llvm-6502/lib/Target/TargetTransformImpl.cpp
Nadav Rotem 1e1c5f37c3 CostModel: We have API for checking the costs of known shuffles. This patch adds
support for the insert-subvector and extract-subvector kinds.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171027 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-24 10:04:03 +00:00

380 lines
13 KiB
C++

// llvm/Target/TargetTransformImpl.cpp - Target Loop Trans Info ---*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetTransformImpl.h"
#include "llvm/Target/TargetLowering.h"
#include <utility>
using namespace llvm;
//===----------------------------------------------------------------------===//
//
// Calls used by scalar transformations.
//
//===----------------------------------------------------------------------===//
bool ScalarTargetTransformImpl::isLegalAddImmediate(int64_t imm) const {
return TLI->isLegalAddImmediate(imm);
}
bool ScalarTargetTransformImpl::isLegalICmpImmediate(int64_t imm) const {
return TLI->isLegalICmpImmediate(imm);
}
bool ScalarTargetTransformImpl::isLegalAddressingMode(const AddrMode &AM,
Type *Ty) const {
return TLI->isLegalAddressingMode(AM, Ty);
}
bool ScalarTargetTransformImpl::isTruncateFree(Type *Ty1, Type *Ty2) const {
return TLI->isTruncateFree(Ty1, Ty2);
}
bool ScalarTargetTransformImpl::isTypeLegal(Type *Ty) const {
EVT T = TLI->getValueType(Ty);
return TLI->isTypeLegal(T);
}
unsigned ScalarTargetTransformImpl::getJumpBufAlignment() const {
return TLI->getJumpBufAlignment();
}
unsigned ScalarTargetTransformImpl::getJumpBufSize() const {
return TLI->getJumpBufSize();
}
bool ScalarTargetTransformImpl::shouldBuildLookupTables() const {
return TLI->supportJumpTables() &&
(TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
}
//===----------------------------------------------------------------------===//
//
// Calls used by the vectorizers.
//
//===----------------------------------------------------------------------===//
int VectorTargetTransformImpl::InstructionOpcodeToISD(unsigned Opcode) const {
enum InstructionOpcodes {
#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
#include "llvm/Instruction.def"
};
switch (static_cast<InstructionOpcodes>(Opcode)) {
case Ret: return 0;
case Br: return 0;
case Switch: return 0;
case IndirectBr: return 0;
case Invoke: return 0;
case Resume: return 0;
case Unreachable: return 0;
case Add: return ISD::ADD;
case FAdd: return ISD::FADD;
case Sub: return ISD::SUB;
case FSub: return ISD::FSUB;
case Mul: return ISD::MUL;
case FMul: return ISD::FMUL;
case UDiv: return ISD::UDIV;
case SDiv: return ISD::UDIV;
case FDiv: return ISD::FDIV;
case URem: return ISD::UREM;
case SRem: return ISD::SREM;
case FRem: return ISD::FREM;
case Shl: return ISD::SHL;
case LShr: return ISD::SRL;
case AShr: return ISD::SRA;
case And: return ISD::AND;
case Or: return ISD::OR;
case Xor: return ISD::XOR;
case Alloca: return 0;
case Load: return ISD::LOAD;
case Store: return ISD::STORE;
case GetElementPtr: return 0;
case Fence: return 0;
case AtomicCmpXchg: return 0;
case AtomicRMW: return 0;
case Trunc: return ISD::TRUNCATE;
case ZExt: return ISD::ZERO_EXTEND;
case SExt: return ISD::SIGN_EXTEND;
case FPToUI: return ISD::FP_TO_UINT;
case FPToSI: return ISD::FP_TO_SINT;
case UIToFP: return ISD::UINT_TO_FP;
case SIToFP: return ISD::SINT_TO_FP;
case FPTrunc: return ISD::FP_ROUND;
case FPExt: return ISD::FP_EXTEND;
case PtrToInt: return ISD::BITCAST;
case IntToPtr: return ISD::BITCAST;
case BitCast: return ISD::BITCAST;
case ICmp: return ISD::SETCC;
case FCmp: return ISD::SETCC;
case PHI: return 0;
case Call: return 0;
case Select: return ISD::SELECT;
case UserOp1: return 0;
case UserOp2: return 0;
case VAArg: return 0;
case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
case InsertElement: return ISD::INSERT_VECTOR_ELT;
case ShuffleVector: return ISD::VECTOR_SHUFFLE;
case ExtractValue: return ISD::MERGE_VALUES;
case InsertValue: return ISD::MERGE_VALUES;
case LandingPad: return 0;
}
llvm_unreachable("Unknown instruction type encountered!");
}
std::pair<unsigned, MVT>
VectorTargetTransformImpl::getTypeLegalizationCost(Type *Ty) const {
LLVMContext &C = Ty->getContext();
EVT MTy = TLI->getValueType(Ty);
unsigned Cost = 1;
// We keep legalizing the type until we find a legal kind. We assume that
// the only operation that costs anything is the split. After splitting
// we need to handle two types.
while (true) {
TargetLowering::LegalizeKind LK = TLI->getTypeConversion(C, MTy);
if (LK.first == TargetLowering::TypeLegal)
return std::make_pair(Cost, MTy.getSimpleVT());
if (LK.first == TargetLowering::TypeSplitVector ||
LK.first == TargetLowering::TypeExpandInteger)
Cost *= 2;
// Keep legalizing the type.
MTy = LK.second;
}
}
unsigned
VectorTargetTransformImpl::getScalarizationOverhead(Type *Ty,
bool Insert,
bool Extract) const {
assert (Ty->isVectorTy() && "Can only scalarize vectors");
unsigned Cost = 0;
for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
if (Insert)
Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
if (Extract)
Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
}
return Cost;
}
unsigned VectorTargetTransformImpl::getArithmeticInstrCost(unsigned Opcode,
Type *Ty) const {
// Check if any of the operands are vector operands.
int ISD = InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Ty);
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
// The operation is legal. Assume it costs 1.
// If the type is split to multiple registers, assume that thre is some
// overhead to this.
// TODO: Once we have extract/insert subvector cost we need to use them.
if (LT.first > 1)
return LT.first * 2;
return LT.first * 1;
}
if (!TLI->isOperationExpand(ISD, LT.second)) {
// If the operation is custom lowered then assume
// thare the code is twice as expensive.
return LT.first * 2;
}
// Else, assume that we need to scalarize this op.
if (Ty->isVectorTy()) {
unsigned Num = Ty->getVectorNumElements();
unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
// return the cost of multiple scalar invocation plus the cost of inserting
// and extracting the values.
return getScalarizationOverhead(Ty, true, true) + Num * Cost;
}
// We don't know anything about this scalar instruction.
return 1;
}
unsigned VectorTargetTransformImpl::getShuffleCost(ShuffleKind Kind,
Type *Tp,
int Index) const {
return 1;
}
unsigned VectorTargetTransformImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const {
int ISD = InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
std::pair<unsigned, MVT> SrcLT = getTypeLegalizationCost(Src);
std::pair<unsigned, MVT> DstLT = getTypeLegalizationCost(Dst);
// Handle scalar conversions.
if (!Src->isVectorTy() && !Dst->isVectorTy()) {
// Scalar bitcasts are usually free.
if (Opcode == Instruction::BitCast)
return 0;
if (Opcode == Instruction::Trunc &&
TLI->isTruncateFree(SrcLT.second, DstLT.second))
return 0;
if (Opcode == Instruction::ZExt &&
TLI->isZExtFree(SrcLT.second, DstLT.second))
return 0;
// Just check the op cost. If the operation is legal then assume it costs 1.
if (!TLI->isOperationExpand(ISD, DstLT.second))
return 1;
// Assume that illegal scalar instruction are expensive.
return 4;
}
// Check vector-to-vector casts.
if (Dst->isVectorTy() && Src->isVectorTy()) {
// If the cast is between same-sized registers, then the check is simple.
if (SrcLT.first == DstLT.first &&
SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
// Bitcast between types that are legalized to the same type are free.
if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
return 0;
// Assume that Zext is done using AND.
if (Opcode == Instruction::ZExt)
return 1;
// Assume that sext is done using SHL and SRA.
if (Opcode == Instruction::SExt)
return 2;
// Just check the op cost. If the operation is legal then assume it costs
// 1 and multiply by the type-legalization overhead.
if (!TLI->isOperationExpand(ISD, DstLT.second))
return SrcLT.first * 1;
}
// If we are converting vectors and the operation is illegal, or
// if the vectors are legalized to different types, estimate the
// scalarization costs.
unsigned Num = Dst->getVectorNumElements();
unsigned Cost = getCastInstrCost(Opcode, Dst->getScalarType(),
Src->getScalarType());
// Return the cost of multiple scalar invocation plus the cost of
// inserting and extracting the values.
return getScalarizationOverhead(Dst, true, true) + Num * Cost;
}
// We already handled vector-to-vector and scalar-to-scalar conversions. This
// is where we handle bitcast between vectors and scalars. We need to assume
// that the conversion is scalarized in one way or another.
if (Opcode == Instruction::BitCast)
// Illegal bitcasts are done by storing and loading from a stack slot.
return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
(Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
llvm_unreachable("Unhandled cast");
}
unsigned VectorTargetTransformImpl::getCFInstrCost(unsigned Opcode) const {
// Branches are assumed to be predicted.
return 0;
}
unsigned VectorTargetTransformImpl::getCmpSelInstrCost(unsigned Opcode,
Type *ValTy,
Type *CondTy) const {
int ISD = InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// Selects on vectors are actually vector selects.
if (ISD == ISD::SELECT) {
assert(CondTy && "CondTy must exist");
if (CondTy->isVectorTy())
ISD = ISD::VSELECT;
}
std::pair<unsigned, MVT> LT = getTypeLegalizationCost(ValTy);
if (!TLI->isOperationExpand(ISD, LT.second)) {
// The operation is legal. Assume it costs 1. Multiply
// by the type-legalization overhead.
return LT.first * 1;
}
// Otherwise, assume that the cast is scalarized.
if (ValTy->isVectorTy()) {
unsigned Num = ValTy->getVectorNumElements();
if (CondTy)
CondTy = CondTy->getScalarType();
unsigned Cost = getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
CondTy);
// Return the cost of multiple scalar invocation plus the cost of inserting
// and extracting the values.
return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
}
// Unknown scalar opcode.
return 1;
}
unsigned VectorTargetTransformImpl::getVectorInstrCost(unsigned Opcode,
Type *Val,
unsigned Index) const {
return 1;
}
unsigned
VectorTargetTransformImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const {
assert(!Src->isVoidTy() && "Invalid type");
std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Src);
// Assume that all loads of legal types cost 1.
return LT.first;
}
unsigned
VectorTargetTransformImpl::getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
ArrayRef<Type*> Tys) const {
// assume that we need to scalarize this intrinsic.
unsigned ScalarizationCost = 0;
unsigned ScalarCalls = 1;
if (RetTy->isVectorTy()) {
ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
}
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
if (Tys[i]->isVectorTy()) {
ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
}
}
return ScalarCalls + ScalarizationCost;
}
unsigned
VectorTargetTransformImpl::getNumberOfParts(Type *Tp) const {
std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Tp);
return LT.first;
}