mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	I saw at least a memory leak or two from inspection (on probably untested error paths) and r206991, which was the original inspiration for this change. I ran this idea by Jim Grosbach a few weeks ago & he was OK with it. Since it's a basically mechanical patch that seemed sufficient - usual post-commit review, revert, etc, as needed. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210427 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3088 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3088 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This tablegen backend emits a target specifier matcher for converting parsed
 | 
						|
// assembly operands in the MCInst structures. It also emits a matcher for
 | 
						|
// custom operand parsing.
 | 
						|
//
 | 
						|
// Converting assembly operands into MCInst structures
 | 
						|
// ---------------------------------------------------
 | 
						|
//
 | 
						|
// The input to the target specific matcher is a list of literal tokens and
 | 
						|
// operands. The target specific parser should generally eliminate any syntax
 | 
						|
// which is not relevant for matching; for example, comma tokens should have
 | 
						|
// already been consumed and eliminated by the parser. Most instructions will
 | 
						|
// end up with a single literal token (the instruction name) and some number of
 | 
						|
// operands.
 | 
						|
//
 | 
						|
// Some example inputs, for X86:
 | 
						|
//   'addl' (immediate ...) (register ...)
 | 
						|
//   'add' (immediate ...) (memory ...)
 | 
						|
//   'call' '*' %epc
 | 
						|
//
 | 
						|
// The assembly matcher is responsible for converting this input into a precise
 | 
						|
// machine instruction (i.e., an instruction with a well defined encoding). This
 | 
						|
// mapping has several properties which complicate matching:
 | 
						|
//
 | 
						|
//  - It may be ambiguous; many architectures can legally encode particular
 | 
						|
//    variants of an instruction in different ways (for example, using a smaller
 | 
						|
//    encoding for small immediates). Such ambiguities should never be
 | 
						|
//    arbitrarily resolved by the assembler, the assembler is always responsible
 | 
						|
//    for choosing the "best" available instruction.
 | 
						|
//
 | 
						|
//  - It may depend on the subtarget or the assembler context. Instructions
 | 
						|
//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
 | 
						|
//    an SSE instruction in a file being assembled for i486) should be accepted
 | 
						|
//    and rejected by the assembler front end. However, if the proper encoding
 | 
						|
//    for an instruction is dependent on the assembler context then the matcher
 | 
						|
//    is responsible for selecting the correct machine instruction for the
 | 
						|
//    current mode.
 | 
						|
//
 | 
						|
// The core matching algorithm attempts to exploit the regularity in most
 | 
						|
// instruction sets to quickly determine the set of possibly matching
 | 
						|
// instructions, and the simplify the generated code. Additionally, this helps
 | 
						|
// to ensure that the ambiguities are intentionally resolved by the user.
 | 
						|
//
 | 
						|
// The matching is divided into two distinct phases:
 | 
						|
//
 | 
						|
//   1. Classification: Each operand is mapped to the unique set which (a)
 | 
						|
//      contains it, and (b) is the largest such subset for which a single
 | 
						|
//      instruction could match all members.
 | 
						|
//
 | 
						|
//      For register classes, we can generate these subgroups automatically. For
 | 
						|
//      arbitrary operands, we expect the user to define the classes and their
 | 
						|
//      relations to one another (for example, 8-bit signed immediates as a
 | 
						|
//      subset of 32-bit immediates).
 | 
						|
//
 | 
						|
//      By partitioning the operands in this way, we guarantee that for any
 | 
						|
//      tuple of classes, any single instruction must match either all or none
 | 
						|
//      of the sets of operands which could classify to that tuple.
 | 
						|
//
 | 
						|
//      In addition, the subset relation amongst classes induces a partial order
 | 
						|
//      on such tuples, which we use to resolve ambiguities.
 | 
						|
//
 | 
						|
//   2. The input can now be treated as a tuple of classes (static tokens are
 | 
						|
//      simple singleton sets). Each such tuple should generally map to a single
 | 
						|
//      instruction (we currently ignore cases where this isn't true, whee!!!),
 | 
						|
//      which we can emit a simple matcher for.
 | 
						|
//
 | 
						|
// Custom Operand Parsing
 | 
						|
// ----------------------
 | 
						|
//
 | 
						|
//  Some targets need a custom way to parse operands, some specific instructions
 | 
						|
//  can contain arguments that can represent processor flags and other kinds of
 | 
						|
//  identifiers that need to be mapped to specific values in the final encoded
 | 
						|
//  instructions. The target specific custom operand parsing works in the
 | 
						|
//  following way:
 | 
						|
//
 | 
						|
//   1. A operand match table is built, each entry contains a mnemonic, an
 | 
						|
//      operand class, a mask for all operand positions for that same
 | 
						|
//      class/mnemonic and target features to be checked while trying to match.
 | 
						|
//
 | 
						|
//   2. The operand matcher will try every possible entry with the same
 | 
						|
//      mnemonic and will check if the target feature for this mnemonic also
 | 
						|
//      matches. After that, if the operand to be matched has its index
 | 
						|
//      present in the mask, a successful match occurs. Otherwise, fallback
 | 
						|
//      to the regular operand parsing.
 | 
						|
//
 | 
						|
//   3. For a match success, each operand class that has a 'ParserMethod'
 | 
						|
//      becomes part of a switch from where the custom method is called.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CodeGenTarget.h"
 | 
						|
#include "llvm/ADT/PointerUnion.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/TableGen/Error.h"
 | 
						|
#include "llvm/TableGen/Record.h"
 | 
						|
#include "llvm/TableGen/StringMatcher.h"
 | 
						|
#include "llvm/TableGen/StringToOffsetTable.h"
 | 
						|
#include "llvm/TableGen/TableGenBackend.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cctype>
 | 
						|
#include <map>
 | 
						|
#include <set>
 | 
						|
#include <sstream>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "asm-matcher-emitter"
 | 
						|
 | 
						|
static cl::opt<std::string>
 | 
						|
MatchPrefix("match-prefix", cl::init(""),
 | 
						|
            cl::desc("Only match instructions with the given prefix"));
 | 
						|
 | 
						|
namespace {
 | 
						|
class AsmMatcherInfo;
 | 
						|
struct SubtargetFeatureInfo;
 | 
						|
 | 
						|
// Register sets are used as keys in some second-order sets TableGen creates
 | 
						|
// when generating its data structures. This means that the order of two
 | 
						|
// RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
 | 
						|
// can even affect compiler output (at least seen in diagnostics produced when
 | 
						|
// all matches fail). So we use a type that sorts them consistently.
 | 
						|
typedef std::set<Record*, LessRecordByID> RegisterSet;
 | 
						|
 | 
						|
class AsmMatcherEmitter {
 | 
						|
  RecordKeeper &Records;
 | 
						|
public:
 | 
						|
  AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
 | 
						|
 | 
						|
  void run(raw_ostream &o);
 | 
						|
};
 | 
						|
 | 
						|
/// ClassInfo - Helper class for storing the information about a particular
 | 
						|
/// class of operands which can be matched.
 | 
						|
struct ClassInfo {
 | 
						|
  enum ClassInfoKind {
 | 
						|
    /// Invalid kind, for use as a sentinel value.
 | 
						|
    Invalid = 0,
 | 
						|
 | 
						|
    /// The class for a particular token.
 | 
						|
    Token,
 | 
						|
 | 
						|
    /// The (first) register class, subsequent register classes are
 | 
						|
    /// RegisterClass0+1, and so on.
 | 
						|
    RegisterClass0,
 | 
						|
 | 
						|
    /// The (first) user defined class, subsequent user defined classes are
 | 
						|
    /// UserClass0+1, and so on.
 | 
						|
    UserClass0 = 1<<16
 | 
						|
  };
 | 
						|
 | 
						|
  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
 | 
						|
  /// N) for the Nth user defined class.
 | 
						|
  unsigned Kind;
 | 
						|
 | 
						|
  /// SuperClasses - The super classes of this class. Note that for simplicities
 | 
						|
  /// sake user operands only record their immediate super class, while register
 | 
						|
  /// operands include all superclasses.
 | 
						|
  std::vector<ClassInfo*> SuperClasses;
 | 
						|
 | 
						|
  /// Name - The full class name, suitable for use in an enum.
 | 
						|
  std::string Name;
 | 
						|
 | 
						|
  /// ClassName - The unadorned generic name for this class (e.g., Token).
 | 
						|
  std::string ClassName;
 | 
						|
 | 
						|
  /// ValueName - The name of the value this class represents; for a token this
 | 
						|
  /// is the literal token string, for an operand it is the TableGen class (or
 | 
						|
  /// empty if this is a derived class).
 | 
						|
  std::string ValueName;
 | 
						|
 | 
						|
  /// PredicateMethod - The name of the operand method to test whether the
 | 
						|
  /// operand matches this class; this is not valid for Token or register kinds.
 | 
						|
  std::string PredicateMethod;
 | 
						|
 | 
						|
  /// RenderMethod - The name of the operand method to add this operand to an
 | 
						|
  /// MCInst; this is not valid for Token or register kinds.
 | 
						|
  std::string RenderMethod;
 | 
						|
 | 
						|
  /// ParserMethod - The name of the operand method to do a target specific
 | 
						|
  /// parsing on the operand.
 | 
						|
  std::string ParserMethod;
 | 
						|
 | 
						|
  /// For register classes: the records for all the registers in this class.
 | 
						|
  RegisterSet Registers;
 | 
						|
 | 
						|
  /// For custom match classes: the diagnostic kind for when the predicate fails.
 | 
						|
  std::string DiagnosticType;
 | 
						|
public:
 | 
						|
  /// isRegisterClass() - Check if this is a register class.
 | 
						|
  bool isRegisterClass() const {
 | 
						|
    return Kind >= RegisterClass0 && Kind < UserClass0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isUserClass() - Check if this is a user defined class.
 | 
						|
  bool isUserClass() const {
 | 
						|
    return Kind >= UserClass0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
 | 
						|
  /// are related if they are in the same class hierarchy.
 | 
						|
  bool isRelatedTo(const ClassInfo &RHS) const {
 | 
						|
    // Tokens are only related to tokens.
 | 
						|
    if (Kind == Token || RHS.Kind == Token)
 | 
						|
      return Kind == Token && RHS.Kind == Token;
 | 
						|
 | 
						|
    // Registers classes are only related to registers classes, and only if
 | 
						|
    // their intersection is non-empty.
 | 
						|
    if (isRegisterClass() || RHS.isRegisterClass()) {
 | 
						|
      if (!isRegisterClass() || !RHS.isRegisterClass())
 | 
						|
        return false;
 | 
						|
 | 
						|
      RegisterSet Tmp;
 | 
						|
      std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
 | 
						|
      std::set_intersection(Registers.begin(), Registers.end(),
 | 
						|
                            RHS.Registers.begin(), RHS.Registers.end(),
 | 
						|
                            II, LessRecordByID());
 | 
						|
 | 
						|
      return !Tmp.empty();
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise we have two users operands; they are related if they are in the
 | 
						|
    // same class hierarchy.
 | 
						|
    //
 | 
						|
    // FIXME: This is an oversimplification, they should only be related if they
 | 
						|
    // intersect, however we don't have that information.
 | 
						|
    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
 | 
						|
    const ClassInfo *Root = this;
 | 
						|
    while (!Root->SuperClasses.empty())
 | 
						|
      Root = Root->SuperClasses.front();
 | 
						|
 | 
						|
    const ClassInfo *RHSRoot = &RHS;
 | 
						|
    while (!RHSRoot->SuperClasses.empty())
 | 
						|
      RHSRoot = RHSRoot->SuperClasses.front();
 | 
						|
 | 
						|
    return Root == RHSRoot;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isSubsetOf - Test whether this class is a subset of \p RHS.
 | 
						|
  bool isSubsetOf(const ClassInfo &RHS) const {
 | 
						|
    // This is a subset of RHS if it is the same class...
 | 
						|
    if (this == &RHS)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // ... or if any of its super classes are a subset of RHS.
 | 
						|
    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
 | 
						|
           ie = SuperClasses.end(); it != ie; ++it)
 | 
						|
      if ((*it)->isSubsetOf(RHS))
 | 
						|
        return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// operator< - Compare two classes.
 | 
						|
  bool operator<(const ClassInfo &RHS) const {
 | 
						|
    if (this == &RHS)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Unrelated classes can be ordered by kind.
 | 
						|
    if (!isRelatedTo(RHS))
 | 
						|
      return Kind < RHS.Kind;
 | 
						|
 | 
						|
    switch (Kind) {
 | 
						|
    case Invalid:
 | 
						|
      llvm_unreachable("Invalid kind!");
 | 
						|
 | 
						|
    default:
 | 
						|
      // This class precedes the RHS if it is a proper subset of the RHS.
 | 
						|
      if (isSubsetOf(RHS))
 | 
						|
        return true;
 | 
						|
      if (RHS.isSubsetOf(*this))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Otherwise, order by name to ensure we have a total ordering.
 | 
						|
      return ValueName < RHS.ValueName;
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// MatchableInfo - Helper class for storing the necessary information for an
 | 
						|
/// instruction or alias which is capable of being matched.
 | 
						|
struct MatchableInfo {
 | 
						|
  struct AsmOperand {
 | 
						|
    /// Token - This is the token that the operand came from.
 | 
						|
    StringRef Token;
 | 
						|
 | 
						|
    /// The unique class instance this operand should match.
 | 
						|
    ClassInfo *Class;
 | 
						|
 | 
						|
    /// The operand name this is, if anything.
 | 
						|
    StringRef SrcOpName;
 | 
						|
 | 
						|
    /// The suboperand index within SrcOpName, or -1 for the entire operand.
 | 
						|
    int SubOpIdx;
 | 
						|
 | 
						|
    /// Register record if this token is singleton register.
 | 
						|
    Record *SingletonReg;
 | 
						|
 | 
						|
    explicit AsmOperand(StringRef T) : Token(T), Class(nullptr), SubOpIdx(-1),
 | 
						|
                                       SingletonReg(nullptr) {}
 | 
						|
  };
 | 
						|
 | 
						|
  /// ResOperand - This represents a single operand in the result instruction
 | 
						|
  /// generated by the match.  In cases (like addressing modes) where a single
 | 
						|
  /// assembler operand expands to multiple MCOperands, this represents the
 | 
						|
  /// single assembler operand, not the MCOperand.
 | 
						|
  struct ResOperand {
 | 
						|
    enum {
 | 
						|
      /// RenderAsmOperand - This represents an operand result that is
 | 
						|
      /// generated by calling the render method on the assembly operand.  The
 | 
						|
      /// corresponding AsmOperand is specified by AsmOperandNum.
 | 
						|
      RenderAsmOperand,
 | 
						|
 | 
						|
      /// TiedOperand - This represents a result operand that is a duplicate of
 | 
						|
      /// a previous result operand.
 | 
						|
      TiedOperand,
 | 
						|
 | 
						|
      /// ImmOperand - This represents an immediate value that is dumped into
 | 
						|
      /// the operand.
 | 
						|
      ImmOperand,
 | 
						|
 | 
						|
      /// RegOperand - This represents a fixed register that is dumped in.
 | 
						|
      RegOperand
 | 
						|
    } Kind;
 | 
						|
 | 
						|
    union {
 | 
						|
      /// This is the operand # in the AsmOperands list that this should be
 | 
						|
      /// copied from.
 | 
						|
      unsigned AsmOperandNum;
 | 
						|
 | 
						|
      /// TiedOperandNum - This is the (earlier) result operand that should be
 | 
						|
      /// copied from.
 | 
						|
      unsigned TiedOperandNum;
 | 
						|
 | 
						|
      /// ImmVal - This is the immediate value added to the instruction.
 | 
						|
      int64_t ImmVal;
 | 
						|
 | 
						|
      /// Register - This is the register record.
 | 
						|
      Record *Register;
 | 
						|
    };
 | 
						|
 | 
						|
    /// MINumOperands - The number of MCInst operands populated by this
 | 
						|
    /// operand.
 | 
						|
    unsigned MINumOperands;
 | 
						|
 | 
						|
    static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
 | 
						|
      ResOperand X;
 | 
						|
      X.Kind = RenderAsmOperand;
 | 
						|
      X.AsmOperandNum = AsmOpNum;
 | 
						|
      X.MINumOperands = NumOperands;
 | 
						|
      return X;
 | 
						|
    }
 | 
						|
 | 
						|
    static ResOperand getTiedOp(unsigned TiedOperandNum) {
 | 
						|
      ResOperand X;
 | 
						|
      X.Kind = TiedOperand;
 | 
						|
      X.TiedOperandNum = TiedOperandNum;
 | 
						|
      X.MINumOperands = 1;
 | 
						|
      return X;
 | 
						|
    }
 | 
						|
 | 
						|
    static ResOperand getImmOp(int64_t Val) {
 | 
						|
      ResOperand X;
 | 
						|
      X.Kind = ImmOperand;
 | 
						|
      X.ImmVal = Val;
 | 
						|
      X.MINumOperands = 1;
 | 
						|
      return X;
 | 
						|
    }
 | 
						|
 | 
						|
    static ResOperand getRegOp(Record *Reg) {
 | 
						|
      ResOperand X;
 | 
						|
      X.Kind = RegOperand;
 | 
						|
      X.Register = Reg;
 | 
						|
      X.MINumOperands = 1;
 | 
						|
      return X;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// AsmVariantID - Target's assembly syntax variant no.
 | 
						|
  int AsmVariantID;
 | 
						|
 | 
						|
  /// TheDef - This is the definition of the instruction or InstAlias that this
 | 
						|
  /// matchable came from.
 | 
						|
  Record *const TheDef;
 | 
						|
 | 
						|
  /// DefRec - This is the definition that it came from.
 | 
						|
  PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
 | 
						|
 | 
						|
  const CodeGenInstruction *getResultInst() const {
 | 
						|
    if (DefRec.is<const CodeGenInstruction*>())
 | 
						|
      return DefRec.get<const CodeGenInstruction*>();
 | 
						|
    return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
 | 
						|
  }
 | 
						|
 | 
						|
  /// ResOperands - This is the operand list that should be built for the result
 | 
						|
  /// MCInst.
 | 
						|
  SmallVector<ResOperand, 8> ResOperands;
 | 
						|
 | 
						|
  /// AsmString - The assembly string for this instruction (with variants
 | 
						|
  /// removed), e.g. "movsx $src, $dst".
 | 
						|
  std::string AsmString;
 | 
						|
 | 
						|
  /// Mnemonic - This is the first token of the matched instruction, its
 | 
						|
  /// mnemonic.
 | 
						|
  StringRef Mnemonic;
 | 
						|
 | 
						|
  /// AsmOperands - The textual operands that this instruction matches,
 | 
						|
  /// annotated with a class and where in the OperandList they were defined.
 | 
						|
  /// This directly corresponds to the tokenized AsmString after the mnemonic is
 | 
						|
  /// removed.
 | 
						|
  SmallVector<AsmOperand, 8> AsmOperands;
 | 
						|
 | 
						|
  /// Predicates - The required subtarget features to match this instruction.
 | 
						|
  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
 | 
						|
 | 
						|
  /// ConversionFnKind - The enum value which is passed to the generated
 | 
						|
  /// convertToMCInst to convert parsed operands into an MCInst for this
 | 
						|
  /// function.
 | 
						|
  std::string ConversionFnKind;
 | 
						|
 | 
						|
  /// If this instruction is deprecated in some form.
 | 
						|
  bool HasDeprecation;
 | 
						|
 | 
						|
  MatchableInfo(const CodeGenInstruction &CGI)
 | 
						|
    : AsmVariantID(0), TheDef(CGI.TheDef), DefRec(&CGI),
 | 
						|
      AsmString(CGI.AsmString) {
 | 
						|
  }
 | 
						|
 | 
						|
  MatchableInfo(const CodeGenInstAlias *Alias)
 | 
						|
    : AsmVariantID(0), TheDef(Alias->TheDef), DefRec(Alias),
 | 
						|
      AsmString(Alias->AsmString) {
 | 
						|
  }
 | 
						|
 | 
						|
  // Two-operand aliases clone from the main matchable, but mark the second
 | 
						|
  // operand as a tied operand of the first for purposes of the assembler.
 | 
						|
  void formTwoOperandAlias(StringRef Constraint);
 | 
						|
 | 
						|
  void initialize(const AsmMatcherInfo &Info,
 | 
						|
                  SmallPtrSet<Record*, 16> &SingletonRegisters,
 | 
						|
                  int AsmVariantNo, std::string &RegisterPrefix);
 | 
						|
 | 
						|
  /// validate - Return true if this matchable is a valid thing to match against
 | 
						|
  /// and perform a bunch of validity checking.
 | 
						|
  bool validate(StringRef CommentDelimiter, bool Hack) const;
 | 
						|
 | 
						|
  /// extractSingletonRegisterForAsmOperand - Extract singleton register,
 | 
						|
  /// if present, from specified token.
 | 
						|
  void
 | 
						|
  extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
 | 
						|
                                        std::string &RegisterPrefix);
 | 
						|
 | 
						|
  /// findAsmOperand - Find the AsmOperand with the specified name and
 | 
						|
  /// suboperand index.
 | 
						|
  int findAsmOperand(StringRef N, int SubOpIdx) const {
 | 
						|
    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
 | 
						|
      if (N == AsmOperands[i].SrcOpName &&
 | 
						|
          SubOpIdx == AsmOperands[i].SubOpIdx)
 | 
						|
        return i;
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
 | 
						|
  /// This does not check the suboperand index.
 | 
						|
  int findAsmOperandNamed(StringRef N) const {
 | 
						|
    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
 | 
						|
      if (N == AsmOperands[i].SrcOpName)
 | 
						|
        return i;
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
 | 
						|
  void buildInstructionResultOperands();
 | 
						|
  void buildAliasResultOperands();
 | 
						|
 | 
						|
  /// operator< - Compare two matchables.
 | 
						|
  bool operator<(const MatchableInfo &RHS) const {
 | 
						|
    // The primary comparator is the instruction mnemonic.
 | 
						|
    if (Mnemonic != RHS.Mnemonic)
 | 
						|
      return Mnemonic < RHS.Mnemonic;
 | 
						|
 | 
						|
    if (AsmOperands.size() != RHS.AsmOperands.size())
 | 
						|
      return AsmOperands.size() < RHS.AsmOperands.size();
 | 
						|
 | 
						|
    // Compare lexicographically by operand. The matcher validates that other
 | 
						|
    // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
 | 
						|
    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
 | 
						|
      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
 | 
						|
        return true;
 | 
						|
      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Give matches that require more features higher precedence. This is useful
 | 
						|
    // because we cannot define AssemblerPredicates with the negation of
 | 
						|
    // processor features. For example, ARM v6 "nop" may be either a HINT or
 | 
						|
    // MOV. With v6, we want to match HINT. The assembler has no way to
 | 
						|
    // predicate MOV under "NoV6", but HINT will always match first because it
 | 
						|
    // requires V6 while MOV does not.
 | 
						|
    if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
 | 
						|
      return RequiredFeatures.size() > RHS.RequiredFeatures.size();
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// couldMatchAmbiguouslyWith - Check whether this matchable could
 | 
						|
  /// ambiguously match the same set of operands as \p RHS (without being a
 | 
						|
  /// strictly superior match).
 | 
						|
  bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
 | 
						|
    // The primary comparator is the instruction mnemonic.
 | 
						|
    if (Mnemonic != RHS.Mnemonic)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // The number of operands is unambiguous.
 | 
						|
    if (AsmOperands.size() != RHS.AsmOperands.size())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Otherwise, make sure the ordering of the two instructions is unambiguous
 | 
						|
    // by checking that either (a) a token or operand kind discriminates them,
 | 
						|
    // or (b) the ordering among equivalent kinds is consistent.
 | 
						|
 | 
						|
    // Tokens and operand kinds are unambiguous (assuming a correct target
 | 
						|
    // specific parser).
 | 
						|
    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
 | 
						|
      if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
 | 
						|
          AsmOperands[i].Class->Kind == ClassInfo::Token)
 | 
						|
        if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
 | 
						|
            *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
 | 
						|
          return false;
 | 
						|
 | 
						|
    // Otherwise, this operand could commute if all operands are equivalent, or
 | 
						|
    // there is a pair of operands that compare less than and a pair that
 | 
						|
    // compare greater than.
 | 
						|
    bool HasLT = false, HasGT = false;
 | 
						|
    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
 | 
						|
      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
 | 
						|
        HasLT = true;
 | 
						|
      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
 | 
						|
        HasGT = true;
 | 
						|
    }
 | 
						|
 | 
						|
    return !(HasLT ^ HasGT);
 | 
						|
  }
 | 
						|
 | 
						|
  void dump();
 | 
						|
 | 
						|
private:
 | 
						|
  void tokenizeAsmString(const AsmMatcherInfo &Info);
 | 
						|
};
 | 
						|
 | 
						|
/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
 | 
						|
/// feature which participates in instruction matching.
 | 
						|
struct SubtargetFeatureInfo {
 | 
						|
  /// \brief The predicate record for this feature.
 | 
						|
  Record *TheDef;
 | 
						|
 | 
						|
  /// \brief An unique index assigned to represent this feature.
 | 
						|
  unsigned Index;
 | 
						|
 | 
						|
  SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
 | 
						|
 | 
						|
  /// \brief The name of the enumerated constant identifying this feature.
 | 
						|
  std::string getEnumName() const {
 | 
						|
    return "Feature_" + TheDef->getName();
 | 
						|
  }
 | 
						|
 | 
						|
  void dump() {
 | 
						|
    errs() << getEnumName() << " " << Index << "\n";
 | 
						|
    TheDef->dump();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct OperandMatchEntry {
 | 
						|
  unsigned OperandMask;
 | 
						|
  MatchableInfo* MI;
 | 
						|
  ClassInfo *CI;
 | 
						|
 | 
						|
  static OperandMatchEntry create(MatchableInfo* mi, ClassInfo *ci,
 | 
						|
                                  unsigned opMask) {
 | 
						|
    OperandMatchEntry X;
 | 
						|
    X.OperandMask = opMask;
 | 
						|
    X.CI = ci;
 | 
						|
    X.MI = mi;
 | 
						|
    return X;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class AsmMatcherInfo {
 | 
						|
public:
 | 
						|
  /// Tracked Records
 | 
						|
  RecordKeeper &Records;
 | 
						|
 | 
						|
  /// The tablegen AsmParser record.
 | 
						|
  Record *AsmParser;
 | 
						|
 | 
						|
  /// Target - The target information.
 | 
						|
  CodeGenTarget &Target;
 | 
						|
 | 
						|
  /// The classes which are needed for matching.
 | 
						|
  std::vector<ClassInfo*> Classes;
 | 
						|
 | 
						|
  /// The information on the matchables to match.
 | 
						|
  std::vector<MatchableInfo*> Matchables;
 | 
						|
 | 
						|
  /// Info for custom matching operands by user defined methods.
 | 
						|
  std::vector<OperandMatchEntry> OperandMatchInfo;
 | 
						|
 | 
						|
  /// Map of Register records to their class information.
 | 
						|
  typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
 | 
						|
  RegisterClassesTy RegisterClasses;
 | 
						|
 | 
						|
  /// Map of Predicate records to their subtarget information.
 | 
						|
  std::map<Record*, SubtargetFeatureInfo*, LessRecordByID> SubtargetFeatures;
 | 
						|
 | 
						|
  /// Map of AsmOperandClass records to their class information.
 | 
						|
  std::map<Record*, ClassInfo*> AsmOperandClasses;
 | 
						|
 | 
						|
private:
 | 
						|
  /// Map of token to class information which has already been constructed.
 | 
						|
  std::map<std::string, ClassInfo*> TokenClasses;
 | 
						|
 | 
						|
  /// Map of RegisterClass records to their class information.
 | 
						|
  std::map<Record*, ClassInfo*> RegisterClassClasses;
 | 
						|
 | 
						|
private:
 | 
						|
  /// getTokenClass - Lookup or create the class for the given token.
 | 
						|
  ClassInfo *getTokenClass(StringRef Token);
 | 
						|
 | 
						|
  /// getOperandClass - Lookup or create the class for the given operand.
 | 
						|
  ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
 | 
						|
                             int SubOpIdx);
 | 
						|
  ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
 | 
						|
 | 
						|
  /// buildRegisterClasses - Build the ClassInfo* instances for register
 | 
						|
  /// classes.
 | 
						|
  void buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
 | 
						|
 | 
						|
  /// buildOperandClasses - Build the ClassInfo* instances for user defined
 | 
						|
  /// operand classes.
 | 
						|
  void buildOperandClasses();
 | 
						|
 | 
						|
  void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
 | 
						|
                                        unsigned AsmOpIdx);
 | 
						|
  void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
 | 
						|
                                  MatchableInfo::AsmOperand &Op);
 | 
						|
 | 
						|
public:
 | 
						|
  AsmMatcherInfo(Record *AsmParser,
 | 
						|
                 CodeGenTarget &Target,
 | 
						|
                 RecordKeeper &Records);
 | 
						|
 | 
						|
  /// buildInfo - Construct the various tables used during matching.
 | 
						|
  void buildInfo();
 | 
						|
 | 
						|
  /// buildOperandMatchInfo - Build the necessary information to handle user
 | 
						|
  /// defined operand parsing methods.
 | 
						|
  void buildOperandMatchInfo();
 | 
						|
 | 
						|
  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
 | 
						|
  /// given operand.
 | 
						|
  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
 | 
						|
    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
 | 
						|
    std::map<Record*, SubtargetFeatureInfo*, LessRecordByID>::const_iterator I =
 | 
						|
      SubtargetFeatures.find(Def);
 | 
						|
    return I == SubtargetFeatures.end() ? nullptr : I->second;
 | 
						|
  }
 | 
						|
 | 
						|
  RecordKeeper &getRecords() const {
 | 
						|
    return Records;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // End anonymous namespace
 | 
						|
 | 
						|
void MatchableInfo::dump() {
 | 
						|
  errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
 | 
						|
 | 
						|
  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
 | 
						|
    AsmOperand &Op = AsmOperands[i];
 | 
						|
    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
 | 
						|
    errs() << '\"' << Op.Token << "\"\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static std::pair<StringRef, StringRef>
 | 
						|
parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
 | 
						|
  // Split via the '='.
 | 
						|
  std::pair<StringRef, StringRef> Ops = S.split('=');
 | 
						|
  if (Ops.second == "")
 | 
						|
    PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
 | 
						|
  // Trim whitespace and the leading '$' on the operand names.
 | 
						|
  size_t start = Ops.first.find_first_of('$');
 | 
						|
  if (start == std::string::npos)
 | 
						|
    PrintFatalError(Loc, "expected '$' prefix on asm operand name");
 | 
						|
  Ops.first = Ops.first.slice(start + 1, std::string::npos);
 | 
						|
  size_t end = Ops.first.find_last_of(" \t");
 | 
						|
  Ops.first = Ops.first.slice(0, end);
 | 
						|
  // Now the second operand.
 | 
						|
  start = Ops.second.find_first_of('$');
 | 
						|
  if (start == std::string::npos)
 | 
						|
    PrintFatalError(Loc, "expected '$' prefix on asm operand name");
 | 
						|
  Ops.second = Ops.second.slice(start + 1, std::string::npos);
 | 
						|
  end = Ops.second.find_last_of(" \t");
 | 
						|
  Ops.first = Ops.first.slice(0, end);
 | 
						|
  return Ops;
 | 
						|
}
 | 
						|
 | 
						|
void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
 | 
						|
  // Figure out which operands are aliased and mark them as tied.
 | 
						|
  std::pair<StringRef, StringRef> Ops =
 | 
						|
    parseTwoOperandConstraint(Constraint, TheDef->getLoc());
 | 
						|
 | 
						|
  // Find the AsmOperands that refer to the operands we're aliasing.
 | 
						|
  int SrcAsmOperand = findAsmOperandNamed(Ops.first);
 | 
						|
  int DstAsmOperand = findAsmOperandNamed(Ops.second);
 | 
						|
  if (SrcAsmOperand == -1)
 | 
						|
    PrintFatalError(TheDef->getLoc(),
 | 
						|
                    "unknown source two-operand alias operand '" + Ops.first +
 | 
						|
                    "'.");
 | 
						|
  if (DstAsmOperand == -1)
 | 
						|
    PrintFatalError(TheDef->getLoc(),
 | 
						|
                    "unknown destination two-operand alias operand '" +
 | 
						|
                    Ops.second + "'.");
 | 
						|
 | 
						|
  // Find the ResOperand that refers to the operand we're aliasing away
 | 
						|
  // and update it to refer to the combined operand instead.
 | 
						|
  for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
 | 
						|
    ResOperand &Op = ResOperands[i];
 | 
						|
    if (Op.Kind == ResOperand::RenderAsmOperand &&
 | 
						|
        Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
 | 
						|
      Op.AsmOperandNum = DstAsmOperand;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Remove the AsmOperand for the alias operand.
 | 
						|
  AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
 | 
						|
  // Adjust the ResOperand references to any AsmOperands that followed
 | 
						|
  // the one we just deleted.
 | 
						|
  for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
 | 
						|
    ResOperand &Op = ResOperands[i];
 | 
						|
    switch(Op.Kind) {
 | 
						|
    default:
 | 
						|
      // Nothing to do for operands that don't reference AsmOperands.
 | 
						|
      break;
 | 
						|
    case ResOperand::RenderAsmOperand:
 | 
						|
      if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
 | 
						|
        --Op.AsmOperandNum;
 | 
						|
      break;
 | 
						|
    case ResOperand::TiedOperand:
 | 
						|
      if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
 | 
						|
        --Op.TiedOperandNum;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MatchableInfo::initialize(const AsmMatcherInfo &Info,
 | 
						|
                               SmallPtrSet<Record*, 16> &SingletonRegisters,
 | 
						|
                               int AsmVariantNo, std::string &RegisterPrefix) {
 | 
						|
  AsmVariantID = AsmVariantNo;
 | 
						|
  AsmString =
 | 
						|
    CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
 | 
						|
 | 
						|
  tokenizeAsmString(Info);
 | 
						|
 | 
						|
  // Compute the require features.
 | 
						|
  std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
 | 
						|
  for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
 | 
						|
    if (SubtargetFeatureInfo *Feature =
 | 
						|
        Info.getSubtargetFeature(Predicates[i]))
 | 
						|
      RequiredFeatures.push_back(Feature);
 | 
						|
 | 
						|
  // Collect singleton registers, if used.
 | 
						|
  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
 | 
						|
    extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
 | 
						|
    if (Record *Reg = AsmOperands[i].SingletonReg)
 | 
						|
      SingletonRegisters.insert(Reg);
 | 
						|
  }
 | 
						|
 | 
						|
  const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
 | 
						|
  if (!DepMask)
 | 
						|
    DepMask = TheDef->getValue("ComplexDeprecationPredicate");
 | 
						|
 | 
						|
  HasDeprecation =
 | 
						|
      DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
 | 
						|
}
 | 
						|
 | 
						|
/// tokenizeAsmString - Tokenize a simplified assembly string.
 | 
						|
void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) {
 | 
						|
  StringRef String = AsmString;
 | 
						|
  unsigned Prev = 0;
 | 
						|
  bool InTok = true;
 | 
						|
  for (unsigned i = 0, e = String.size(); i != e; ++i) {
 | 
						|
    switch (String[i]) {
 | 
						|
    case '[':
 | 
						|
    case ']':
 | 
						|
    case '*':
 | 
						|
    case '!':
 | 
						|
    case ' ':
 | 
						|
    case '\t':
 | 
						|
    case ',':
 | 
						|
      if (InTok) {
 | 
						|
        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
 | 
						|
        InTok = false;
 | 
						|
      }
 | 
						|
      if (!isspace(String[i]) && String[i] != ',')
 | 
						|
        AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
 | 
						|
      Prev = i + 1;
 | 
						|
      break;
 | 
						|
 | 
						|
    case '\\':
 | 
						|
      if (InTok) {
 | 
						|
        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
 | 
						|
        InTok = false;
 | 
						|
      }
 | 
						|
      ++i;
 | 
						|
      assert(i != String.size() && "Invalid quoted character");
 | 
						|
      AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
 | 
						|
      Prev = i + 1;
 | 
						|
      break;
 | 
						|
 | 
						|
    case '$': {
 | 
						|
      if (InTok) {
 | 
						|
        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
 | 
						|
        InTok = false;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this isn't "${", treat like a normal token.
 | 
						|
      if (i + 1 == String.size() || String[i + 1] != '{') {
 | 
						|
        Prev = i;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
 | 
						|
      assert(End != String.end() && "Missing brace in operand reference!");
 | 
						|
      size_t EndPos = End - String.begin();
 | 
						|
      AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
 | 
						|
      Prev = EndPos + 1;
 | 
						|
      i = EndPos;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case '.':
 | 
						|
      if (!Info.AsmParser->getValueAsBit("MnemonicContainsDot")) {
 | 
						|
        if (InTok)
 | 
						|
          AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
 | 
						|
        Prev = i;
 | 
						|
      }
 | 
						|
      InTok = true;
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
      InTok = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (InTok && Prev != String.size())
 | 
						|
    AsmOperands.push_back(AsmOperand(String.substr(Prev)));
 | 
						|
 | 
						|
  // The first token of the instruction is the mnemonic, which must be a
 | 
						|
  // simple string, not a $foo variable or a singleton register.
 | 
						|
  if (AsmOperands.empty())
 | 
						|
    PrintFatalError(TheDef->getLoc(),
 | 
						|
                  "Instruction '" + TheDef->getName() + "' has no tokens");
 | 
						|
  Mnemonic = AsmOperands[0].Token;
 | 
						|
  if (Mnemonic.empty())
 | 
						|
    PrintFatalError(TheDef->getLoc(),
 | 
						|
                  "Missing instruction mnemonic");
 | 
						|
  // FIXME : Check and raise an error if it is a register.
 | 
						|
  if (Mnemonic[0] == '$')
 | 
						|
    PrintFatalError(TheDef->getLoc(),
 | 
						|
                    "Invalid instruction mnemonic '" + Mnemonic + "'!");
 | 
						|
 | 
						|
  // Remove the first operand, it is tracked in the mnemonic field.
 | 
						|
  AsmOperands.erase(AsmOperands.begin());
 | 
						|
}
 | 
						|
 | 
						|
bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
 | 
						|
  // Reject matchables with no .s string.
 | 
						|
  if (AsmString.empty())
 | 
						|
    PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
 | 
						|
 | 
						|
  // Reject any matchables with a newline in them, they should be marked
 | 
						|
  // isCodeGenOnly if they are pseudo instructions.
 | 
						|
  if (AsmString.find('\n') != std::string::npos)
 | 
						|
    PrintFatalError(TheDef->getLoc(),
 | 
						|
                  "multiline instruction is not valid for the asmparser, "
 | 
						|
                  "mark it isCodeGenOnly");
 | 
						|
 | 
						|
  // Remove comments from the asm string.  We know that the asmstring only
 | 
						|
  // has one line.
 | 
						|
  if (!CommentDelimiter.empty() &&
 | 
						|
      StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
 | 
						|
    PrintFatalError(TheDef->getLoc(),
 | 
						|
                  "asmstring for instruction has comment character in it, "
 | 
						|
                  "mark it isCodeGenOnly");
 | 
						|
 | 
						|
  // Reject matchables with operand modifiers, these aren't something we can
 | 
						|
  // handle, the target should be refactored to use operands instead of
 | 
						|
  // modifiers.
 | 
						|
  //
 | 
						|
  // Also, check for instructions which reference the operand multiple times;
 | 
						|
  // this implies a constraint we would not honor.
 | 
						|
  std::set<std::string> OperandNames;
 | 
						|
  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
 | 
						|
    StringRef Tok = AsmOperands[i].Token;
 | 
						|
    if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
 | 
						|
      PrintFatalError(TheDef->getLoc(),
 | 
						|
                      "matchable with operand modifier '" + Tok +
 | 
						|
                      "' not supported by asm matcher.  Mark isCodeGenOnly!");
 | 
						|
 | 
						|
    // Verify that any operand is only mentioned once.
 | 
						|
    // We reject aliases and ignore instructions for now.
 | 
						|
    if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
 | 
						|
      if (!Hack)
 | 
						|
        PrintFatalError(TheDef->getLoc(),
 | 
						|
                        "ERROR: matchable with tied operand '" + Tok +
 | 
						|
                        "' can never be matched!");
 | 
						|
      // FIXME: Should reject these.  The ARM backend hits this with $lane in a
 | 
						|
      // bunch of instructions.  It is unclear what the right answer is.
 | 
						|
      DEBUG({
 | 
						|
        errs() << "warning: '" << TheDef->getName() << "': "
 | 
						|
               << "ignoring instruction with tied operand '"
 | 
						|
               << Tok << "'\n";
 | 
						|
      });
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// extractSingletonRegisterForAsmOperand - Extract singleton register,
 | 
						|
/// if present, from specified token.
 | 
						|
void MatchableInfo::
 | 
						|
extractSingletonRegisterForAsmOperand(unsigned OperandNo,
 | 
						|
                                      const AsmMatcherInfo &Info,
 | 
						|
                                      std::string &RegisterPrefix) {
 | 
						|
  StringRef Tok = AsmOperands[OperandNo].Token;
 | 
						|
  if (RegisterPrefix.empty()) {
 | 
						|
    std::string LoweredTok = Tok.lower();
 | 
						|
    if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
 | 
						|
      AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Tok.startswith(RegisterPrefix))
 | 
						|
    return;
 | 
						|
 | 
						|
  StringRef RegName = Tok.substr(RegisterPrefix.size());
 | 
						|
  if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
 | 
						|
    AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
 | 
						|
 | 
						|
  // If there is no register prefix (i.e. "%" in "%eax"), then this may
 | 
						|
  // be some random non-register token, just ignore it.
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
static std::string getEnumNameForToken(StringRef Str) {
 | 
						|
  std::string Res;
 | 
						|
 | 
						|
  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
 | 
						|
    switch (*it) {
 | 
						|
    case '*': Res += "_STAR_"; break;
 | 
						|
    case '%': Res += "_PCT_"; break;
 | 
						|
    case ':': Res += "_COLON_"; break;
 | 
						|
    case '!': Res += "_EXCLAIM_"; break;
 | 
						|
    case '.': Res += "_DOT_"; break;
 | 
						|
    case '<': Res += "_LT_"; break;
 | 
						|
    case '>': Res += "_GT_"; break;
 | 
						|
    default:
 | 
						|
      if ((*it >= 'A' && *it <= 'Z') ||
 | 
						|
          (*it >= 'a' && *it <= 'z') ||
 | 
						|
          (*it >= '0' && *it <= '9'))
 | 
						|
        Res += *it;
 | 
						|
      else
 | 
						|
        Res += "_" + utostr((unsigned) *it) + "_";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
 | 
						|
  ClassInfo *&Entry = TokenClasses[Token];
 | 
						|
 | 
						|
  if (!Entry) {
 | 
						|
    Entry = new ClassInfo();
 | 
						|
    Entry->Kind = ClassInfo::Token;
 | 
						|
    Entry->ClassName = "Token";
 | 
						|
    Entry->Name = "MCK_" + getEnumNameForToken(Token);
 | 
						|
    Entry->ValueName = Token;
 | 
						|
    Entry->PredicateMethod = "<invalid>";
 | 
						|
    Entry->RenderMethod = "<invalid>";
 | 
						|
    Entry->ParserMethod = "";
 | 
						|
    Entry->DiagnosticType = "";
 | 
						|
    Classes.push_back(Entry);
 | 
						|
  }
 | 
						|
 | 
						|
  return Entry;
 | 
						|
}
 | 
						|
 | 
						|
ClassInfo *
 | 
						|
AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
 | 
						|
                                int SubOpIdx) {
 | 
						|
  Record *Rec = OI.Rec;
 | 
						|
  if (SubOpIdx != -1)
 | 
						|
    Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
 | 
						|
  return getOperandClass(Rec, SubOpIdx);
 | 
						|
}
 | 
						|
 | 
						|
ClassInfo *
 | 
						|
AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
 | 
						|
  if (Rec->isSubClassOf("RegisterOperand")) {
 | 
						|
    // RegisterOperand may have an associated ParserMatchClass. If it does,
 | 
						|
    // use it, else just fall back to the underlying register class.
 | 
						|
    const RecordVal *R = Rec->getValue("ParserMatchClass");
 | 
						|
    if (!R || !R->getValue())
 | 
						|
      PrintFatalError("Record `" + Rec->getName() +
 | 
						|
        "' does not have a ParserMatchClass!\n");
 | 
						|
 | 
						|
    if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
 | 
						|
      Record *MatchClass = DI->getDef();
 | 
						|
      if (ClassInfo *CI = AsmOperandClasses[MatchClass])
 | 
						|
        return CI;
 | 
						|
    }
 | 
						|
 | 
						|
    // No custom match class. Just use the register class.
 | 
						|
    Record *ClassRec = Rec->getValueAsDef("RegClass");
 | 
						|
    if (!ClassRec)
 | 
						|
      PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
 | 
						|
                    "' has no associated register class!\n");
 | 
						|
    if (ClassInfo *CI = RegisterClassClasses[ClassRec])
 | 
						|
      return CI;
 | 
						|
    PrintFatalError(Rec->getLoc(), "register class has no class info!");
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  if (Rec->isSubClassOf("RegisterClass")) {
 | 
						|
    if (ClassInfo *CI = RegisterClassClasses[Rec])
 | 
						|
      return CI;
 | 
						|
    PrintFatalError(Rec->getLoc(), "register class has no class info!");
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Rec->isSubClassOf("Operand"))
 | 
						|
    PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
 | 
						|
                  "' does not derive from class Operand!\n");
 | 
						|
  Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
 | 
						|
  if (ClassInfo *CI = AsmOperandClasses[MatchClass])
 | 
						|
    return CI;
 | 
						|
 | 
						|
  PrintFatalError(Rec->getLoc(), "operand has no match class!");
 | 
						|
}
 | 
						|
 | 
						|
struct LessRegisterSet {
 | 
						|
  bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
 | 
						|
    // std::set<T> defines its own compariso "operator<", but it
 | 
						|
    // performs a lexicographical comparison by T's innate comparison
 | 
						|
    // for some reason. We don't want non-deterministic pointer
 | 
						|
    // comparisons so use this instead.
 | 
						|
    return std::lexicographical_compare(LHS.begin(), LHS.end(),
 | 
						|
                                        RHS.begin(), RHS.end(),
 | 
						|
                                        LessRecordByID());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
void AsmMatcherInfo::
 | 
						|
buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
 | 
						|
  const std::vector<CodeGenRegister*> &Registers =
 | 
						|
    Target.getRegBank().getRegisters();
 | 
						|
  ArrayRef<CodeGenRegisterClass*> RegClassList =
 | 
						|
    Target.getRegBank().getRegClasses();
 | 
						|
 | 
						|
  typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
 | 
						|
 | 
						|
  // The register sets used for matching.
 | 
						|
  RegisterSetSet RegisterSets;
 | 
						|
 | 
						|
  // Gather the defined sets.
 | 
						|
  for (ArrayRef<CodeGenRegisterClass*>::const_iterator it =
 | 
						|
         RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
 | 
						|
    RegisterSets.insert(RegisterSet(
 | 
						|
        (*it)->getOrder().begin(), (*it)->getOrder().end()));
 | 
						|
 | 
						|
  // Add any required singleton sets.
 | 
						|
  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
 | 
						|
       ie = SingletonRegisters.end(); it != ie; ++it) {
 | 
						|
    Record *Rec = *it;
 | 
						|
    RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
 | 
						|
  }
 | 
						|
 | 
						|
  // Introduce derived sets where necessary (when a register does not determine
 | 
						|
  // a unique register set class), and build the mapping of registers to the set
 | 
						|
  // they should classify to.
 | 
						|
  std::map<Record*, RegisterSet> RegisterMap;
 | 
						|
  for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(),
 | 
						|
         ie = Registers.end(); it != ie; ++it) {
 | 
						|
    const CodeGenRegister &CGR = **it;
 | 
						|
    // Compute the intersection of all sets containing this register.
 | 
						|
    RegisterSet ContainingSet;
 | 
						|
 | 
						|
    for (RegisterSetSet::iterator it = RegisterSets.begin(),
 | 
						|
           ie = RegisterSets.end(); it != ie; ++it) {
 | 
						|
      if (!it->count(CGR.TheDef))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (ContainingSet.empty()) {
 | 
						|
        ContainingSet = *it;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      RegisterSet Tmp;
 | 
						|
      std::swap(Tmp, ContainingSet);
 | 
						|
      std::insert_iterator<RegisterSet> II(ContainingSet,
 | 
						|
                                           ContainingSet.begin());
 | 
						|
      std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II,
 | 
						|
                            LessRecordByID());
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ContainingSet.empty()) {
 | 
						|
      RegisterSets.insert(ContainingSet);
 | 
						|
      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Construct the register classes.
 | 
						|
  std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
 | 
						|
  unsigned Index = 0;
 | 
						|
  for (RegisterSetSet::iterator it = RegisterSets.begin(),
 | 
						|
         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
 | 
						|
    ClassInfo *CI = new ClassInfo();
 | 
						|
    CI->Kind = ClassInfo::RegisterClass0 + Index;
 | 
						|
    CI->ClassName = "Reg" + utostr(Index);
 | 
						|
    CI->Name = "MCK_Reg" + utostr(Index);
 | 
						|
    CI->ValueName = "";
 | 
						|
    CI->PredicateMethod = ""; // unused
 | 
						|
    CI->RenderMethod = "addRegOperands";
 | 
						|
    CI->Registers = *it;
 | 
						|
    // FIXME: diagnostic type.
 | 
						|
    CI->DiagnosticType = "";
 | 
						|
    Classes.push_back(CI);
 | 
						|
    RegisterSetClasses.insert(std::make_pair(*it, CI));
 | 
						|
  }
 | 
						|
 | 
						|
  // Find the superclasses; we could compute only the subgroup lattice edges,
 | 
						|
  // but there isn't really a point.
 | 
						|
  for (RegisterSetSet::iterator it = RegisterSets.begin(),
 | 
						|
         ie = RegisterSets.end(); it != ie; ++it) {
 | 
						|
    ClassInfo *CI = RegisterSetClasses[*it];
 | 
						|
    for (RegisterSetSet::iterator it2 = RegisterSets.begin(),
 | 
						|
           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
 | 
						|
      if (*it != *it2 &&
 | 
						|
          std::includes(it2->begin(), it2->end(), it->begin(), it->end(),
 | 
						|
                        LessRecordByID()))
 | 
						|
        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Name the register classes which correspond to a user defined RegisterClass.
 | 
						|
  for (ArrayRef<CodeGenRegisterClass*>::const_iterator
 | 
						|
       it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
 | 
						|
    const CodeGenRegisterClass &RC = **it;
 | 
						|
    // Def will be NULL for non-user defined register classes.
 | 
						|
    Record *Def = RC.getDef();
 | 
						|
    if (!Def)
 | 
						|
      continue;
 | 
						|
    ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
 | 
						|
                                                   RC.getOrder().end())];
 | 
						|
    if (CI->ValueName.empty()) {
 | 
						|
      CI->ClassName = RC.getName();
 | 
						|
      CI->Name = "MCK_" + RC.getName();
 | 
						|
      CI->ValueName = RC.getName();
 | 
						|
    } else
 | 
						|
      CI->ValueName = CI->ValueName + "," + RC.getName();
 | 
						|
 | 
						|
    RegisterClassClasses.insert(std::make_pair(Def, CI));
 | 
						|
  }
 | 
						|
 | 
						|
  // Populate the map for individual registers.
 | 
						|
  for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
 | 
						|
         ie = RegisterMap.end(); it != ie; ++it)
 | 
						|
    RegisterClasses[it->first] = RegisterSetClasses[it->second];
 | 
						|
 | 
						|
  // Name the register classes which correspond to singleton registers.
 | 
						|
  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
 | 
						|
         ie = SingletonRegisters.end(); it != ie; ++it) {
 | 
						|
    Record *Rec = *it;
 | 
						|
    ClassInfo *CI = RegisterClasses[Rec];
 | 
						|
    assert(CI && "Missing singleton register class info!");
 | 
						|
 | 
						|
    if (CI->ValueName.empty()) {
 | 
						|
      CI->ClassName = Rec->getName();
 | 
						|
      CI->Name = "MCK_" + Rec->getName();
 | 
						|
      CI->ValueName = Rec->getName();
 | 
						|
    } else
 | 
						|
      CI->ValueName = CI->ValueName + "," + Rec->getName();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AsmMatcherInfo::buildOperandClasses() {
 | 
						|
  std::vector<Record*> AsmOperands =
 | 
						|
    Records.getAllDerivedDefinitions("AsmOperandClass");
 | 
						|
 | 
						|
  // Pre-populate AsmOperandClasses map.
 | 
						|
  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
 | 
						|
         ie = AsmOperands.end(); it != ie; ++it)
 | 
						|
    AsmOperandClasses[*it] = new ClassInfo();
 | 
						|
 | 
						|
  unsigned Index = 0;
 | 
						|
  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
 | 
						|
         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
 | 
						|
    ClassInfo *CI = AsmOperandClasses[*it];
 | 
						|
    CI->Kind = ClassInfo::UserClass0 + Index;
 | 
						|
 | 
						|
    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
 | 
						|
    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
 | 
						|
      DefInit *DI = dyn_cast<DefInit>(Supers->getElement(i));
 | 
						|
      if (!DI) {
 | 
						|
        PrintError((*it)->getLoc(), "Invalid super class reference!");
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
 | 
						|
      if (!SC)
 | 
						|
        PrintError((*it)->getLoc(), "Invalid super class reference!");
 | 
						|
      else
 | 
						|
        CI->SuperClasses.push_back(SC);
 | 
						|
    }
 | 
						|
    CI->ClassName = (*it)->getValueAsString("Name");
 | 
						|
    CI->Name = "MCK_" + CI->ClassName;
 | 
						|
    CI->ValueName = (*it)->getName();
 | 
						|
 | 
						|
    // Get or construct the predicate method name.
 | 
						|
    Init *PMName = (*it)->getValueInit("PredicateMethod");
 | 
						|
    if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
 | 
						|
      CI->PredicateMethod = SI->getValue();
 | 
						|
    } else {
 | 
						|
      assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
 | 
						|
      CI->PredicateMethod = "is" + CI->ClassName;
 | 
						|
    }
 | 
						|
 | 
						|
    // Get or construct the render method name.
 | 
						|
    Init *RMName = (*it)->getValueInit("RenderMethod");
 | 
						|
    if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
 | 
						|
      CI->RenderMethod = SI->getValue();
 | 
						|
    } else {
 | 
						|
      assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
 | 
						|
      CI->RenderMethod = "add" + CI->ClassName + "Operands";
 | 
						|
    }
 | 
						|
 | 
						|
    // Get the parse method name or leave it as empty.
 | 
						|
    Init *PRMName = (*it)->getValueInit("ParserMethod");
 | 
						|
    if (StringInit *SI = dyn_cast<StringInit>(PRMName))
 | 
						|
      CI->ParserMethod = SI->getValue();
 | 
						|
 | 
						|
    // Get the diagnostic type or leave it as empty.
 | 
						|
    // Get the parse method name or leave it as empty.
 | 
						|
    Init *DiagnosticType = (*it)->getValueInit("DiagnosticType");
 | 
						|
    if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
 | 
						|
      CI->DiagnosticType = SI->getValue();
 | 
						|
 | 
						|
    AsmOperandClasses[*it] = CI;
 | 
						|
    Classes.push_back(CI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
 | 
						|
                               CodeGenTarget &target,
 | 
						|
                               RecordKeeper &records)
 | 
						|
  : Records(records), AsmParser(asmParser), Target(target) {
 | 
						|
}
 | 
						|
 | 
						|
/// buildOperandMatchInfo - Build the necessary information to handle user
 | 
						|
/// defined operand parsing methods.
 | 
						|
void AsmMatcherInfo::buildOperandMatchInfo() {
 | 
						|
 | 
						|
  /// Map containing a mask with all operands indices that can be found for
 | 
						|
  /// that class inside a instruction.
 | 
						|
  typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
 | 
						|
  OpClassMaskTy OpClassMask;
 | 
						|
 | 
						|
  for (std::vector<MatchableInfo*>::const_iterator it =
 | 
						|
       Matchables.begin(), ie = Matchables.end();
 | 
						|
       it != ie; ++it) {
 | 
						|
    MatchableInfo &II = **it;
 | 
						|
    OpClassMask.clear();
 | 
						|
 | 
						|
    // Keep track of all operands of this instructions which belong to the
 | 
						|
    // same class.
 | 
						|
    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
 | 
						|
      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
 | 
						|
      if (Op.Class->ParserMethod.empty())
 | 
						|
        continue;
 | 
						|
      unsigned &OperandMask = OpClassMask[Op.Class];
 | 
						|
      OperandMask |= (1 << i);
 | 
						|
    }
 | 
						|
 | 
						|
    // Generate operand match info for each mnemonic/operand class pair.
 | 
						|
    for (OpClassMaskTy::iterator iit = OpClassMask.begin(),
 | 
						|
         iie = OpClassMask.end(); iit != iie; ++iit) {
 | 
						|
      unsigned OpMask = iit->second;
 | 
						|
      ClassInfo *CI = iit->first;
 | 
						|
      OperandMatchInfo.push_back(OperandMatchEntry::create(&II, CI, OpMask));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AsmMatcherInfo::buildInfo() {
 | 
						|
  // Build information about all of the AssemblerPredicates.
 | 
						|
  std::vector<Record*> AllPredicates =
 | 
						|
    Records.getAllDerivedDefinitions("Predicate");
 | 
						|
  for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
 | 
						|
    Record *Pred = AllPredicates[i];
 | 
						|
    // Ignore predicates that are not intended for the assembler.
 | 
						|
    if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (Pred->getName().empty())
 | 
						|
      PrintFatalError(Pred->getLoc(), "Predicate has no name!");
 | 
						|
 | 
						|
    unsigned FeatureNo = SubtargetFeatures.size();
 | 
						|
    SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
 | 
						|
    DEBUG(SubtargetFeatures[Pred]->dump());
 | 
						|
    assert(FeatureNo < 32 && "Too many subtarget features!");
 | 
						|
  }
 | 
						|
 | 
						|
  // Parse the instructions; we need to do this first so that we can gather the
 | 
						|
  // singleton register classes.
 | 
						|
  SmallPtrSet<Record*, 16> SingletonRegisters;
 | 
						|
  unsigned VariantCount = Target.getAsmParserVariantCount();
 | 
						|
  for (unsigned VC = 0; VC != VariantCount; ++VC) {
 | 
						|
    Record *AsmVariant = Target.getAsmParserVariant(VC);
 | 
						|
    std::string CommentDelimiter =
 | 
						|
      AsmVariant->getValueAsString("CommentDelimiter");
 | 
						|
    std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
 | 
						|
    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
 | 
						|
 | 
						|
    for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
 | 
						|
           E = Target.inst_end(); I != E; ++I) {
 | 
						|
      const CodeGenInstruction &CGI = **I;
 | 
						|
 | 
						|
      // If the tblgen -match-prefix option is specified (for tblgen hackers),
 | 
						|
      // filter the set of instructions we consider.
 | 
						|
      if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Ignore "codegen only" instructions.
 | 
						|
      if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
 | 
						|
        continue;
 | 
						|
 | 
						|
      std::unique_ptr<MatchableInfo> II(new MatchableInfo(CGI));
 | 
						|
 | 
						|
      II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
 | 
						|
 | 
						|
      // Ignore instructions which shouldn't be matched and diagnose invalid
 | 
						|
      // instruction definitions with an error.
 | 
						|
      if (!II->validate(CommentDelimiter, true))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
 | 
						|
      //
 | 
						|
      // FIXME: This is a total hack.
 | 
						|
      if (StringRef(II->TheDef->getName()).startswith("Int_") ||
 | 
						|
          StringRef(II->TheDef->getName()).endswith("_Int"))
 | 
						|
        continue;
 | 
						|
 | 
						|
      Matchables.push_back(II.release());
 | 
						|
    }
 | 
						|
 | 
						|
    // Parse all of the InstAlias definitions and stick them in the list of
 | 
						|
    // matchables.
 | 
						|
    std::vector<Record*> AllInstAliases =
 | 
						|
      Records.getAllDerivedDefinitions("InstAlias");
 | 
						|
    for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
 | 
						|
      CodeGenInstAlias *Alias =
 | 
						|
          new CodeGenInstAlias(AllInstAliases[i], AsmVariantNo, Target);
 | 
						|
 | 
						|
      // If the tblgen -match-prefix option is specified (for tblgen hackers),
 | 
						|
      // filter the set of instruction aliases we consider, based on the target
 | 
						|
      // instruction.
 | 
						|
      if (!StringRef(Alias->ResultInst->TheDef->getName())
 | 
						|
            .startswith( MatchPrefix))
 | 
						|
        continue;
 | 
						|
 | 
						|
      std::unique_ptr<MatchableInfo> II(new MatchableInfo(Alias));
 | 
						|
 | 
						|
      II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
 | 
						|
 | 
						|
      // Validate the alias definitions.
 | 
						|
      II->validate(CommentDelimiter, false);
 | 
						|
 | 
						|
      Matchables.push_back(II.release());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Build info for the register classes.
 | 
						|
  buildRegisterClasses(SingletonRegisters);
 | 
						|
 | 
						|
  // Build info for the user defined assembly operand classes.
 | 
						|
  buildOperandClasses();
 | 
						|
 | 
						|
  // Build the information about matchables, now that we have fully formed
 | 
						|
  // classes.
 | 
						|
  std::vector<MatchableInfo*> NewMatchables;
 | 
						|
  for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
 | 
						|
         ie = Matchables.end(); it != ie; ++it) {
 | 
						|
    MatchableInfo *II = *it;
 | 
						|
 | 
						|
    // Parse the tokens after the mnemonic.
 | 
						|
    // Note: buildInstructionOperandReference may insert new AsmOperands, so
 | 
						|
    // don't precompute the loop bound.
 | 
						|
    for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
 | 
						|
      MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
 | 
						|
      StringRef Token = Op.Token;
 | 
						|
 | 
						|
      // Check for singleton registers.
 | 
						|
      if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
 | 
						|
        Op.Class = RegisterClasses[RegRecord];
 | 
						|
        assert(Op.Class && Op.Class->Registers.size() == 1 &&
 | 
						|
               "Unexpected class for singleton register");
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check for simple tokens.
 | 
						|
      if (Token[0] != '$') {
 | 
						|
        Op.Class = getTokenClass(Token);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Token.size() > 1 && isdigit(Token[1])) {
 | 
						|
        Op.Class = getTokenClass(Token);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise this is an operand reference.
 | 
						|
      StringRef OperandName;
 | 
						|
      if (Token[1] == '{')
 | 
						|
        OperandName = Token.substr(2, Token.size() - 3);
 | 
						|
      else
 | 
						|
        OperandName = Token.substr(1);
 | 
						|
 | 
						|
      if (II->DefRec.is<const CodeGenInstruction*>())
 | 
						|
        buildInstructionOperandReference(II, OperandName, i);
 | 
						|
      else
 | 
						|
        buildAliasOperandReference(II, OperandName, Op);
 | 
						|
    }
 | 
						|
 | 
						|
    if (II->DefRec.is<const CodeGenInstruction*>()) {
 | 
						|
      II->buildInstructionResultOperands();
 | 
						|
      // If the instruction has a two-operand alias, build up the
 | 
						|
      // matchable here. We'll add them in bulk at the end to avoid
 | 
						|
      // confusing this loop.
 | 
						|
      std::string Constraint =
 | 
						|
        II->TheDef->getValueAsString("TwoOperandAliasConstraint");
 | 
						|
      if (Constraint != "") {
 | 
						|
        // Start by making a copy of the original matchable.
 | 
						|
        std::unique_ptr<MatchableInfo> AliasII(new MatchableInfo(*II));
 | 
						|
 | 
						|
        // Adjust it to be a two-operand alias.
 | 
						|
        AliasII->formTwoOperandAlias(Constraint);
 | 
						|
 | 
						|
        // Add the alias to the matchables list.
 | 
						|
        NewMatchables.push_back(AliasII.release());
 | 
						|
      }
 | 
						|
    } else
 | 
						|
      II->buildAliasResultOperands();
 | 
						|
  }
 | 
						|
  if (!NewMatchables.empty())
 | 
						|
    Matchables.insert(Matchables.end(), NewMatchables.begin(),
 | 
						|
                      NewMatchables.end());
 | 
						|
 | 
						|
  // Process token alias definitions and set up the associated superclass
 | 
						|
  // information.
 | 
						|
  std::vector<Record*> AllTokenAliases =
 | 
						|
    Records.getAllDerivedDefinitions("TokenAlias");
 | 
						|
  for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
 | 
						|
    Record *Rec = AllTokenAliases[i];
 | 
						|
    ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
 | 
						|
    ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
 | 
						|
    if (FromClass == ToClass)
 | 
						|
      PrintFatalError(Rec->getLoc(),
 | 
						|
                    "error: Destination value identical to source value.");
 | 
						|
    FromClass->SuperClasses.push_back(ToClass);
 | 
						|
  }
 | 
						|
 | 
						|
  // Reorder classes so that classes precede super classes.
 | 
						|
  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
 | 
						|
}
 | 
						|
 | 
						|
/// buildInstructionOperandReference - The specified operand is a reference to a
 | 
						|
/// named operand such as $src.  Resolve the Class and OperandInfo pointers.
 | 
						|
void AsmMatcherInfo::
 | 
						|
buildInstructionOperandReference(MatchableInfo *II,
 | 
						|
                                 StringRef OperandName,
 | 
						|
                                 unsigned AsmOpIdx) {
 | 
						|
  const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
 | 
						|
  const CGIOperandList &Operands = CGI.Operands;
 | 
						|
  MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
 | 
						|
 | 
						|
  // Map this token to an operand.
 | 
						|
  unsigned Idx;
 | 
						|
  if (!Operands.hasOperandNamed(OperandName, Idx))
 | 
						|
    PrintFatalError(II->TheDef->getLoc(),
 | 
						|
                    "error: unable to find operand: '" + OperandName + "'");
 | 
						|
 | 
						|
  // If the instruction operand has multiple suboperands, but the parser
 | 
						|
  // match class for the asm operand is still the default "ImmAsmOperand",
 | 
						|
  // then handle each suboperand separately.
 | 
						|
  if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
 | 
						|
    Record *Rec = Operands[Idx].Rec;
 | 
						|
    assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
 | 
						|
    Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
 | 
						|
    if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
 | 
						|
      // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
 | 
						|
      StringRef Token = Op->Token; // save this in case Op gets moved
 | 
						|
      for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
 | 
						|
        MatchableInfo::AsmOperand NewAsmOp(Token);
 | 
						|
        NewAsmOp.SubOpIdx = SI;
 | 
						|
        II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
 | 
						|
      }
 | 
						|
      // Replace Op with first suboperand.
 | 
						|
      Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
 | 
						|
      Op->SubOpIdx = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Set up the operand class.
 | 
						|
  Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
 | 
						|
 | 
						|
  // If the named operand is tied, canonicalize it to the untied operand.
 | 
						|
  // For example, something like:
 | 
						|
  //   (outs GPR:$dst), (ins GPR:$src)
 | 
						|
  // with an asmstring of
 | 
						|
  //   "inc $src"
 | 
						|
  // we want to canonicalize to:
 | 
						|
  //   "inc $dst"
 | 
						|
  // so that we know how to provide the $dst operand when filling in the result.
 | 
						|
  int OITied = -1;
 | 
						|
  if (Operands[Idx].MINumOperands == 1)
 | 
						|
    OITied = Operands[Idx].getTiedRegister();
 | 
						|
  if (OITied != -1) {
 | 
						|
    // The tied operand index is an MIOperand index, find the operand that
 | 
						|
    // contains it.
 | 
						|
    std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
 | 
						|
    OperandName = Operands[Idx.first].Name;
 | 
						|
    Op->SubOpIdx = Idx.second;
 | 
						|
  }
 | 
						|
 | 
						|
  Op->SrcOpName = OperandName;
 | 
						|
}
 | 
						|
 | 
						|
/// buildAliasOperandReference - When parsing an operand reference out of the
 | 
						|
/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
 | 
						|
/// operand reference is by looking it up in the result pattern definition.
 | 
						|
void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
 | 
						|
                                                StringRef OperandName,
 | 
						|
                                                MatchableInfo::AsmOperand &Op) {
 | 
						|
  const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
 | 
						|
 | 
						|
  // Set up the operand class.
 | 
						|
  for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
 | 
						|
    if (CGA.ResultOperands[i].isRecord() &&
 | 
						|
        CGA.ResultOperands[i].getName() == OperandName) {
 | 
						|
      // It's safe to go with the first one we find, because CodeGenInstAlias
 | 
						|
      // validates that all operands with the same name have the same record.
 | 
						|
      Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
 | 
						|
      // Use the match class from the Alias definition, not the
 | 
						|
      // destination instruction, as we may have an immediate that's
 | 
						|
      // being munged by the match class.
 | 
						|
      Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
 | 
						|
                                 Op.SubOpIdx);
 | 
						|
      Op.SrcOpName = OperandName;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  PrintFatalError(II->TheDef->getLoc(),
 | 
						|
                  "error: unable to find operand: '" + OperandName + "'");
 | 
						|
}
 | 
						|
 | 
						|
void MatchableInfo::buildInstructionResultOperands() {
 | 
						|
  const CodeGenInstruction *ResultInst = getResultInst();
 | 
						|
 | 
						|
  // Loop over all operands of the result instruction, determining how to
 | 
						|
  // populate them.
 | 
						|
  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
 | 
						|
    const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
 | 
						|
 | 
						|
    // If this is a tied operand, just copy from the previously handled operand.
 | 
						|
    int TiedOp = -1;
 | 
						|
    if (OpInfo.MINumOperands == 1)
 | 
						|
      TiedOp = OpInfo.getTiedRegister();
 | 
						|
    if (TiedOp != -1) {
 | 
						|
      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Find out what operand from the asmparser this MCInst operand comes from.
 | 
						|
    int SrcOperand = findAsmOperandNamed(OpInfo.Name);
 | 
						|
    if (OpInfo.Name.empty() || SrcOperand == -1) {
 | 
						|
      // This may happen for operands that are tied to a suboperand of a
 | 
						|
      // complex operand.  Simply use a dummy value here; nobody should
 | 
						|
      // use this operand slot.
 | 
						|
      // FIXME: The long term goal is for the MCOperand list to not contain
 | 
						|
      // tied operands at all.
 | 
						|
      ResOperands.push_back(ResOperand::getImmOp(0));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check if the one AsmOperand populates the entire operand.
 | 
						|
    unsigned NumOperands = OpInfo.MINumOperands;
 | 
						|
    if (AsmOperands[SrcOperand].SubOpIdx == -1) {
 | 
						|
      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add a separate ResOperand for each suboperand.
 | 
						|
    for (unsigned AI = 0; AI < NumOperands; ++AI) {
 | 
						|
      assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
 | 
						|
             AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
 | 
						|
             "unexpected AsmOperands for suboperands");
 | 
						|
      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MatchableInfo::buildAliasResultOperands() {
 | 
						|
  const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
 | 
						|
  const CodeGenInstruction *ResultInst = getResultInst();
 | 
						|
 | 
						|
  // Loop over all operands of the result instruction, determining how to
 | 
						|
  // populate them.
 | 
						|
  unsigned AliasOpNo = 0;
 | 
						|
  unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
 | 
						|
  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
 | 
						|
    const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
 | 
						|
 | 
						|
    // If this is a tied operand, just copy from the previously handled operand.
 | 
						|
    int TiedOp = -1;
 | 
						|
    if (OpInfo->MINumOperands == 1)
 | 
						|
      TiedOp = OpInfo->getTiedRegister();
 | 
						|
    if (TiedOp != -1) {
 | 
						|
      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle all the suboperands for this operand.
 | 
						|
    const std::string &OpName = OpInfo->Name;
 | 
						|
    for ( ; AliasOpNo <  LastOpNo &&
 | 
						|
            CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
 | 
						|
      int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
 | 
						|
 | 
						|
      // Find out what operand from the asmparser that this MCInst operand
 | 
						|
      // comes from.
 | 
						|
      switch (CGA.ResultOperands[AliasOpNo].Kind) {
 | 
						|
      case CodeGenInstAlias::ResultOperand::K_Record: {
 | 
						|
        StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
 | 
						|
        int SrcOperand = findAsmOperand(Name, SubIdx);
 | 
						|
        if (SrcOperand == -1)
 | 
						|
          PrintFatalError(TheDef->getLoc(), "Instruction '" +
 | 
						|
                        TheDef->getName() + "' has operand '" + OpName +
 | 
						|
                        "' that doesn't appear in asm string!");
 | 
						|
        unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
 | 
						|
        ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
 | 
						|
                                                        NumOperands));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case CodeGenInstAlias::ResultOperand::K_Imm: {
 | 
						|
        int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
 | 
						|
        ResOperands.push_back(ResOperand::getImmOp(ImmVal));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case CodeGenInstAlias::ResultOperand::K_Reg: {
 | 
						|
        Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
 | 
						|
        ResOperands.push_back(ResOperand::getRegOp(Reg));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getConverterOperandID(const std::string &Name,
 | 
						|
                                      SetVector<std::string> &Table,
 | 
						|
                                      bool &IsNew) {
 | 
						|
  IsNew = Table.insert(Name);
 | 
						|
 | 
						|
  unsigned ID = IsNew ? Table.size() - 1 :
 | 
						|
    std::find(Table.begin(), Table.end(), Name) - Table.begin();
 | 
						|
 | 
						|
  assert(ID < Table.size());
 | 
						|
 | 
						|
  return ID;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
 | 
						|
                             std::vector<MatchableInfo*> &Infos,
 | 
						|
                             raw_ostream &OS) {
 | 
						|
  SetVector<std::string> OperandConversionKinds;
 | 
						|
  SetVector<std::string> InstructionConversionKinds;
 | 
						|
  std::vector<std::vector<uint8_t> > ConversionTable;
 | 
						|
  size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
 | 
						|
 | 
						|
  // TargetOperandClass - This is the target's operand class, like X86Operand.
 | 
						|
  std::string TargetOperandClass = Target.getName() + "Operand";
 | 
						|
 | 
						|
  // Write the convert function to a separate stream, so we can drop it after
 | 
						|
  // the enum. We'll build up the conversion handlers for the individual
 | 
						|
  // operand types opportunistically as we encounter them.
 | 
						|
  std::string ConvertFnBody;
 | 
						|
  raw_string_ostream CvtOS(ConvertFnBody);
 | 
						|
  // Start the unified conversion function.
 | 
						|
  CvtOS << "void " << Target.getName() << ClassName << "::\n"
 | 
						|
        << "convertToMCInst(unsigned Kind, MCInst &Inst, "
 | 
						|
        << "unsigned Opcode,\n"
 | 
						|
        << "                const OperandVector"
 | 
						|
        << " &Operands) {\n"
 | 
						|
        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
 | 
						|
        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
 | 
						|
        << "  Inst.setOpcode(Opcode);\n"
 | 
						|
        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
 | 
						|
        << "    switch (*p) {\n"
 | 
						|
        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
 | 
						|
        << "    case CVT_Reg:\n"
 | 
						|
        << "      static_cast<" << TargetOperandClass
 | 
						|
        << "&>(*Operands[*(p + 1)]).addRegOperands(Inst, 1);\n"
 | 
						|
        << "      break;\n"
 | 
						|
        << "    case CVT_Tied:\n"
 | 
						|
        << "      Inst.addOperand(Inst.getOperand(*(p + 1)));\n"
 | 
						|
        << "      break;\n";
 | 
						|
 | 
						|
  std::string OperandFnBody;
 | 
						|
  raw_string_ostream OpOS(OperandFnBody);
 | 
						|
  // Start the operand number lookup function.
 | 
						|
  OpOS << "void " << Target.getName() << ClassName << "::\n"
 | 
						|
       << "convertToMapAndConstraints(unsigned Kind,\n";
 | 
						|
  OpOS.indent(27);
 | 
						|
  OpOS << "const OperandVector &Operands) {\n"
 | 
						|
       << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
 | 
						|
       << "  unsigned NumMCOperands = 0;\n"
 | 
						|
       << "  const uint8_t *Converter = ConversionTable[Kind];\n"
 | 
						|
       << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
 | 
						|
       << "    switch (*p) {\n"
 | 
						|
       << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
 | 
						|
       << "    case CVT_Reg:\n"
 | 
						|
       << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
 | 
						|
       << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
 | 
						|
       << "      ++NumMCOperands;\n"
 | 
						|
       << "      break;\n"
 | 
						|
       << "    case CVT_Tied:\n"
 | 
						|
       << "      ++NumMCOperands;\n"
 | 
						|
       << "      break;\n";
 | 
						|
 | 
						|
  // Pre-populate the operand conversion kinds with the standard always
 | 
						|
  // available entries.
 | 
						|
  OperandConversionKinds.insert("CVT_Done");
 | 
						|
  OperandConversionKinds.insert("CVT_Reg");
 | 
						|
  OperandConversionKinds.insert("CVT_Tied");
 | 
						|
  enum { CVT_Done, CVT_Reg, CVT_Tied };
 | 
						|
 | 
						|
  for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
 | 
						|
         ie = Infos.end(); it != ie; ++it) {
 | 
						|
    MatchableInfo &II = **it;
 | 
						|
 | 
						|
    // Check if we have a custom match function.
 | 
						|
    std::string AsmMatchConverter =
 | 
						|
      II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
 | 
						|
    if (!AsmMatchConverter.empty()) {
 | 
						|
      std::string Signature = "ConvertCustom_" + AsmMatchConverter;
 | 
						|
      II.ConversionFnKind = Signature;
 | 
						|
 | 
						|
      // Check if we have already generated this signature.
 | 
						|
      if (!InstructionConversionKinds.insert(Signature))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Remember this converter for the kind enum.
 | 
						|
      unsigned KindID = OperandConversionKinds.size();
 | 
						|
      OperandConversionKinds.insert("CVT_" +
 | 
						|
                                    getEnumNameForToken(AsmMatchConverter));
 | 
						|
 | 
						|
      // Add the converter row for this instruction.
 | 
						|
      ConversionTable.push_back(std::vector<uint8_t>());
 | 
						|
      ConversionTable.back().push_back(KindID);
 | 
						|
      ConversionTable.back().push_back(CVT_Done);
 | 
						|
 | 
						|
      // Add the handler to the conversion driver function.
 | 
						|
      CvtOS << "    case CVT_"
 | 
						|
            << getEnumNameForToken(AsmMatchConverter) << ":\n"
 | 
						|
            << "      " << AsmMatchConverter << "(Inst, Operands);\n"
 | 
						|
            << "      break;\n";
 | 
						|
 | 
						|
      // FIXME: Handle the operand number lookup for custom match functions.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Build the conversion function signature.
 | 
						|
    std::string Signature = "Convert";
 | 
						|
 | 
						|
    std::vector<uint8_t> ConversionRow;
 | 
						|
 | 
						|
    // Compute the convert enum and the case body.
 | 
						|
    MaxRowLength = std::max(MaxRowLength, II.ResOperands.size()*2 + 1 );
 | 
						|
 | 
						|
    for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
 | 
						|
      const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
 | 
						|
 | 
						|
      // Generate code to populate each result operand.
 | 
						|
      switch (OpInfo.Kind) {
 | 
						|
      case MatchableInfo::ResOperand::RenderAsmOperand: {
 | 
						|
        // This comes from something we parsed.
 | 
						|
        MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
 | 
						|
 | 
						|
        // Registers are always converted the same, don't duplicate the
 | 
						|
        // conversion function based on them.
 | 
						|
        Signature += "__";
 | 
						|
        std::string Class;
 | 
						|
        Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
 | 
						|
        Signature += Class;
 | 
						|
        Signature += utostr(OpInfo.MINumOperands);
 | 
						|
        Signature += "_" + itostr(OpInfo.AsmOperandNum);
 | 
						|
 | 
						|
        // Add the conversion kind, if necessary, and get the associated ID
 | 
						|
        // the index of its entry in the vector).
 | 
						|
        std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
 | 
						|
                                     Op.Class->RenderMethod);
 | 
						|
        Name = getEnumNameForToken(Name);
 | 
						|
 | 
						|
        bool IsNewConverter = false;
 | 
						|
        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
 | 
						|
                                            IsNewConverter);
 | 
						|
 | 
						|
        // Add the operand entry to the instruction kind conversion row.
 | 
						|
        ConversionRow.push_back(ID);
 | 
						|
        ConversionRow.push_back(OpInfo.AsmOperandNum + 1);
 | 
						|
 | 
						|
        if (!IsNewConverter)
 | 
						|
          break;
 | 
						|
 | 
						|
        // This is a new operand kind. Add a handler for it to the
 | 
						|
        // converter driver.
 | 
						|
        CvtOS << "    case " << Name << ":\n"
 | 
						|
              << "      static_cast<" << TargetOperandClass
 | 
						|
              << "&>(*Operands[*(p + 1)])." << Op.Class->RenderMethod
 | 
						|
              << "(Inst, " << OpInfo.MINumOperands << ");\n"
 | 
						|
              << "      break;\n";
 | 
						|
 | 
						|
        // Add a handler for the operand number lookup.
 | 
						|
        OpOS << "    case " << Name << ":\n"
 | 
						|
             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
 | 
						|
 | 
						|
        if (Op.Class->isRegisterClass())
 | 
						|
          OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
 | 
						|
        else
 | 
						|
          OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
 | 
						|
        OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
 | 
						|
             << "      break;\n";
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case MatchableInfo::ResOperand::TiedOperand: {
 | 
						|
        // If this operand is tied to a previous one, just copy the MCInst
 | 
						|
        // operand from the earlier one.We can only tie single MCOperand values.
 | 
						|
        assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
 | 
						|
        unsigned TiedOp = OpInfo.TiedOperandNum;
 | 
						|
        assert(i > TiedOp && "Tied operand precedes its target!");
 | 
						|
        Signature += "__Tie" + utostr(TiedOp);
 | 
						|
        ConversionRow.push_back(CVT_Tied);
 | 
						|
        ConversionRow.push_back(TiedOp);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case MatchableInfo::ResOperand::ImmOperand: {
 | 
						|
        int64_t Val = OpInfo.ImmVal;
 | 
						|
        std::string Ty = "imm_" + itostr(Val);
 | 
						|
        Signature += "__" + Ty;
 | 
						|
 | 
						|
        std::string Name = "CVT_" + Ty;
 | 
						|
        bool IsNewConverter = false;
 | 
						|
        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
 | 
						|
                                            IsNewConverter);
 | 
						|
        // Add the operand entry to the instruction kind conversion row.
 | 
						|
        ConversionRow.push_back(ID);
 | 
						|
        ConversionRow.push_back(0);
 | 
						|
 | 
						|
        if (!IsNewConverter)
 | 
						|
          break;
 | 
						|
 | 
						|
        CvtOS << "    case " << Name << ":\n"
 | 
						|
              << "      Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"
 | 
						|
              << "      break;\n";
 | 
						|
 | 
						|
        OpOS << "    case " << Name << ":\n"
 | 
						|
             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
 | 
						|
             << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
 | 
						|
             << "      ++NumMCOperands;\n"
 | 
						|
             << "      break;\n";
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case MatchableInfo::ResOperand::RegOperand: {
 | 
						|
        std::string Reg, Name;
 | 
						|
        if (!OpInfo.Register) {
 | 
						|
          Name = "reg0";
 | 
						|
          Reg = "0";
 | 
						|
        } else {
 | 
						|
          Reg = getQualifiedName(OpInfo.Register);
 | 
						|
          Name = "reg" + OpInfo.Register->getName();
 | 
						|
        }
 | 
						|
        Signature += "__" + Name;
 | 
						|
        Name = "CVT_" + Name;
 | 
						|
        bool IsNewConverter = false;
 | 
						|
        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
 | 
						|
                                            IsNewConverter);
 | 
						|
        // Add the operand entry to the instruction kind conversion row.
 | 
						|
        ConversionRow.push_back(ID);
 | 
						|
        ConversionRow.push_back(0);
 | 
						|
 | 
						|
        if (!IsNewConverter)
 | 
						|
          break;
 | 
						|
        CvtOS << "    case " << Name << ":\n"
 | 
						|
              << "      Inst.addOperand(MCOperand::CreateReg(" << Reg << "));\n"
 | 
						|
              << "      break;\n";
 | 
						|
 | 
						|
        OpOS << "    case " << Name << ":\n"
 | 
						|
             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
 | 
						|
             << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
 | 
						|
             << "      ++NumMCOperands;\n"
 | 
						|
             << "      break;\n";
 | 
						|
      }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If there were no operands, add to the signature to that effect
 | 
						|
    if (Signature == "Convert")
 | 
						|
      Signature += "_NoOperands";
 | 
						|
 | 
						|
    II.ConversionFnKind = Signature;
 | 
						|
 | 
						|
    // Save the signature. If we already have it, don't add a new row
 | 
						|
    // to the table.
 | 
						|
    if (!InstructionConversionKinds.insert(Signature))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Add the row to the table.
 | 
						|
    ConversionTable.push_back(ConversionRow);
 | 
						|
  }
 | 
						|
 | 
						|
  // Finish up the converter driver function.
 | 
						|
  CvtOS << "    }\n  }\n}\n\n";
 | 
						|
 | 
						|
  // Finish up the operand number lookup function.
 | 
						|
  OpOS << "    }\n  }\n}\n\n";
 | 
						|
 | 
						|
  OS << "namespace {\n";
 | 
						|
 | 
						|
  // Output the operand conversion kind enum.
 | 
						|
  OS << "enum OperatorConversionKind {\n";
 | 
						|
  for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i)
 | 
						|
    OS << "  " << OperandConversionKinds[i] << ",\n";
 | 
						|
  OS << "  CVT_NUM_CONVERTERS\n";
 | 
						|
  OS << "};\n\n";
 | 
						|
 | 
						|
  // Output the instruction conversion kind enum.
 | 
						|
  OS << "enum InstructionConversionKind {\n";
 | 
						|
  for (SetVector<std::string>::const_iterator
 | 
						|
         i = InstructionConversionKinds.begin(),
 | 
						|
         e = InstructionConversionKinds.end(); i != e; ++i)
 | 
						|
    OS << "  " << *i << ",\n";
 | 
						|
  OS << "  CVT_NUM_SIGNATURES\n";
 | 
						|
  OS << "};\n\n";
 | 
						|
 | 
						|
 | 
						|
  OS << "} // end anonymous namespace\n\n";
 | 
						|
 | 
						|
  // Output the conversion table.
 | 
						|
  OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
 | 
						|
     << MaxRowLength << "] = {\n";
 | 
						|
 | 
						|
  for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
 | 
						|
    assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
 | 
						|
    OS << "  // " << InstructionConversionKinds[Row] << "\n";
 | 
						|
    OS << "  { ";
 | 
						|
    for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
 | 
						|
      OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
 | 
						|
         << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
 | 
						|
    OS << "CVT_Done },\n";
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "};\n\n";
 | 
						|
 | 
						|
  // Spit out the conversion driver function.
 | 
						|
  OS << CvtOS.str();
 | 
						|
 | 
						|
  // Spit out the operand number lookup function.
 | 
						|
  OS << OpOS.str();
 | 
						|
}
 | 
						|
 | 
						|
/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
 | 
						|
static void emitMatchClassEnumeration(CodeGenTarget &Target,
 | 
						|
                                      std::vector<ClassInfo*> &Infos,
 | 
						|
                                      raw_ostream &OS) {
 | 
						|
  OS << "namespace {\n\n";
 | 
						|
 | 
						|
  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
 | 
						|
     << "/// instruction matching.\n";
 | 
						|
  OS << "enum MatchClassKind {\n";
 | 
						|
  OS << "  InvalidMatchClass = 0,\n";
 | 
						|
  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
 | 
						|
         ie = Infos.end(); it != ie; ++it) {
 | 
						|
    ClassInfo &CI = **it;
 | 
						|
    OS << "  " << CI.Name << ", // ";
 | 
						|
    if (CI.Kind == ClassInfo::Token) {
 | 
						|
      OS << "'" << CI.ValueName << "'\n";
 | 
						|
    } else if (CI.isRegisterClass()) {
 | 
						|
      if (!CI.ValueName.empty())
 | 
						|
        OS << "register class '" << CI.ValueName << "'\n";
 | 
						|
      else
 | 
						|
        OS << "derived register class\n";
 | 
						|
    } else {
 | 
						|
      OS << "user defined class '" << CI.ValueName << "'\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  OS << "  NumMatchClassKinds\n";
 | 
						|
  OS << "};\n\n";
 | 
						|
 | 
						|
  OS << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
/// emitValidateOperandClass - Emit the function to validate an operand class.
 | 
						|
static void emitValidateOperandClass(AsmMatcherInfo &Info,
 | 
						|
                                     raw_ostream &OS) {
 | 
						|
  OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
 | 
						|
     << "MatchClassKind Kind) {\n";
 | 
						|
  OS << "  " << Info.Target.getName() << "Operand &Operand = ("
 | 
						|
     << Info.Target.getName() << "Operand&)GOp;\n";
 | 
						|
 | 
						|
  // The InvalidMatchClass is not to match any operand.
 | 
						|
  OS << "  if (Kind == InvalidMatchClass)\n";
 | 
						|
  OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
 | 
						|
 | 
						|
  // Check for Token operands first.
 | 
						|
  // FIXME: Use a more specific diagnostic type.
 | 
						|
  OS << "  if (Operand.isToken())\n";
 | 
						|
  OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
 | 
						|
     << "             MCTargetAsmParser::Match_Success :\n"
 | 
						|
     << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
 | 
						|
 | 
						|
  // Check the user classes. We don't care what order since we're only
 | 
						|
  // actually matching against one of them.
 | 
						|
  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
 | 
						|
         ie = Info.Classes.end(); it != ie; ++it) {
 | 
						|
    ClassInfo &CI = **it;
 | 
						|
 | 
						|
    if (!CI.isUserClass())
 | 
						|
      continue;
 | 
						|
 | 
						|
    OS << "  // '" << CI.ClassName << "' class\n";
 | 
						|
    OS << "  if (Kind == " << CI.Name << ") {\n";
 | 
						|
    OS << "    if (Operand." << CI.PredicateMethod << "())\n";
 | 
						|
    OS << "      return MCTargetAsmParser::Match_Success;\n";
 | 
						|
    if (!CI.DiagnosticType.empty())
 | 
						|
      OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
 | 
						|
         << CI.DiagnosticType << ";\n";
 | 
						|
    OS << "  }\n\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for register operands, including sub-classes.
 | 
						|
  OS << "  if (Operand.isReg()) {\n";
 | 
						|
  OS << "    MatchClassKind OpKind;\n";
 | 
						|
  OS << "    switch (Operand.getReg()) {\n";
 | 
						|
  OS << "    default: OpKind = InvalidMatchClass; break;\n";
 | 
						|
  for (AsmMatcherInfo::RegisterClassesTy::iterator
 | 
						|
         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
 | 
						|
       it != ie; ++it)
 | 
						|
    OS << "    case " << Info.Target.getName() << "::"
 | 
						|
       << it->first->getName() << ": OpKind = " << it->second->Name
 | 
						|
       << "; break;\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  OS << "    return isSubclass(OpKind, Kind) ? "
 | 
						|
     << "MCTargetAsmParser::Match_Success :\n                             "
 | 
						|
     << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";
 | 
						|
 | 
						|
  // Generic fallthrough match failure case for operands that don't have
 | 
						|
  // specialized diagnostic types.
 | 
						|
  OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
 | 
						|
  OS << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
/// emitIsSubclass - Emit the subclass predicate function.
 | 
						|
static void emitIsSubclass(CodeGenTarget &Target,
 | 
						|
                           std::vector<ClassInfo*> &Infos,
 | 
						|
                           raw_ostream &OS) {
 | 
						|
  OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
 | 
						|
  OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
 | 
						|
  OS << "  if (A == B)\n";
 | 
						|
  OS << "    return true;\n\n";
 | 
						|
 | 
						|
  std::string OStr;
 | 
						|
  raw_string_ostream SS(OStr);
 | 
						|
  unsigned Count = 0;
 | 
						|
  SS << "  switch (A) {\n";
 | 
						|
  SS << "  default:\n";
 | 
						|
  SS << "    return false;\n";
 | 
						|
  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
 | 
						|
         ie = Infos.end(); it != ie; ++it) {
 | 
						|
    ClassInfo &A = **it;
 | 
						|
 | 
						|
    std::vector<StringRef> SuperClasses;
 | 
						|
    for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
 | 
						|
         ie = Infos.end(); it != ie; ++it) {
 | 
						|
      ClassInfo &B = **it;
 | 
						|
 | 
						|
      if (&A != &B && A.isSubsetOf(B))
 | 
						|
        SuperClasses.push_back(B.Name);
 | 
						|
    }
 | 
						|
 | 
						|
    if (SuperClasses.empty())
 | 
						|
      continue;
 | 
						|
    ++Count;
 | 
						|
 | 
						|
    SS << "\n  case " << A.Name << ":\n";
 | 
						|
 | 
						|
    if (SuperClasses.size() == 1) {
 | 
						|
      SS << "    return B == " << SuperClasses.back().str() << ";\n";
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!SuperClasses.empty()) {
 | 
						|
      SS << "    switch (B) {\n";
 | 
						|
      SS << "    default: return false;\n";
 | 
						|
      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
 | 
						|
        SS << "    case " << SuperClasses[i].str() << ": return true;\n";
 | 
						|
      SS << "    }\n";
 | 
						|
    } else {
 | 
						|
      // No case statement to emit
 | 
						|
      SS << "    return false;\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  SS << "  }\n";
 | 
						|
 | 
						|
  // If there were case statements emitted into the string stream, write them
 | 
						|
  // to the output stream, otherwise write the default.
 | 
						|
  if (Count)
 | 
						|
    OS << SS.str();
 | 
						|
  else
 | 
						|
    OS << "  return false;\n";
 | 
						|
 | 
						|
  OS << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
/// emitMatchTokenString - Emit the function to match a token string to the
 | 
						|
/// appropriate match class value.
 | 
						|
static void emitMatchTokenString(CodeGenTarget &Target,
 | 
						|
                                 std::vector<ClassInfo*> &Infos,
 | 
						|
                                 raw_ostream &OS) {
 | 
						|
  // Construct the match list.
 | 
						|
  std::vector<StringMatcher::StringPair> Matches;
 | 
						|
  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
 | 
						|
         ie = Infos.end(); it != ie; ++it) {
 | 
						|
    ClassInfo &CI = **it;
 | 
						|
 | 
						|
    if (CI.Kind == ClassInfo::Token)
 | 
						|
      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
 | 
						|
                                                  "return " + CI.Name + ";"));
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
 | 
						|
 | 
						|
  StringMatcher("Name", Matches, OS).Emit();
 | 
						|
 | 
						|
  OS << "  return InvalidMatchClass;\n";
 | 
						|
  OS << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
/// emitMatchRegisterName - Emit the function to match a string to the target
 | 
						|
/// specific register enum.
 | 
						|
static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
 | 
						|
                                  raw_ostream &OS) {
 | 
						|
  // Construct the match list.
 | 
						|
  std::vector<StringMatcher::StringPair> Matches;
 | 
						|
  const std::vector<CodeGenRegister*> &Regs =
 | 
						|
    Target.getRegBank().getRegisters();
 | 
						|
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
 | 
						|
    const CodeGenRegister *Reg = Regs[i];
 | 
						|
    if (Reg->TheDef->getValueAsString("AsmName").empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Matches.push_back(StringMatcher::StringPair(
 | 
						|
                                     Reg->TheDef->getValueAsString("AsmName"),
 | 
						|
                                     "return " + utostr(Reg->EnumValue) + ";"));
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
 | 
						|
 | 
						|
  StringMatcher("Name", Matches, OS).Emit();
 | 
						|
 | 
						|
  OS << "  return 0;\n";
 | 
						|
  OS << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
static const char *getMinimalTypeForRange(uint64_t Range) {
 | 
						|
  assert(Range <= 0xFFFFFFFFULL && "Enum too large");
 | 
						|
  if (Range > 0xFFFF)
 | 
						|
    return "uint32_t";
 | 
						|
  if (Range > 0xFF)
 | 
						|
    return "uint16_t";
 | 
						|
  return "uint8_t";
 | 
						|
}
 | 
						|
 | 
						|
static const char *getMinimalRequiredFeaturesType(const AsmMatcherInfo &Info) {
 | 
						|
  uint64_t MaxIndex = Info.SubtargetFeatures.size();
 | 
						|
  if (MaxIndex > 0)
 | 
						|
    MaxIndex--;
 | 
						|
  return getMinimalTypeForRange(1ULL << MaxIndex);
 | 
						|
}
 | 
						|
 | 
						|
/// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
 | 
						|
/// definitions.
 | 
						|
static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
 | 
						|
                                                raw_ostream &OS) {
 | 
						|
  OS << "// Flags for subtarget features that participate in "
 | 
						|
     << "instruction matching.\n";
 | 
						|
  OS << "enum SubtargetFeatureFlag : " << getMinimalRequiredFeaturesType(Info)
 | 
						|
     << " {\n";
 | 
						|
  for (std::map<Record*, SubtargetFeatureInfo*, LessRecordByID>::const_iterator
 | 
						|
         it = Info.SubtargetFeatures.begin(),
 | 
						|
         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
 | 
						|
    SubtargetFeatureInfo &SFI = *it->second;
 | 
						|
    OS << "  " << SFI.getEnumName() << " = (1U << " << SFI.Index << "),\n";
 | 
						|
  }
 | 
						|
  OS << "  Feature_None = 0\n";
 | 
						|
  OS << "};\n\n";
 | 
						|
}
 | 
						|
 | 
						|
/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
 | 
						|
static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
 | 
						|
  // Get the set of diagnostic types from all of the operand classes.
 | 
						|
  std::set<StringRef> Types;
 | 
						|
  for (std::map<Record*, ClassInfo*>::const_iterator
 | 
						|
       I = Info.AsmOperandClasses.begin(),
 | 
						|
       E = Info.AsmOperandClasses.end(); I != E; ++I) {
 | 
						|
    if (!I->second->DiagnosticType.empty())
 | 
						|
      Types.insert(I->second->DiagnosticType);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Types.empty()) return;
 | 
						|
 | 
						|
  // Now emit the enum entries.
 | 
						|
  for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
 | 
						|
       I != E; ++I)
 | 
						|
    OS << "  Match_" << *I << ",\n";
 | 
						|
  OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
 | 
						|
}
 | 
						|
 | 
						|
/// emitGetSubtargetFeatureName - Emit the helper function to get the
 | 
						|
/// user-level name for a subtarget feature.
 | 
						|
static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
 | 
						|
  OS << "// User-level names for subtarget features that participate in\n"
 | 
						|
     << "// instruction matching.\n"
 | 
						|
     << "static const char *getSubtargetFeatureName(unsigned Val) {\n";
 | 
						|
  if (!Info.SubtargetFeatures.empty()) {
 | 
						|
    OS << "  switch(Val) {\n";
 | 
						|
    typedef std::map<Record*, SubtargetFeatureInfo*, LessRecordByID> RecFeatMap;
 | 
						|
    for (RecFeatMap::const_iterator it = Info.SubtargetFeatures.begin(),
 | 
						|
             ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
 | 
						|
      SubtargetFeatureInfo &SFI = *it->second;
 | 
						|
      // FIXME: Totally just a placeholder name to get the algorithm working.
 | 
						|
      OS << "  case " << SFI.getEnumName() << ": return \""
 | 
						|
         << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
 | 
						|
    }
 | 
						|
    OS << "  default: return \"(unknown)\";\n";
 | 
						|
    OS << "  }\n";
 | 
						|
  } else {
 | 
						|
    // Nothing to emit, so skip the switch
 | 
						|
    OS << "  return \"(unknown)\";\n";
 | 
						|
  }
 | 
						|
  OS << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
/// emitComputeAvailableFeatures - Emit the function to compute the list of
 | 
						|
/// available features given a subtarget.
 | 
						|
static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
 | 
						|
                                         raw_ostream &OS) {
 | 
						|
  std::string ClassName =
 | 
						|
    Info.AsmParser->getValueAsString("AsmParserClassName");
 | 
						|
 | 
						|
  OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
 | 
						|
     << "ComputeAvailableFeatures(uint64_t FB) const {\n";
 | 
						|
  OS << "  unsigned Features = 0;\n";
 | 
						|
  for (std::map<Record*, SubtargetFeatureInfo*, LessRecordByID>::const_iterator
 | 
						|
         it = Info.SubtargetFeatures.begin(),
 | 
						|
         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
 | 
						|
    SubtargetFeatureInfo &SFI = *it->second;
 | 
						|
 | 
						|
    OS << "  if (";
 | 
						|
    std::string CondStorage =
 | 
						|
      SFI.TheDef->getValueAsString("AssemblerCondString");
 | 
						|
    StringRef Conds = CondStorage;
 | 
						|
    std::pair<StringRef,StringRef> Comma = Conds.split(',');
 | 
						|
    bool First = true;
 | 
						|
    do {
 | 
						|
      if (!First)
 | 
						|
        OS << " && ";
 | 
						|
 | 
						|
      bool Neg = false;
 | 
						|
      StringRef Cond = Comma.first;
 | 
						|
      if (Cond[0] == '!') {
 | 
						|
        Neg = true;
 | 
						|
        Cond = Cond.substr(1);
 | 
						|
      }
 | 
						|
 | 
						|
      OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
 | 
						|
      if (Neg)
 | 
						|
        OS << " == 0";
 | 
						|
      else
 | 
						|
        OS << " != 0";
 | 
						|
      OS << ")";
 | 
						|
 | 
						|
      if (Comma.second.empty())
 | 
						|
        break;
 | 
						|
 | 
						|
      First = false;
 | 
						|
      Comma = Comma.second.split(',');
 | 
						|
    } while (true);
 | 
						|
 | 
						|
    OS << ")\n";
 | 
						|
    OS << "    Features |= " << SFI.getEnumName() << ";\n";
 | 
						|
  }
 | 
						|
  OS << "  return Features;\n";
 | 
						|
  OS << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
static std::string GetAliasRequiredFeatures(Record *R,
 | 
						|
                                            const AsmMatcherInfo &Info) {
 | 
						|
  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
 | 
						|
  std::string Result;
 | 
						|
  unsigned NumFeatures = 0;
 | 
						|
  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
 | 
						|
    SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
 | 
						|
 | 
						|
    if (!F)
 | 
						|
      PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
 | 
						|
                    "' is not marked as an AssemblerPredicate!");
 | 
						|
 | 
						|
    if (NumFeatures)
 | 
						|
      Result += '|';
 | 
						|
 | 
						|
    Result += F->getEnumName();
 | 
						|
    ++NumFeatures;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumFeatures > 1)
 | 
						|
    Result = '(' + Result + ')';
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
 | 
						|
                                     std::vector<Record*> &Aliases,
 | 
						|
                                     unsigned Indent = 0,
 | 
						|
                                  StringRef AsmParserVariantName = StringRef()){
 | 
						|
  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
 | 
						|
  // iteration order of the map is stable.
 | 
						|
  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
 | 
						|
    Record *R = Aliases[i];
 | 
						|
    // FIXME: Allow AssemblerVariantName to be a comma separated list.
 | 
						|
    std::string AsmVariantName = R->getValueAsString("AsmVariantName");
 | 
						|
    if (AsmVariantName != AsmParserVariantName)
 | 
						|
      continue;
 | 
						|
    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
 | 
						|
  }
 | 
						|
  if (AliasesFromMnemonic.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Process each alias a "from" mnemonic at a time, building the code executed
 | 
						|
  // by the string remapper.
 | 
						|
  std::vector<StringMatcher::StringPair> Cases;
 | 
						|
  for (std::map<std::string, std::vector<Record*> >::iterator
 | 
						|
       I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const std::vector<Record*> &ToVec = I->second;
 | 
						|
 | 
						|
    // Loop through each alias and emit code that handles each case.  If there
 | 
						|
    // are two instructions without predicates, emit an error.  If there is one,
 | 
						|
    // emit it last.
 | 
						|
    std::string MatchCode;
 | 
						|
    int AliasWithNoPredicate = -1;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
 | 
						|
      Record *R = ToVec[i];
 | 
						|
      std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
 | 
						|
 | 
						|
      // If this unconditionally matches, remember it for later and diagnose
 | 
						|
      // duplicates.
 | 
						|
      if (FeatureMask.empty()) {
 | 
						|
        if (AliasWithNoPredicate != -1) {
 | 
						|
          // We can't have two aliases from the same mnemonic with no predicate.
 | 
						|
          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
 | 
						|
                     "two MnemonicAliases with the same 'from' mnemonic!");
 | 
						|
          PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
 | 
						|
        }
 | 
						|
 | 
						|
        AliasWithNoPredicate = i;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (R->getValueAsString("ToMnemonic") == I->first)
 | 
						|
        PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
 | 
						|
 | 
						|
      if (!MatchCode.empty())
 | 
						|
        MatchCode += "else ";
 | 
						|
      MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
 | 
						|
      MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
 | 
						|
    }
 | 
						|
 | 
						|
    if (AliasWithNoPredicate != -1) {
 | 
						|
      Record *R = ToVec[AliasWithNoPredicate];
 | 
						|
      if (!MatchCode.empty())
 | 
						|
        MatchCode += "else\n  ";
 | 
						|
      MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
 | 
						|
    }
 | 
						|
 | 
						|
    MatchCode += "return;";
 | 
						|
 | 
						|
    Cases.push_back(std::make_pair(I->first, MatchCode));
 | 
						|
  }
 | 
						|
  StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
 | 
						|
}
 | 
						|
 | 
						|
/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
 | 
						|
/// emit a function for them and return true, otherwise return false.
 | 
						|
static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
 | 
						|
                                CodeGenTarget &Target) {
 | 
						|
  // Ignore aliases when match-prefix is set.
 | 
						|
  if (!MatchPrefix.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  std::vector<Record*> Aliases =
 | 
						|
    Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
 | 
						|
  if (Aliases.empty()) return false;
 | 
						|
 | 
						|
  OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
 | 
						|
    "unsigned Features, unsigned VariantID) {\n";
 | 
						|
  OS << "  switch (VariantID) {\n";
 | 
						|
  unsigned VariantCount = Target.getAsmParserVariantCount();
 | 
						|
  for (unsigned VC = 0; VC != VariantCount; ++VC) {
 | 
						|
    Record *AsmVariant = Target.getAsmParserVariant(VC);
 | 
						|
    int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
 | 
						|
    std::string AsmParserVariantName = AsmVariant->getValueAsString("Name");
 | 
						|
    OS << "    case " << AsmParserVariantNo << ":\n";
 | 
						|
    emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
 | 
						|
                             AsmParserVariantName);
 | 
						|
    OS << "    break;\n";
 | 
						|
  }
 | 
						|
  OS << "  }\n";
 | 
						|
 | 
						|
  // Emit aliases that apply to all variants.
 | 
						|
  emitMnemonicAliasVariant(OS, Info, Aliases);
 | 
						|
 | 
						|
  OS << "}\n\n";
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
 | 
						|
                              const AsmMatcherInfo &Info, StringRef ClassName,
 | 
						|
                              StringToOffsetTable &StringTable,
 | 
						|
                              unsigned MaxMnemonicIndex) {
 | 
						|
  unsigned MaxMask = 0;
 | 
						|
  for (std::vector<OperandMatchEntry>::const_iterator it =
 | 
						|
       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
 | 
						|
       it != ie; ++it) {
 | 
						|
    MaxMask |= it->OperandMask;
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the static custom operand parsing table;
 | 
						|
  OS << "namespace {\n";
 | 
						|
  OS << "  struct OperandMatchEntry {\n";
 | 
						|
  OS << "    " << getMinimalRequiredFeaturesType(Info)
 | 
						|
               << " RequiredFeatures;\n";
 | 
						|
  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
 | 
						|
               << " Mnemonic;\n";
 | 
						|
  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
 | 
						|
               << " Class;\n";
 | 
						|
  OS << "    " << getMinimalTypeForRange(MaxMask)
 | 
						|
               << " OperandMask;\n\n";
 | 
						|
  OS << "    StringRef getMnemonic() const {\n";
 | 
						|
  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
 | 
						|
  OS << "                       MnemonicTable[Mnemonic]);\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  OS << "  };\n\n";
 | 
						|
 | 
						|
  OS << "  // Predicate for searching for an opcode.\n";
 | 
						|
  OS << "  struct LessOpcodeOperand {\n";
 | 
						|
  OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
 | 
						|
  OS << "      return LHS.getMnemonic()  < RHS;\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
 | 
						|
  OS << "      return LHS < RHS.getMnemonic();\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  OS << "    bool operator()(const OperandMatchEntry &LHS,";
 | 
						|
  OS << " const OperandMatchEntry &RHS) {\n";
 | 
						|
  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  OS << "  };\n";
 | 
						|
 | 
						|
  OS << "} // end anonymous namespace.\n\n";
 | 
						|
 | 
						|
  OS << "static const OperandMatchEntry OperandMatchTable["
 | 
						|
     << Info.OperandMatchInfo.size() << "] = {\n";
 | 
						|
 | 
						|
  OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
 | 
						|
  for (std::vector<OperandMatchEntry>::const_iterator it =
 | 
						|
       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
 | 
						|
       it != ie; ++it) {
 | 
						|
    const OperandMatchEntry &OMI = *it;
 | 
						|
    const MatchableInfo &II = *OMI.MI;
 | 
						|
 | 
						|
    OS << "  { ";
 | 
						|
 | 
						|
    // Write the required features mask.
 | 
						|
    if (!II.RequiredFeatures.empty()) {
 | 
						|
      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
 | 
						|
        if (i) OS << "|";
 | 
						|
        OS << II.RequiredFeatures[i]->getEnumName();
 | 
						|
      }
 | 
						|
    } else
 | 
						|
      OS << "0";
 | 
						|
 | 
						|
    // Store a pascal-style length byte in the mnemonic.
 | 
						|
    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
 | 
						|
    OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
 | 
						|
       << " /* " << II.Mnemonic << " */, ";
 | 
						|
 | 
						|
    OS << OMI.CI->Name;
 | 
						|
 | 
						|
    OS << ", " << OMI.OperandMask;
 | 
						|
    OS << " /* ";
 | 
						|
    bool printComma = false;
 | 
						|
    for (int i = 0, e = 31; i !=e; ++i)
 | 
						|
      if (OMI.OperandMask & (1 << i)) {
 | 
						|
        if (printComma)
 | 
						|
          OS << ", ";
 | 
						|
        OS << i;
 | 
						|
        printComma = true;
 | 
						|
      }
 | 
						|
    OS << " */";
 | 
						|
 | 
						|
    OS << " },\n";
 | 
						|
  }
 | 
						|
  OS << "};\n\n";
 | 
						|
 | 
						|
  // Emit the operand class switch to call the correct custom parser for
 | 
						|
  // the found operand class.
 | 
						|
  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
 | 
						|
     << Target.getName() << ClassName << "::\n"
 | 
						|
     << "tryCustomParseOperand(OperandVector"
 | 
						|
     << " &Operands,\n                      unsigned MCK) {\n\n"
 | 
						|
     << "  switch(MCK) {\n";
 | 
						|
 | 
						|
  for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
 | 
						|
       ie = Info.Classes.end(); it != ie; ++it) {
 | 
						|
    ClassInfo *CI = *it;
 | 
						|
    if (CI->ParserMethod.empty())
 | 
						|
      continue;
 | 
						|
    OS << "  case " << CI->Name << ":\n"
 | 
						|
       << "    return " << CI->ParserMethod << "(Operands);\n";
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "  default:\n";
 | 
						|
  OS << "    return MatchOperand_NoMatch;\n";
 | 
						|
  OS << "  }\n";
 | 
						|
  OS << "  return MatchOperand_NoMatch;\n";
 | 
						|
  OS << "}\n\n";
 | 
						|
 | 
						|
  // Emit the static custom operand parser. This code is very similar with
 | 
						|
  // the other matcher. Also use MatchResultTy here just in case we go for
 | 
						|
  // a better error handling.
 | 
						|
  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
 | 
						|
     << Target.getName() << ClassName << "::\n"
 | 
						|
     << "MatchOperandParserImpl(OperandVector"
 | 
						|
     << " &Operands,\n                       StringRef Mnemonic) {\n";
 | 
						|
 | 
						|
  // Emit code to get the available features.
 | 
						|
  OS << "  // Get the current feature set.\n";
 | 
						|
  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
 | 
						|
 | 
						|
  OS << "  // Get the next operand index.\n";
 | 
						|
  OS << "  unsigned NextOpNum = Operands.size()-1;\n";
 | 
						|
 | 
						|
  // Emit code to search the table.
 | 
						|
  OS << "  // Search the table.\n";
 | 
						|
  OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
 | 
						|
  OS << " MnemonicRange =\n";
 | 
						|
  OS << "    std::equal_range(OperandMatchTable, OperandMatchTable+"
 | 
						|
     << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
 | 
						|
     << "                     LessOpcodeOperand());\n\n";
 | 
						|
 | 
						|
  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
 | 
						|
  OS << "    return MatchOperand_NoMatch;\n\n";
 | 
						|
 | 
						|
  OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
 | 
						|
     << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
 | 
						|
 | 
						|
  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
 | 
						|
  OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
 | 
						|
 | 
						|
  // Emit check that the required features are available.
 | 
						|
  OS << "    // check if the available features match\n";
 | 
						|
  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
 | 
						|
     << "!= it->RequiredFeatures) {\n";
 | 
						|
  OS << "      continue;\n";
 | 
						|
  OS << "    }\n\n";
 | 
						|
 | 
						|
  // Emit check to ensure the operand number matches.
 | 
						|
  OS << "    // check if the operand in question has a custom parser.\n";
 | 
						|
  OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
 | 
						|
  OS << "      continue;\n\n";
 | 
						|
 | 
						|
  // Emit call to the custom parser method
 | 
						|
  OS << "    // call custom parse method to handle the operand\n";
 | 
						|
  OS << "    OperandMatchResultTy Result = ";
 | 
						|
  OS << "tryCustomParseOperand(Operands, it->Class);\n";
 | 
						|
  OS << "    if (Result != MatchOperand_NoMatch)\n";
 | 
						|
  OS << "      return Result;\n";
 | 
						|
  OS << "  }\n\n";
 | 
						|
 | 
						|
  OS << "  // Okay, we had no match.\n";
 | 
						|
  OS << "  return MatchOperand_NoMatch;\n";
 | 
						|
  OS << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
void AsmMatcherEmitter::run(raw_ostream &OS) {
 | 
						|
  CodeGenTarget Target(Records);
 | 
						|
  Record *AsmParser = Target.getAsmParser();
 | 
						|
  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
 | 
						|
 | 
						|
  // Compute the information on the instructions to match.
 | 
						|
  AsmMatcherInfo Info(AsmParser, Target, Records);
 | 
						|
  Info.buildInfo();
 | 
						|
 | 
						|
  // Sort the instruction table using the partial order on classes. We use
 | 
						|
  // stable_sort to ensure that ambiguous instructions are still
 | 
						|
  // deterministically ordered.
 | 
						|
  std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
 | 
						|
                   less_ptr<MatchableInfo>());
 | 
						|
 | 
						|
  DEBUG_WITH_TYPE("instruction_info", {
 | 
						|
      for (std::vector<MatchableInfo*>::iterator
 | 
						|
             it = Info.Matchables.begin(), ie = Info.Matchables.end();
 | 
						|
           it != ie; ++it)
 | 
						|
        (*it)->dump();
 | 
						|
    });
 | 
						|
 | 
						|
  // Check for ambiguous matchables.
 | 
						|
  DEBUG_WITH_TYPE("ambiguous_instrs", {
 | 
						|
    unsigned NumAmbiguous = 0;
 | 
						|
    for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
 | 
						|
      for (unsigned j = i + 1; j != e; ++j) {
 | 
						|
        MatchableInfo &A = *Info.Matchables[i];
 | 
						|
        MatchableInfo &B = *Info.Matchables[j];
 | 
						|
 | 
						|
        if (A.couldMatchAmbiguouslyWith(B)) {
 | 
						|
          errs() << "warning: ambiguous matchables:\n";
 | 
						|
          A.dump();
 | 
						|
          errs() << "\nis incomparable with:\n";
 | 
						|
          B.dump();
 | 
						|
          errs() << "\n\n";
 | 
						|
          ++NumAmbiguous;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (NumAmbiguous)
 | 
						|
      errs() << "warning: " << NumAmbiguous
 | 
						|
             << " ambiguous matchables!\n";
 | 
						|
  });
 | 
						|
 | 
						|
  // Compute the information on the custom operand parsing.
 | 
						|
  Info.buildOperandMatchInfo();
 | 
						|
 | 
						|
  // Write the output.
 | 
						|
 | 
						|
  // Information for the class declaration.
 | 
						|
  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
 | 
						|
  OS << "#undef GET_ASSEMBLER_HEADER\n";
 | 
						|
  OS << "  // This should be included into the middle of the declaration of\n";
 | 
						|
  OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
 | 
						|
  OS << "  unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
 | 
						|
  OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
 | 
						|
     << "unsigned Opcode,\n"
 | 
						|
     << "                       const OperandVector "
 | 
						|
     << "&Operands);\n";
 | 
						|
  OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
 | 
						|
  OS << "           const OperandVector &Operands) override;\n";
 | 
						|
  OS << "  bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) override;\n";
 | 
						|
  OS << "  unsigned MatchInstructionImpl(\n";
 | 
						|
  OS.indent(27);
 | 
						|
  OS << "const OperandVector &Operands,\n"
 | 
						|
     << "                                MCInst &Inst,\n"
 | 
						|
     << "                                unsigned &ErrorInfo,"
 | 
						|
     << " bool matchingInlineAsm,\n"
 | 
						|
     << "                                unsigned VariantID = 0);\n";
 | 
						|
 | 
						|
  if (Info.OperandMatchInfo.size()) {
 | 
						|
    OS << "\n  enum OperandMatchResultTy {\n";
 | 
						|
    OS << "    MatchOperand_Success,    // operand matched successfully\n";
 | 
						|
    OS << "    MatchOperand_NoMatch,    // operand did not match\n";
 | 
						|
    OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
 | 
						|
    OS << "  };\n";
 | 
						|
    OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
 | 
						|
    OS << "    OperandVector &Operands,\n";
 | 
						|
    OS << "    StringRef Mnemonic);\n";
 | 
						|
 | 
						|
    OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
 | 
						|
    OS << "    OperandVector &Operands,\n";
 | 
						|
    OS << "    unsigned MCK);\n\n";
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
 | 
						|
 | 
						|
  // Emit the operand match diagnostic enum names.
 | 
						|
  OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
 | 
						|
  OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
 | 
						|
  emitOperandDiagnosticTypes(Info, OS);
 | 
						|
  OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
 | 
						|
 | 
						|
 | 
						|
  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
 | 
						|
  OS << "#undef GET_REGISTER_MATCHER\n\n";
 | 
						|
 | 
						|
  // Emit the subtarget feature enumeration.
 | 
						|
  emitSubtargetFeatureFlagEnumeration(Info, OS);
 | 
						|
 | 
						|
  // Emit the function to match a register name to number.
 | 
						|
  // This should be omitted for Mips target
 | 
						|
  if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
 | 
						|
    emitMatchRegisterName(Target, AsmParser, OS);
 | 
						|
 | 
						|
  OS << "#endif // GET_REGISTER_MATCHER\n\n";
 | 
						|
 | 
						|
  OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
 | 
						|
  OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
 | 
						|
 | 
						|
  // Generate the helper function to get the names for subtarget features.
 | 
						|
  emitGetSubtargetFeatureName(Info, OS);
 | 
						|
 | 
						|
  OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
 | 
						|
 | 
						|
  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
 | 
						|
  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
 | 
						|
 | 
						|
  // Generate the function that remaps for mnemonic aliases.
 | 
						|
  bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
 | 
						|
 | 
						|
  // Generate the convertToMCInst function to convert operands into an MCInst.
 | 
						|
  // Also, generate the convertToMapAndConstraints function for MS-style inline
 | 
						|
  // assembly.  The latter doesn't actually generate a MCInst.
 | 
						|
  emitConvertFuncs(Target, ClassName, Info.Matchables, OS);
 | 
						|
 | 
						|
  // Emit the enumeration for classes which participate in matching.
 | 
						|
  emitMatchClassEnumeration(Target, Info.Classes, OS);
 | 
						|
 | 
						|
  // Emit the routine to match token strings to their match class.
 | 
						|
  emitMatchTokenString(Target, Info.Classes, OS);
 | 
						|
 | 
						|
  // Emit the subclass predicate routine.
 | 
						|
  emitIsSubclass(Target, Info.Classes, OS);
 | 
						|
 | 
						|
  // Emit the routine to validate an operand against a match class.
 | 
						|
  emitValidateOperandClass(Info, OS);
 | 
						|
 | 
						|
  // Emit the available features compute function.
 | 
						|
  emitComputeAvailableFeatures(Info, OS);
 | 
						|
 | 
						|
 | 
						|
  StringToOffsetTable StringTable;
 | 
						|
 | 
						|
  size_t MaxNumOperands = 0;
 | 
						|
  unsigned MaxMnemonicIndex = 0;
 | 
						|
  bool HasDeprecation = false;
 | 
						|
  for (std::vector<MatchableInfo*>::const_iterator it =
 | 
						|
         Info.Matchables.begin(), ie = Info.Matchables.end();
 | 
						|
       it != ie; ++it) {
 | 
						|
    MatchableInfo &II = **it;
 | 
						|
    MaxNumOperands = std::max(MaxNumOperands, II.AsmOperands.size());
 | 
						|
    HasDeprecation |= II.HasDeprecation;
 | 
						|
 | 
						|
    // Store a pascal-style length byte in the mnemonic.
 | 
						|
    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
 | 
						|
    MaxMnemonicIndex = std::max(MaxMnemonicIndex,
 | 
						|
                        StringTable.GetOrAddStringOffset(LenMnemonic, false));
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "static const char *const MnemonicTable =\n";
 | 
						|
  StringTable.EmitString(OS);
 | 
						|
  OS << ";\n\n";
 | 
						|
 | 
						|
  // Emit the static match table; unused classes get initalized to 0 which is
 | 
						|
  // guaranteed to be InvalidMatchClass.
 | 
						|
  //
 | 
						|
  // FIXME: We can reduce the size of this table very easily. First, we change
 | 
						|
  // it so that store the kinds in separate bit-fields for each index, which
 | 
						|
  // only needs to be the max width used for classes at that index (we also need
 | 
						|
  // to reject based on this during classification). If we then make sure to
 | 
						|
  // order the match kinds appropriately (putting mnemonics last), then we
 | 
						|
  // should only end up using a few bits for each class, especially the ones
 | 
						|
  // following the mnemonic.
 | 
						|
  OS << "namespace {\n";
 | 
						|
  OS << "  struct MatchEntry {\n";
 | 
						|
  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
 | 
						|
               << " Mnemonic;\n";
 | 
						|
  OS << "    uint16_t Opcode;\n";
 | 
						|
  OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
 | 
						|
               << " ConvertFn;\n";
 | 
						|
  OS << "    " << getMinimalRequiredFeaturesType(Info)
 | 
						|
               << " RequiredFeatures;\n";
 | 
						|
  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
 | 
						|
               << " Classes[" << MaxNumOperands << "];\n";
 | 
						|
  OS << "    StringRef getMnemonic() const {\n";
 | 
						|
  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
 | 
						|
  OS << "                       MnemonicTable[Mnemonic]);\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  OS << "  };\n\n";
 | 
						|
 | 
						|
  OS << "  // Predicate for searching for an opcode.\n";
 | 
						|
  OS << "  struct LessOpcode {\n";
 | 
						|
  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
 | 
						|
  OS << "      return LHS.getMnemonic() < RHS;\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
 | 
						|
  OS << "      return LHS < RHS.getMnemonic();\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
 | 
						|
  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  OS << "  };\n";
 | 
						|
 | 
						|
  OS << "} // end anonymous namespace.\n\n";
 | 
						|
 | 
						|
  unsigned VariantCount = Target.getAsmParserVariantCount();
 | 
						|
  for (unsigned VC = 0; VC != VariantCount; ++VC) {
 | 
						|
    Record *AsmVariant = Target.getAsmParserVariant(VC);
 | 
						|
    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
 | 
						|
 | 
						|
    OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
 | 
						|
 | 
						|
    for (std::vector<MatchableInfo*>::const_iterator it =
 | 
						|
         Info.Matchables.begin(), ie = Info.Matchables.end();
 | 
						|
         it != ie; ++it) {
 | 
						|
      MatchableInfo &II = **it;
 | 
						|
      if (II.AsmVariantID != AsmVariantNo)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Store a pascal-style length byte in the mnemonic.
 | 
						|
      std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
 | 
						|
      OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
 | 
						|
         << " /* " << II.Mnemonic << " */, "
 | 
						|
         << Target.getName() << "::"
 | 
						|
         << II.getResultInst()->TheDef->getName() << ", "
 | 
						|
         << II.ConversionFnKind << ", ";
 | 
						|
 | 
						|
      // Write the required features mask.
 | 
						|
      if (!II.RequiredFeatures.empty()) {
 | 
						|
        for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
 | 
						|
          if (i) OS << "|";
 | 
						|
          OS << II.RequiredFeatures[i]->getEnumName();
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        OS << "0";
 | 
						|
 | 
						|
      OS << ", { ";
 | 
						|
      for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
 | 
						|
        MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
 | 
						|
 | 
						|
        if (i) OS << ", ";
 | 
						|
        OS << Op.Class->Name;
 | 
						|
      }
 | 
						|
      OS << " }, },\n";
 | 
						|
    }
 | 
						|
 | 
						|
    OS << "};\n\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // A method to determine if a mnemonic is in the list.
 | 
						|
  OS << "bool " << Target.getName() << ClassName << "::\n"
 | 
						|
     << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n";
 | 
						|
  OS << "  // Find the appropriate table for this asm variant.\n";
 | 
						|
  OS << "  const MatchEntry *Start, *End;\n";
 | 
						|
  OS << "  switch (VariantID) {\n";
 | 
						|
  OS << "  default: // unreachable\n";
 | 
						|
  for (unsigned VC = 0; VC != VariantCount; ++VC) {
 | 
						|
    Record *AsmVariant = Target.getAsmParserVariant(VC);
 | 
						|
    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
 | 
						|
    OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
 | 
						|
       << "); End = std::end(MatchTable" << VC << "); break;\n";
 | 
						|
  }
 | 
						|
  OS << "  }\n";
 | 
						|
  OS << "  // Search the table.\n";
 | 
						|
  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
 | 
						|
  OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n";
 | 
						|
  OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
 | 
						|
  OS << "}\n\n";
 | 
						|
 | 
						|
  // Finally, build the match function.
 | 
						|
  OS << "unsigned " << Target.getName() << ClassName << "::\n"
 | 
						|
     << "MatchInstructionImpl(const OperandVector"
 | 
						|
     << " &Operands,\n";
 | 
						|
  OS << "                     MCInst &Inst,\n"
 | 
						|
     << "unsigned &ErrorInfo, bool matchingInlineAsm, unsigned VariantID) {\n";
 | 
						|
 | 
						|
  OS << "  // Eliminate obvious mismatches.\n";
 | 
						|
  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
 | 
						|
  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
 | 
						|
  OS << "    return Match_InvalidOperand;\n";
 | 
						|
  OS << "  }\n\n";
 | 
						|
 | 
						|
  // Emit code to get the available features.
 | 
						|
  OS << "  // Get the current feature set.\n";
 | 
						|
  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
 | 
						|
 | 
						|
  OS << "  // Get the instruction mnemonic, which is the first token.\n";
 | 
						|
  OS << "  StringRef Mnemonic = ((" << Target.getName()
 | 
						|
     << "Operand&)*Operands[0]).getToken();\n\n";
 | 
						|
 | 
						|
  if (HasMnemonicAliases) {
 | 
						|
    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
 | 
						|
    OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit code to compute the class list for this operand vector.
 | 
						|
  OS << "  // Some state to try to produce better error messages.\n";
 | 
						|
  OS << "  bool HadMatchOtherThanFeatures = false;\n";
 | 
						|
  OS << "  bool HadMatchOtherThanPredicate = false;\n";
 | 
						|
  OS << "  unsigned RetCode = Match_InvalidOperand;\n";
 | 
						|
  OS << "  unsigned MissingFeatures = ~0U;\n";
 | 
						|
  OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
 | 
						|
  OS << "  // wrong for all instances of the instruction.\n";
 | 
						|
  OS << "  ErrorInfo = ~0U;\n";
 | 
						|
 | 
						|
  // Emit code to search the table.
 | 
						|
  OS << "  // Find the appropriate table for this asm variant.\n";
 | 
						|
  OS << "  const MatchEntry *Start, *End;\n";
 | 
						|
  OS << "  switch (VariantID) {\n";
 | 
						|
  OS << "  default: // unreachable\n";
 | 
						|
  for (unsigned VC = 0; VC != VariantCount; ++VC) {
 | 
						|
    Record *AsmVariant = Target.getAsmParserVariant(VC);
 | 
						|
    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
 | 
						|
    OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
 | 
						|
       << "); End = std::end(MatchTable" << VC << "); break;\n";
 | 
						|
  }
 | 
						|
  OS << "  }\n";
 | 
						|
  OS << "  // Search the table.\n";
 | 
						|
  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
 | 
						|
  OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
 | 
						|
 | 
						|
  OS << "  // Return a more specific error code if no mnemonics match.\n";
 | 
						|
  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
 | 
						|
  OS << "    return Match_MnemonicFail;\n\n";
 | 
						|
 | 
						|
  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
 | 
						|
     << "*ie = MnemonicRange.second;\n";
 | 
						|
  OS << "       it != ie; ++it) {\n";
 | 
						|
 | 
						|
  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
 | 
						|
  OS << "    assert(Mnemonic == it->getMnemonic());\n";
 | 
						|
 | 
						|
  // Emit check that the subclasses match.
 | 
						|
  OS << "    bool OperandsValid = true;\n";
 | 
						|
  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
 | 
						|
  OS << "      if (i + 1 >= Operands.size()) {\n";
 | 
						|
  OS << "        OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
 | 
						|
  OS << "        if (!OperandsValid) ErrorInfo = i + 1;\n";
 | 
						|
  OS << "        break;\n";
 | 
						|
  OS << "      }\n";
 | 
						|
  OS << "      unsigned Diag = validateOperandClass(*Operands[i+1],\n";
 | 
						|
  OS.indent(43);
 | 
						|
  OS << "(MatchClassKind)it->Classes[i]);\n";
 | 
						|
  OS << "      if (Diag == Match_Success)\n";
 | 
						|
  OS << "        continue;\n";
 | 
						|
  OS << "      // If the generic handler indicates an invalid operand\n";
 | 
						|
  OS << "      // failure, check for a special case.\n";
 | 
						|
  OS << "      if (Diag == Match_InvalidOperand) {\n";
 | 
						|
  OS << "        Diag = validateTargetOperandClass(*Operands[i+1],\n";
 | 
						|
  OS.indent(43);
 | 
						|
  OS << "(MatchClassKind)it->Classes[i]);\n";
 | 
						|
  OS << "        if (Diag == Match_Success)\n";
 | 
						|
  OS << "          continue;\n";
 | 
						|
  OS << "      }\n";
 | 
						|
  OS << "      // If this operand is broken for all of the instances of this\n";
 | 
						|
  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
 | 
						|
  OS << "      // If we already had a match that only failed due to a\n";
 | 
						|
  OS << "      // target predicate, that diagnostic is preferred.\n";
 | 
						|
  OS << "      if (!HadMatchOtherThanPredicate &&\n";
 | 
						|
  OS << "          (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n";
 | 
						|
  OS << "        ErrorInfo = i+1;\n";
 | 
						|
  OS << "        // InvalidOperand is the default. Prefer specificity.\n";
 | 
						|
  OS << "        if (Diag != Match_InvalidOperand)\n";
 | 
						|
  OS << "          RetCode = Diag;\n";
 | 
						|
  OS << "      }\n";
 | 
						|
  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
 | 
						|
  OS << "      OperandsValid = false;\n";
 | 
						|
  OS << "      break;\n";
 | 
						|
  OS << "    }\n\n";
 | 
						|
 | 
						|
  OS << "    if (!OperandsValid) continue;\n";
 | 
						|
 | 
						|
  // Emit check that the required features are available.
 | 
						|
  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
 | 
						|
     << "!= it->RequiredFeatures) {\n";
 | 
						|
  OS << "      HadMatchOtherThanFeatures = true;\n";
 | 
						|
  OS << "      unsigned NewMissingFeatures = it->RequiredFeatures & "
 | 
						|
        "~AvailableFeatures;\n";
 | 
						|
  OS << "      if (CountPopulation_32(NewMissingFeatures) <=\n"
 | 
						|
        "          CountPopulation_32(MissingFeatures))\n";
 | 
						|
  OS << "        MissingFeatures = NewMissingFeatures;\n";
 | 
						|
  OS << "      continue;\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  OS << "\n";
 | 
						|
  OS << "    if (matchingInlineAsm) {\n";
 | 
						|
  OS << "      Inst.setOpcode(it->Opcode);\n";
 | 
						|
  OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
 | 
						|
  OS << "      return Match_Success;\n";
 | 
						|
  OS << "    }\n\n";
 | 
						|
  OS << "    // We have selected a definite instruction, convert the parsed\n"
 | 
						|
     << "    // operands into the appropriate MCInst.\n";
 | 
						|
  OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
 | 
						|
  OS << "\n";
 | 
						|
 | 
						|
  // Verify the instruction with the target-specific match predicate function.
 | 
						|
  OS << "    // We have a potential match. Check the target predicate to\n"
 | 
						|
     << "    // handle any context sensitive constraints.\n"
 | 
						|
     << "    unsigned MatchResult;\n"
 | 
						|
     << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
 | 
						|
     << " Match_Success) {\n"
 | 
						|
     << "      Inst.clear();\n"
 | 
						|
     << "      RetCode = MatchResult;\n"
 | 
						|
     << "      HadMatchOtherThanPredicate = true;\n"
 | 
						|
     << "      continue;\n"
 | 
						|
     << "    }\n\n";
 | 
						|
 | 
						|
  // Call the post-processing function, if used.
 | 
						|
  std::string InsnCleanupFn =
 | 
						|
    AsmParser->getValueAsString("AsmParserInstCleanup");
 | 
						|
  if (!InsnCleanupFn.empty())
 | 
						|
    OS << "    " << InsnCleanupFn << "(Inst);\n";
 | 
						|
 | 
						|
  if (HasDeprecation) {
 | 
						|
    OS << "    std::string Info;\n";
 | 
						|
    OS << "    if (MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, STI, Info)) {\n";
 | 
						|
    OS << "      SMLoc Loc = ((" << Target.getName()
 | 
						|
       << "Operand&)*Operands[0]).getStartLoc();\n";
 | 
						|
    OS << "      Parser.Warning(Loc, Info, None);\n";
 | 
						|
    OS << "    }\n";
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "    return Match_Success;\n";
 | 
						|
  OS << "  }\n\n";
 | 
						|
 | 
						|
  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
 | 
						|
  OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
 | 
						|
  OS << "    return RetCode;\n\n";
 | 
						|
  OS << "  // Missing feature matches return which features were missing\n";
 | 
						|
  OS << "  ErrorInfo = MissingFeatures;\n";
 | 
						|
  OS << "  return Match_MissingFeature;\n";
 | 
						|
  OS << "}\n\n";
 | 
						|
 | 
						|
  if (Info.OperandMatchInfo.size())
 | 
						|
    emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
 | 
						|
                             MaxMnemonicIndex);
 | 
						|
 | 
						|
  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
 | 
						|
  emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
 | 
						|
  AsmMatcherEmitter(RK).run(OS);
 | 
						|
}
 | 
						|
 | 
						|
} // End llvm namespace
 |