CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
|
|
|
|
uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
|
|
assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
|
|
char *AlignedPtr = (char*)AlignedAddr;
|
|
__msan_allocated_memory(AlignedPtr, Size);
|
|
return AlignedPtr;
|
|
}
|
|
|
|
// Otherwise, start a new slab and try again.
|
|
StartNewSlab();
|
|
uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
|
|
assert(AlignedAddr + Size <= (uintptr_t)End &&
|
|
"Unable to allocate memory!");
|
|
char *AlignedPtr = (char*)AlignedAddr;
|
|
CurPtr = AlignedPtr + Size;
|
|
__msan_allocated_memory(AlignedPtr, Size);
|
|
return AlignedPtr;
|
|
}
|
|
|
|
// Pull in base class overloads.
|
|
using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
|
|
|
|
void Deallocate(const void * /*Ptr*/, size_t /*Size*/) {}
|
|
|
|
// Pull in base class overloads.
|
|
using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
|
|
|
|
size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
|
|
|
|
size_t getTotalMemory() const {
|
|
size_t TotalMemory = 0;
|
|
for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
|
|
TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
|
|
for (auto &PtrAndSize : CustomSizedSlabs)
|
|
TotalMemory += PtrAndSize.second;
|
|
return TotalMemory;
|
|
}
|
|
|
|
void PrintStats() const {
|
|
detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
|
|
getTotalMemory());
|
|
}
|
|
|
|
private:
|
|
/// \brief The current pointer into the current slab.
|
|
///
|
|
/// This points to the next free byte in the slab.
|
|
char *CurPtr;
|
|
|
|
/// \brief The end of the current slab.
|
|
char *End;
|
|
|
|
/// \brief The slabs allocated so far.
|
|
SmallVector<void *, 4> Slabs;
|
|
|
|
/// \brief Custom-sized slabs allocated for too-large allocation requests.
|
|
SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
|
|
|
|
/// \brief How many bytes we've allocated.
|
|
///
|
|
/// Used so that we can compute how much space was wasted.
|
|
size_t BytesAllocated;
|
|
|
|
/// \brief The allocator instance we use to get slabs of memory.
|
|
AllocatorT Allocator;
|
|
|
|
static size_t computeSlabSize(unsigned SlabIdx) {
|
|
// Scale the actual allocated slab size based on the number of slabs
|
|
// allocated. Every 128 slabs allocated, we double the allocated size to
|
|
// reduce allocation frequency, but saturate at multiplying the slab size by
|
|
// 2^30.
|
|
return SlabSize * ((size_t)1 << std::min<size_t>(30, SlabIdx / 128));
|
|
}
|
|
|
|
/// \brief Allocate a new slab and move the bump pointers over into the new
|
|
/// slab, modifying CurPtr and End.
|
|
void StartNewSlab() {
|
|
size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
|
|
|
|
void *NewSlab = Allocator.Allocate(AllocatedSlabSize, 0);
|
|
Slabs.push_back(NewSlab);
|
|
CurPtr = (char *)(NewSlab);
|
|
End = ((char *)NewSlab) + AllocatedSlabSize;
|
|
}
|
|
|
|
/// \brief Deallocate a sequence of slabs.
|
|
void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
|
|
SmallVectorImpl<void *>::iterator E) {
|
|
for (; I != E; ++I) {
|
|
size_t AllocatedSlabSize =
|
|
computeSlabSize(std::distance(Slabs.begin(), I));
|
|
#ifndef NDEBUG
|
|
// Poison the memory so stale pointers crash sooner. Note we must
|
|
// preserve the Size and NextPtr fields at the beginning.
|
|
if (AllocatedSlabSize != 0) {
|
|
sys::Memory::setRangeWritable(*I, AllocatedSlabSize);
|
|
memset(*I, 0xCD, AllocatedSlabSize);
|
|
}
|
|
#endif
|
|
Allocator.Deallocate(*I, AllocatedSlabSize);
|
|
}
|
|
}
|
|
|
|
/// \brief Deallocate all memory for custom sized slabs.
|
|
void DeallocateCustomSizedSlabs() {
|
|
for (auto &PtrAndSize : CustomSizedSlabs) {
|
|
void *Ptr = PtrAndSize.first;
|
|
size_t Size = PtrAndSize.second;
|
|
#ifndef NDEBUG
|
|
// Poison the memory so stale pointers crash sooner. Note we must
|
|
// preserve the Size and NextPtr fields at the beginning.
|
|
sys::Memory::setRangeWritable(Ptr, Size);
|
|
memset(Ptr, 0xCD, Size);
|
|
#endif
|
|
Allocator.Deallocate(Ptr, Size);
|
|
}
|
|
}
|
|
|
|
template <typename T> friend class SpecificBumpPtrAllocator;
|
|
};
|
|
|
|
/// \brief The standard BumpPtrAllocator which just uses the default template
|
|
/// paramaters.
|
|
typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
|
|
|
|
/// \brief A BumpPtrAllocator that allows only elements of a specific type to be
|
|
/// allocated.
|
|
///
|
|
/// This allows calling the destructor in DestroyAll() and when the allocator is
|
|
/// destroyed.
|
|
template <typename T> class SpecificBumpPtrAllocator {
|
|
BumpPtrAllocator Allocator;
|
|
|
|
public:
|
|
SpecificBumpPtrAllocator() : Allocator() {}
|
|
SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
|
|
: Allocator(std::move(Old.Allocator)) {}
|
|
~SpecificBumpPtrAllocator() { DestroyAll(); }
|
|
|
|
SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
|
|
Allocator = std::move(RHS.Allocator);
|
|
return *this;
|
|
}
|
|
|
|
/// Call the destructor of each allocated object and deallocate all but the
|
|
/// current slab and reset the current pointer to the beginning of it, freeing
|
|
/// all memory allocated so far.
|
|
void DestroyAll() {
|
|
auto DestroyElements = [](char *Begin, char *End) {
|
|
assert(Begin == (char*)alignAddr(Begin, alignOf<T>()));
|
|
for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
|
|
reinterpret_cast<T *>(Ptr)->~T();
|
|
};
|
|
|
|
for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
|
|
++I) {
|
|
size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
|
|
std::distance(Allocator.Slabs.begin(), I));
|
|
char *Begin = (char*)alignAddr(*I, alignOf<T>());
|
|
char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
|
|
: (char *)*I + AllocatedSlabSize;
|
|
|
|
DestroyElements(Begin, End);
|
|
}
|
|
|
|
for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
|
|
void *Ptr = PtrAndSize.first;
|
|
size_t Size = PtrAndSize.second;
|
|
DestroyElements((char*)alignAddr(Ptr, alignOf<T>()), (char *)Ptr + Size);
|
|
}
|
|
|
|
Allocator.Reset();
|
|
}
|
|
|
|
/// \brief Allocate space for an array of objects without constructing them.
|
|
T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
|
|
void *operator new(size_t Size,
|
|
llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
|
|
SizeThreshold> &Allocator) {
|
|
struct S {
|
|
char c;
|
|
union {
|
|
double D;
|
|
long double LD;
|
|
long long L;
|
|
void *P;
|
|
} x;
|
|
};
|
|
return Allocator.Allocate(
|
|
Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x)));
|
|
}
|
|
|
|
template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
|
|
void operator delete(
|
|
void *, llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold> &) {
|
|
}
|
|
|
|
#endif // LLVM_SUPPORT_ALLOCATOR_H
|