mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76356 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			502 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			502 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the X86 specific subclass of TargetSubtarget.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "subtarget"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "X86GenSubtarget.inc"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#if defined(_MSC_VER)
 | 
						|
    #include <intrin.h>
 | 
						|
#endif
 | 
						|
 | 
						|
static cl::opt<X86Subtarget::AsmWriterFlavorTy>
 | 
						|
AsmWriterFlavor("x86-asm-syntax", cl::init(X86Subtarget::Unset),
 | 
						|
  cl::desc("Choose style of code to emit from X86 backend:"),
 | 
						|
  cl::values(
 | 
						|
    clEnumValN(X86Subtarget::ATT,   "att",   "Emit AT&T-style assembly"),
 | 
						|
    clEnumValN(X86Subtarget::Intel, "intel", "Emit Intel-style assembly"),
 | 
						|
    clEnumValEnd));
 | 
						|
 | 
						|
/// ClassifyGlobalReference - Classify a global variable reference for the
 | 
						|
/// current subtarget according to how we should reference it in a non-pcrel
 | 
						|
/// context.
 | 
						|
unsigned char X86Subtarget::
 | 
						|
ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
 | 
						|
  // DLLImport only exists on windows, it is implemented as a load from a
 | 
						|
  // DLLIMPORT stub.
 | 
						|
  if (GV->hasDLLImportLinkage())
 | 
						|
    return X86II::MO_DLLIMPORT;
 | 
						|
 | 
						|
  // GV with ghost linkage (in JIT lazy compilation mode) do not require an
 | 
						|
  // extra load from stub.
 | 
						|
  bool isDecl = GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode();
 | 
						|
 | 
						|
  // X86-64 in PIC mode.
 | 
						|
  if (isPICStyleRIPRel()) {
 | 
						|
    // Large model never uses stubs.
 | 
						|
    if (TM.getCodeModel() == CodeModel::Large)
 | 
						|
      return X86II::MO_NO_FLAG;
 | 
						|
      
 | 
						|
    if (isTargetDarwin()) {
 | 
						|
      // If symbol visibility is hidden, the extra load is not needed if
 | 
						|
      // target is x86-64 or the symbol is definitely defined in the current
 | 
						|
      // translation unit.
 | 
						|
      if (GV->hasDefaultVisibility() &&
 | 
						|
          (isDecl || GV->isWeakForLinker()))
 | 
						|
        return X86II::MO_GOTPCREL;
 | 
						|
    } else {
 | 
						|
      assert(isTargetELF() && "Unknown rip-relative target");
 | 
						|
 | 
						|
      // Extra load is needed for all externally visible.
 | 
						|
      if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
 | 
						|
        return X86II::MO_GOTPCREL;
 | 
						|
    }
 | 
						|
 | 
						|
    return X86II::MO_NO_FLAG;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (isPICStyleGOT()) {   // 32-bit ELF targets.
 | 
						|
    // Extra load is needed for all externally visible.
 | 
						|
    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
 | 
						|
      return X86II::MO_GOTOFF;
 | 
						|
    return X86II::MO_GOT;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (isPICStyleStubPIC()) {  // Darwin/32 in PIC mode.
 | 
						|
    // Determine whether we have a stub reference and/or whether the reference
 | 
						|
    // is relative to the PIC base or not.
 | 
						|
    
 | 
						|
    // If this is a strong reference to a definition, it is definitely not
 | 
						|
    // through a stub.
 | 
						|
    if (!isDecl && !GV->isWeakForLinker())
 | 
						|
      return X86II::MO_PIC_BASE_OFFSET;
 | 
						|
 | 
						|
    // Unless we have a symbol with hidden visibility, we have to go through a
 | 
						|
    // normal $non_lazy_ptr stub because this symbol might be resolved late.
 | 
						|
    if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
 | 
						|
      return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
 | 
						|
    
 | 
						|
    // If symbol visibility is hidden, we have a stub for common symbol
 | 
						|
    // references and external declarations.
 | 
						|
    if (isDecl || GV->hasCommonLinkage()) {
 | 
						|
      // Hidden $non_lazy_ptr reference.
 | 
						|
      return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, no stub.
 | 
						|
    return X86II::MO_PIC_BASE_OFFSET;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (isPICStyleStubNoDynamic()) {  // Darwin/32 in -mdynamic-no-pic mode.
 | 
						|
    // Determine whether we have a stub reference.
 | 
						|
    
 | 
						|
    // If this is a strong reference to a definition, it is definitely not
 | 
						|
    // through a stub.
 | 
						|
    if (!isDecl && !GV->isWeakForLinker())
 | 
						|
      return X86II::MO_NO_FLAG;
 | 
						|
    
 | 
						|
    // Unless we have a symbol with hidden visibility, we have to go through a
 | 
						|
    // normal $non_lazy_ptr stub because this symbol might be resolved late.
 | 
						|
    if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
 | 
						|
      return X86II::MO_DARWIN_NONLAZY;
 | 
						|
    
 | 
						|
    // If symbol visibility is hidden, we have a stub for common symbol
 | 
						|
    // references and external declarations.
 | 
						|
    if (isDecl || GV->hasCommonLinkage()) {
 | 
						|
      // Hidden $non_lazy_ptr reference.
 | 
						|
      return X86II::MO_DARWIN_HIDDEN_NONLAZY;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, no stub.
 | 
						|
    return X86II::MO_NO_FLAG;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Direct static reference to global.
 | 
						|
  return X86II::MO_NO_FLAG;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getBZeroEntry - This function returns the name of a function which has an
 | 
						|
/// interface like the non-standard bzero function, if such a function exists on
 | 
						|
/// the current subtarget and it is considered prefereable over memset with zero
 | 
						|
/// passed as the second argument. Otherwise it returns null.
 | 
						|
const char *X86Subtarget::getBZeroEntry() const {
 | 
						|
  // Darwin 10 has a __bzero entry point for this purpose.
 | 
						|
  if (getDarwinVers() >= 10)
 | 
						|
    return "__bzero";
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
 | 
						|
/// to immediate address.
 | 
						|
bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
 | 
						|
  if (Is64Bit)
 | 
						|
    return false;
 | 
						|
  return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
 | 
						|
}
 | 
						|
 | 
						|
/// getSpecialAddressLatency - For targets where it is beneficial to
 | 
						|
/// backschedule instructions that compute addresses, return a value
 | 
						|
/// indicating the number of scheduling cycles of backscheduling that
 | 
						|
/// should be attempted.
 | 
						|
unsigned X86Subtarget::getSpecialAddressLatency() const {
 | 
						|
  // For x86 out-of-order targets, back-schedule address computations so
 | 
						|
  // that loads and stores aren't blocked.
 | 
						|
  // This value was chosen arbitrarily.
 | 
						|
  return 200;
 | 
						|
}
 | 
						|
 | 
						|
/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
 | 
						|
/// specified arguments.  If we can't run cpuid on the host, return true.
 | 
						|
bool X86::GetCpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
 | 
						|
                          unsigned *rECX, unsigned *rEDX) {
 | 
						|
#if defined(__x86_64__) || defined(_M_AMD64)
 | 
						|
  #if defined(__GNUC__)
 | 
						|
    // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
 | 
						|
    asm ("movq\t%%rbx, %%rsi\n\t"
 | 
						|
         "cpuid\n\t"
 | 
						|
         "xchgq\t%%rbx, %%rsi\n\t"
 | 
						|
         : "=a" (*rEAX),
 | 
						|
           "=S" (*rEBX),
 | 
						|
           "=c" (*rECX),
 | 
						|
           "=d" (*rEDX)
 | 
						|
         :  "a" (value));
 | 
						|
    return false;
 | 
						|
  #elif defined(_MSC_VER)
 | 
						|
    int registers[4];
 | 
						|
    __cpuid(registers, value);
 | 
						|
    *rEAX = registers[0];
 | 
						|
    *rEBX = registers[1];
 | 
						|
    *rECX = registers[2];
 | 
						|
    *rEDX = registers[3];
 | 
						|
    return false;
 | 
						|
  #endif
 | 
						|
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
 | 
						|
  #if defined(__GNUC__)
 | 
						|
    asm ("movl\t%%ebx, %%esi\n\t"
 | 
						|
         "cpuid\n\t"
 | 
						|
         "xchgl\t%%ebx, %%esi\n\t"
 | 
						|
         : "=a" (*rEAX),
 | 
						|
           "=S" (*rEBX),
 | 
						|
           "=c" (*rECX),
 | 
						|
           "=d" (*rEDX)
 | 
						|
         :  "a" (value));
 | 
						|
    return false;
 | 
						|
  #elif defined(_MSC_VER)
 | 
						|
    __asm {
 | 
						|
      mov   eax,value
 | 
						|
      cpuid
 | 
						|
      mov   esi,rEAX
 | 
						|
      mov   dword ptr [esi],eax
 | 
						|
      mov   esi,rEBX
 | 
						|
      mov   dword ptr [esi],ebx
 | 
						|
      mov   esi,rECX
 | 
						|
      mov   dword ptr [esi],ecx
 | 
						|
      mov   esi,rEDX
 | 
						|
      mov   dword ptr [esi],edx
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  #endif
 | 
						|
#endif
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) {
 | 
						|
  Family = (EAX >> 8) & 0xf; // Bits 8 - 11
 | 
						|
  Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
 | 
						|
  if (Family == 6 || Family == 0xf) {
 | 
						|
    if (Family == 0xf)
 | 
						|
      // Examine extended family ID if family ID is F.
 | 
						|
      Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
 | 
						|
    // Examine extended model ID if family ID is 6 or F.
 | 
						|
    Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void X86Subtarget::AutoDetectSubtargetFeatures() {
 | 
						|
  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
 | 
						|
  union {
 | 
						|
    unsigned u[3];
 | 
						|
    char     c[12];
 | 
						|
  } text;
 | 
						|
  
 | 
						|
  if (X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
 | 
						|
    return;
 | 
						|
 | 
						|
  X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
 | 
						|
  
 | 
						|
  if ((EDX >> 23) & 0x1) X86SSELevel = MMX;
 | 
						|
  if ((EDX >> 25) & 0x1) X86SSELevel = SSE1;
 | 
						|
  if ((EDX >> 26) & 0x1) X86SSELevel = SSE2;
 | 
						|
  if (ECX & 0x1)         X86SSELevel = SSE3;
 | 
						|
  if ((ECX >> 9)  & 0x1) X86SSELevel = SSSE3;
 | 
						|
  if ((ECX >> 19) & 0x1) X86SSELevel = SSE41;
 | 
						|
  if ((ECX >> 20) & 0x1) X86SSELevel = SSE42;
 | 
						|
 | 
						|
  bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
 | 
						|
  bool IsAMD   = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
 | 
						|
 | 
						|
  HasFMA3 = IsIntel && ((ECX >> 12) & 0x1);
 | 
						|
  HasAVX = ((ECX >> 28) & 0x1);
 | 
						|
 | 
						|
  if (IsIntel || IsAMD) {
 | 
						|
    // Determine if bit test memory instructions are slow.
 | 
						|
    unsigned Family = 0;
 | 
						|
    unsigned Model  = 0;
 | 
						|
    DetectFamilyModel(EAX, Family, Model);
 | 
						|
    IsBTMemSlow = IsAMD || (Family == 6 && Model >= 13);
 | 
						|
 | 
						|
    X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
 | 
						|
    HasX86_64 = (EDX >> 29) & 0x1;
 | 
						|
    HasSSE4A = IsAMD && ((ECX >> 6) & 0x1);
 | 
						|
    HasFMA4 = IsAMD && ((ECX >> 16) & 0x1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static const char *GetCurrentX86CPU() {
 | 
						|
  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
 | 
						|
  if (X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
 | 
						|
    return "generic";
 | 
						|
  unsigned Family = 0;
 | 
						|
  unsigned Model  = 0;
 | 
						|
  DetectFamilyModel(EAX, Family, Model);
 | 
						|
 | 
						|
  X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
 | 
						|
  bool Em64T = (EDX >> 29) & 0x1;
 | 
						|
  bool HasSSE3 = (ECX & 0x1);
 | 
						|
 | 
						|
  union {
 | 
						|
    unsigned u[3];
 | 
						|
    char     c[12];
 | 
						|
  } text;
 | 
						|
 | 
						|
  X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1);
 | 
						|
  if (memcmp(text.c, "GenuineIntel", 12) == 0) {
 | 
						|
    switch (Family) {
 | 
						|
      case 3:
 | 
						|
        return "i386";
 | 
						|
      case 4:
 | 
						|
        return "i486";
 | 
						|
      case 5:
 | 
						|
        switch (Model) {
 | 
						|
        case 4:  return "pentium-mmx";
 | 
						|
        default: return "pentium";
 | 
						|
        }
 | 
						|
      case 6:
 | 
						|
        switch (Model) {
 | 
						|
        case 1:  return "pentiumpro";
 | 
						|
        case 3:
 | 
						|
        case 5:
 | 
						|
        case 6:  return "pentium2";
 | 
						|
        case 7:
 | 
						|
        case 8:
 | 
						|
        case 10:
 | 
						|
        case 11: return "pentium3";
 | 
						|
        case 9:
 | 
						|
        case 13: return "pentium-m";
 | 
						|
        case 14: return "yonah";
 | 
						|
        case 15:
 | 
						|
        case 22: // Celeron M 540
 | 
						|
          return "core2";
 | 
						|
        case 23: // 45nm: Penryn , Wolfdale, Yorkfield (XE)
 | 
						|
          return "penryn";
 | 
						|
        default: return "i686";
 | 
						|
        }
 | 
						|
      case 15: {
 | 
						|
        switch (Model) {
 | 
						|
        case 3:  
 | 
						|
        case 4:
 | 
						|
        case 6: // same as 4, but 65nm
 | 
						|
          return (Em64T) ? "nocona" : "prescott";
 | 
						|
        case 26:
 | 
						|
          return "corei7";
 | 
						|
        case 28:
 | 
						|
          return "atom";
 | 
						|
        default:
 | 
						|
          return (Em64T) ? "x86-64" : "pentium4";
 | 
						|
        }
 | 
						|
      }
 | 
						|
        
 | 
						|
    default:
 | 
						|
      return "generic";
 | 
						|
    }
 | 
						|
  } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) {
 | 
						|
    // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
 | 
						|
    // appears to be no way to generate the wide variety of AMD-specific targets
 | 
						|
    // from the information returned from CPUID.
 | 
						|
    switch (Family) {
 | 
						|
      case 4:
 | 
						|
        return "i486";
 | 
						|
      case 5:
 | 
						|
        switch (Model) {
 | 
						|
        case 6:
 | 
						|
        case 7:  return "k6";
 | 
						|
        case 8:  return "k6-2";
 | 
						|
        case 9:
 | 
						|
        case 13: return "k6-3";
 | 
						|
        default: return "pentium";
 | 
						|
        }
 | 
						|
      case 6:
 | 
						|
        switch (Model) {
 | 
						|
        case 4:  return "athlon-tbird";
 | 
						|
        case 6:
 | 
						|
        case 7:
 | 
						|
        case 8:  return "athlon-mp";
 | 
						|
        case 10: return "athlon-xp";
 | 
						|
        default: return "athlon";
 | 
						|
        }
 | 
						|
      case 15:
 | 
						|
        if (HasSSE3) {
 | 
						|
          return "k8-sse3";
 | 
						|
        } else {
 | 
						|
          switch (Model) {
 | 
						|
          case 1:  return "opteron";
 | 
						|
          case 5:  return "athlon-fx"; // also opteron
 | 
						|
          default: return "athlon64";
 | 
						|
          }
 | 
						|
        }
 | 
						|
      case 16:
 | 
						|
        return "amdfam10";
 | 
						|
    default:
 | 
						|
      return "generic";
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    return "generic";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
X86Subtarget::X86Subtarget(const Module &M, const std::string &FS, bool is64Bit)
 | 
						|
  : AsmFlavor(AsmWriterFlavor)
 | 
						|
  , PICStyle(PICStyles::None)
 | 
						|
  , X86SSELevel(NoMMXSSE)
 | 
						|
  , X863DNowLevel(NoThreeDNow)
 | 
						|
  , HasX86_64(false)
 | 
						|
  , HasSSE4A(false)
 | 
						|
  , HasAVX(false)
 | 
						|
  , HasFMA3(false)
 | 
						|
  , HasFMA4(false)
 | 
						|
  , IsBTMemSlow(false)
 | 
						|
  , DarwinVers(0)
 | 
						|
  , IsLinux(false)
 | 
						|
  , stackAlignment(8)
 | 
						|
  // FIXME: this is a known good value for Yonah. How about others?
 | 
						|
  , MaxInlineSizeThreshold(128)
 | 
						|
  , Is64Bit(is64Bit)
 | 
						|
  , TargetType(isELF) { // Default to ELF unless otherwise specified.
 | 
						|
 | 
						|
  // default to hard float ABI
 | 
						|
  if (FloatABIType == FloatABI::Default)
 | 
						|
    FloatABIType = FloatABI::Hard;
 | 
						|
    
 | 
						|
  // Determine default and user specified characteristics
 | 
						|
  if (!FS.empty()) {
 | 
						|
    // If feature string is not empty, parse features string.
 | 
						|
    std::string CPU = GetCurrentX86CPU();
 | 
						|
    ParseSubtargetFeatures(FS, CPU);
 | 
						|
    // All X86-64 CPUs also have SSE2, however user might request no SSE via 
 | 
						|
    // -mattr, so don't force SSELevel here.
 | 
						|
  } else {
 | 
						|
    // Otherwise, use CPUID to auto-detect feature set.
 | 
						|
    AutoDetectSubtargetFeatures();
 | 
						|
    // Make sure SSE2 is enabled; it is available on all X86-64 CPUs.
 | 
						|
    if (Is64Bit && X86SSELevel < SSE2)
 | 
						|
      X86SSELevel = SSE2;
 | 
						|
  }
 | 
						|
 | 
						|
  // If requesting codegen for X86-64, make sure that 64-bit features
 | 
						|
  // are enabled.
 | 
						|
  if (Is64Bit)
 | 
						|
    HasX86_64 = true;
 | 
						|
 | 
						|
  DOUT << "Subtarget features: SSELevel " << X86SSELevel
 | 
						|
       << ", 3DNowLevel " << X863DNowLevel
 | 
						|
       << ", 64bit " << HasX86_64 << "\n";
 | 
						|
  assert((!Is64Bit || HasX86_64) &&
 | 
						|
         "64-bit code requested on a subtarget that doesn't support it!");
 | 
						|
 | 
						|
  // Set the boolean corresponding to the current target triple, or the default
 | 
						|
  // if one cannot be determined, to true.
 | 
						|
  const std::string& TT = M.getTargetTriple();
 | 
						|
  if (TT.length() > 5) {
 | 
						|
    size_t Pos;
 | 
						|
    if ((Pos = TT.find("-darwin")) != std::string::npos) {
 | 
						|
      TargetType = isDarwin;
 | 
						|
      
 | 
						|
      // Compute the darwin version number.
 | 
						|
      if (isdigit(TT[Pos+7]))
 | 
						|
        DarwinVers = atoi(&TT[Pos+7]);
 | 
						|
      else
 | 
						|
        DarwinVers = 8;  // Minimum supported darwin is Tiger.
 | 
						|
    } else if (TT.find("linux") != std::string::npos) {
 | 
						|
      // Linux doesn't imply ELF, but we don't currently support anything else.
 | 
						|
      TargetType = isELF;
 | 
						|
      IsLinux = true;
 | 
						|
    } else if (TT.find("cygwin") != std::string::npos) {
 | 
						|
      TargetType = isCygwin;
 | 
						|
    } else if (TT.find("mingw") != std::string::npos) {
 | 
						|
      TargetType = isMingw;
 | 
						|
    } else if (TT.find("win32") != std::string::npos) {
 | 
						|
      TargetType = isWindows;
 | 
						|
    } else if (TT.find("windows") != std::string::npos) {
 | 
						|
      TargetType = isWindows;
 | 
						|
    }
 | 
						|
    else if (TT.find("-cl") != std::string::npos) {
 | 
						|
      TargetType = isDarwin;
 | 
						|
      DarwinVers = 9;
 | 
						|
    }
 | 
						|
  } else if (TT.empty()) {
 | 
						|
#if defined(__CYGWIN__)
 | 
						|
    TargetType = isCygwin;
 | 
						|
#elif defined(__MINGW32__) || defined(__MINGW64__)
 | 
						|
    TargetType = isMingw;
 | 
						|
#elif defined(__APPLE__)
 | 
						|
    TargetType = isDarwin;
 | 
						|
#if __APPLE_CC__ > 5400
 | 
						|
    DarwinVers = 9;  // GCC 5400+ is Leopard.
 | 
						|
#else
 | 
						|
    DarwinVers = 8;  // Minimum supported darwin is Tiger.
 | 
						|
#endif
 | 
						|
    
 | 
						|
#elif defined(_WIN32) || defined(_WIN64)
 | 
						|
    TargetType = isWindows;
 | 
						|
#elif defined(__linux__)
 | 
						|
    // Linux doesn't imply ELF, but we don't currently support anything else.
 | 
						|
    TargetType = isELF;
 | 
						|
    IsLinux = true;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  // If the asm syntax hasn't been overridden on the command line, use whatever
 | 
						|
  // the target wants.
 | 
						|
  if (AsmFlavor == X86Subtarget::Unset) {
 | 
						|
    AsmFlavor = (TargetType == isWindows)
 | 
						|
      ? X86Subtarget::Intel : X86Subtarget::ATT;
 | 
						|
  }
 | 
						|
 | 
						|
  // Stack alignment is 16 bytes on Darwin (both 32 and 64 bit) and for all 64
 | 
						|
  // bit targets.
 | 
						|
  if (TargetType == isDarwin || Is64Bit)
 | 
						|
    stackAlignment = 16;
 | 
						|
 | 
						|
  if (StackAlignment)
 | 
						|
    stackAlignment = StackAlignment;
 | 
						|
}
 |