mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Header files will be on the way. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9298 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			248 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			248 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- ProfilePaths.cpp - interface to insert instrumentation --*- C++ -*-===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This inserts instrumentation for counting execution of paths though a given
 | 
						|
// function Its implemented as a "Function" Pass, and called using opt
 | 
						|
//
 | 
						|
// This pass is implemented by using algorithms similar to 
 | 
						|
// 1."Efficient Path Profiling": Ball, T. and Larus, J. R., 
 | 
						|
//    Proceedings of Micro-29, Dec 1996, Paris, France.
 | 
						|
// 2."Efficiently Counting Program events with support for on-line
 | 
						|
//   "queries": Ball T., ACM Transactions on Programming Languages
 | 
						|
//    and systems, Sep 1994.
 | 
						|
//
 | 
						|
// The algorithms work on a Graph constructed over the nodes made from Basic
 | 
						|
// Blocks: The transformations then take place on the constructed graph
 | 
						|
// (implementation in Graph.cpp and GraphAuxiliary.cpp) and finally, appropriate
 | 
						|
// instrumentation is placed over suitable edges.  (code inserted through
 | 
						|
// EdgeCode.cpp).
 | 
						|
// 
 | 
						|
// The algorithm inserts code such that every acyclic path in the CFG of a
 | 
						|
// function is identified through a unique number. the code insertion is optimal
 | 
						|
// in the sense that its inserted over a minimal set of edges. Also, the
 | 
						|
// algorithm makes sure than initialization, path increment and counter update
 | 
						|
// can be collapsed into minimum number of edges.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/iMemory.h"
 | 
						|
#include "llvm/iOperators.h"
 | 
						|
#include "llvm/iOther.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "Graph.h"
 | 
						|
#include <fstream>
 | 
						|
#include <cstdio>
 | 
						|
 | 
						|
struct ProfilePaths : public FunctionPass {
 | 
						|
  bool runOnFunction(Function &F);
 | 
						|
 | 
						|
  // Before this pass, make sure that there is only one 
 | 
						|
  // entry and only one exit node for the function in the CFG of the function
 | 
						|
  //
 | 
						|
  void ProfilePaths::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
    AU.addRequired<UnifyFunctionExitNodes>();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
static RegisterOpt<ProfilePaths> X("paths", "Profile Paths");
 | 
						|
 | 
						|
static Node *findBB(std::vector<Node *> &st, BasicBlock *BB){
 | 
						|
  for(std::vector<Node *>::iterator si=st.begin(); si!=st.end(); ++si){
 | 
						|
    if(((*si)->getElement())==BB){
 | 
						|
      return *si;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
//Per function pass for inserting counters and trigger code
 | 
						|
bool ProfilePaths::runOnFunction(Function &F){
 | 
						|
 | 
						|
  static int mn = -1;
 | 
						|
  static int CountCounter = 1;
 | 
						|
  if(F.isExternal()) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 
 | 
						|
  //increment counter for instrumented functions. mn is now function#
 | 
						|
  mn++;
 | 
						|
  
 | 
						|
  // Transform the cfg s.t. we have just one exit node
 | 
						|
  BasicBlock *ExitNode = 
 | 
						|
    getAnalysis<UnifyFunctionExitNodes>().getReturnBlock();  
 | 
						|
 | 
						|
  //iterating over BBs and making graph
 | 
						|
  std::vector<Node *> nodes;
 | 
						|
  std::vector<Edge> edges;
 | 
						|
 | 
						|
  Node *tmp;
 | 
						|
  Node *exitNode = 0, *startNode = 0;
 | 
						|
 | 
						|
  // The nodes must be uniquely identified:
 | 
						|
  // That is, no two nodes must hav same BB*
 | 
						|
  
 | 
						|
  for (Function::iterator BB = F.begin(), BE = F.end(); BB != BE; ++BB) {
 | 
						|
    Node *nd=new Node(BB);
 | 
						|
    nodes.push_back(nd); 
 | 
						|
    if(&*BB == ExitNode)
 | 
						|
      exitNode=nd;
 | 
						|
    if(BB==F.begin())
 | 
						|
      startNode=nd;
 | 
						|
  }
 | 
						|
 | 
						|
  // now do it again to insert edges
 | 
						|
  for (Function::iterator BB = F.begin(), BE = F.end(); BB != BE; ++BB){
 | 
						|
    Node *nd=findBB(nodes, BB);
 | 
						|
    assert(nd && "No node for this edge!");
 | 
						|
 | 
						|
    for(succ_iterator s=succ_begin(BB), se=succ_end(BB); s!=se; ++s){
 | 
						|
      Node *nd2=findBB(nodes,*s);
 | 
						|
      assert(nd2 && "No node for this edge!");
 | 
						|
      Edge ed(nd,nd2,0);
 | 
						|
      edges.push_back(ed);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  Graph g(nodes,edges, startNode, exitNode);
 | 
						|
 | 
						|
#ifdef DEBUG_PATH_PROFILES  
 | 
						|
  std::cerr<<"Original graph\n";
 | 
						|
  printGraph(g);
 | 
						|
#endif
 | 
						|
 | 
						|
  BasicBlock *fr = &F.front();
 | 
						|
  
 | 
						|
  // The graph is made acyclic: this is done
 | 
						|
  // by removing back edges for now, and adding them later on
 | 
						|
  std::vector<Edge> be;
 | 
						|
  std::map<Node *, int> nodePriority; //it ranks nodes in depth first order traversal
 | 
						|
  g.getBackEdges(be, nodePriority);
 | 
						|
  
 | 
						|
#ifdef DEBUG_PATH_PROFILES
 | 
						|
  std::cerr<<"BackEdges-------------\n";
 | 
						|
  for (std::vector<Edge>::iterator VI=be.begin(); VI!=be.end(); ++VI){
 | 
						|
    printEdge(*VI);
 | 
						|
    cerr<<"\n";
 | 
						|
  }
 | 
						|
  std::cerr<<"------\n";
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef DEBUG_PATH_PROFILES
 | 
						|
  cerr<<"Backedges:"<<be.size()<<endl;
 | 
						|
#endif
 | 
						|
  //Now we need to reflect the effect of back edges
 | 
						|
  //This is done by adding dummy edges
 | 
						|
  //If a->b is a back edge
 | 
						|
  //Then we add 2 back edges for it:
 | 
						|
  //1. from root->b (in vector stDummy)
 | 
						|
  //and 2. from a->exit (in vector exDummy)
 | 
						|
  std::vector<Edge> stDummy;
 | 
						|
  std::vector<Edge> exDummy;
 | 
						|
  addDummyEdges(stDummy, exDummy, g, be);
 | 
						|
 | 
						|
#ifdef DEBUG_PATH_PROFILES
 | 
						|
  std::cerr<<"After adding dummy edges\n";
 | 
						|
  printGraph(g);
 | 
						|
#endif
 | 
						|
 | 
						|
  // Now, every edge in the graph is assigned a weight
 | 
						|
  // This weight later adds on to assign path
 | 
						|
  // numbers to different paths in the graph
 | 
						|
  //  All paths for now are acyclic,
 | 
						|
  // since no back edges in the graph now
 | 
						|
  // numPaths is the number of acyclic paths in the graph
 | 
						|
  int numPaths=valueAssignmentToEdges(g, nodePriority, be);
 | 
						|
 | 
						|
  //if(numPaths<=1) return false;
 | 
						|
 | 
						|
  static GlobalVariable *threshold = NULL;
 | 
						|
  static bool insertedThreshold = false;
 | 
						|
 | 
						|
  if(!insertedThreshold){
 | 
						|
    threshold = new GlobalVariable(Type::IntTy, false,
 | 
						|
                                   GlobalValue::ExternalLinkage, 0,
 | 
						|
                                   "reopt_threshold");
 | 
						|
 | 
						|
    F.getParent()->getGlobalList().push_back(threshold);
 | 
						|
    insertedThreshold = true;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(threshold && "GlobalVariable threshold not defined!");
 | 
						|
 | 
						|
 | 
						|
  if(fr->getParent()->getName() == "main"){
 | 
						|
    //initialize threshold
 | 
						|
 | 
						|
    // FIXME: THIS IS HORRIBLY BROKEN.  FUNCTION PASSES CANNOT DO THIS, EXCEPT
 | 
						|
    // IN THEIR INITIALIZE METHOD!!
 | 
						|
    Function *initialize =
 | 
						|
      F.getParent()->getOrInsertFunction("reoptimizerInitialize", Type::VoidTy,
 | 
						|
                                         PointerType::get(Type::IntTy), 0);
 | 
						|
    
 | 
						|
    std::vector<Value *> trargs;
 | 
						|
    trargs.push_back(threshold);
 | 
						|
    new CallInst(initialize, trargs, "", fr->begin());
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  if(numPaths<=1 || numPaths >5000) return false;
 | 
						|
  
 | 
						|
#ifdef DEBUG_PATH_PROFILES  
 | 
						|
  printGraph(g);
 | 
						|
#endif
 | 
						|
 | 
						|
  //create instruction allocation r and count
 | 
						|
  //r is the variable that'll act like an accumulator
 | 
						|
  //all along the path, we just add edge values to r
 | 
						|
  //and at the end, r reflects the path number
 | 
						|
  //count is an array: count[x] would store
 | 
						|
  //the number of executions of path numbered x
 | 
						|
 | 
						|
  Instruction *rVar=new 
 | 
						|
    AllocaInst(Type::IntTy, 
 | 
						|
               ConstantUInt::get(Type::UIntTy,1),"R");
 | 
						|
 | 
						|
  //Instruction *countVar=new 
 | 
						|
  //AllocaInst(Type::IntTy, 
 | 
						|
  //           ConstantUInt::get(Type::UIntTy, numPaths), "Count");
 | 
						|
 | 
						|
  //initialize counter array!
 | 
						|
  std::vector<Constant*> arrayInitialize;
 | 
						|
  for(int xi=0; xi<numPaths; xi++)
 | 
						|
    arrayInitialize.push_back(ConstantSInt::get(Type::IntTy, 0));
 | 
						|
 | 
						|
  const ArrayType *ATy = ArrayType::get(Type::IntTy, numPaths);
 | 
						|
  Constant *initializer =  ConstantArray::get(ATy, arrayInitialize);
 | 
						|
  char tempChar[20];
 | 
						|
  sprintf(tempChar, "Count%d", CountCounter);
 | 
						|
  CountCounter++;
 | 
						|
  std::string countStr = tempChar;
 | 
						|
  GlobalVariable *countVar = new GlobalVariable(ATy, false,
 | 
						|
                                                GlobalValue::InternalLinkage, 
 | 
						|
                                                initializer, countStr,
 | 
						|
                                                F.getParent());
 | 
						|
  
 | 
						|
  // insert initialization code in first (entry) BB
 | 
						|
  // this includes initializing r and count
 | 
						|
  insertInTopBB(&F.getEntryBlock(), numPaths, rVar, threshold);
 | 
						|
    
 | 
						|
  //now process the graph: get path numbers,
 | 
						|
  //get increments along different paths,
 | 
						|
  //and assign "increments" and "updates" (to r and count)
 | 
						|
  //"optimally". Finally, insert llvm code along various edges
 | 
						|
  processGraph(g, rVar, countVar, be, stDummy, exDummy, numPaths, mn, 
 | 
						|
               threshold);    
 | 
						|
   
 | 
						|
  return true;  // Always modifies function
 | 
						|
}
 |