mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-27 13:30:05 +00:00
LLVM backend for 6502
d793a053ad
rather than the constructors of passes. This simplifies the APIs of passes significantly and removes an error prone pattern where the *same* manager had to be given to every different layer. With the new API the analysis managers themselves will have to be cross connected with proxy analyses that allow a pass at one layer to query for the analysis manager of another layer. The proxy will both expose a handle to the other layer's manager and it will provide the invalidation hooks to ensure things remain consistent across layers. Finally, the outer-most analysis manager has to be passed to the run method of the outer-most pass manager. The rest of the propagation is automatic. I've used SFINAE again to allow passes to completely disregard the analysis manager if they don't need or want to care. This helps keep simple things simple for users of the new pass manager. Also, the system specifically supports passing a null pointer into the outer-most run method if your pass pipeline neither needs nor wants to deal with analyses. I find this of dubious utility as while some *passes* don't care about analysis, I'm not sure there are any real-world users of the pass manager itself that need to avoid even creating an analysis manager. But it is easy to support, so there we go. Finally I renamed the module proxy for the function analysis manager to the more verbose but less confusing name of FunctionAnalysisManagerModuleProxy. I hate this name, but I have no idea what else to name these things. I'm expecting in the fullness of time to potentially have the complete cross product of types at the proxy layer: {Module,SCC,Function,Loop,Region}AnalysisManager{Module,SCC,Function,Loop,Region}Proxy (except for XAnalysisManagerXProxy which doesn't make any sense) This should make it somewhat easier to do the next phases which is to build the upward proxy and get its invalidation correct, as well as to make the invalidation within the Module -> Function mapping pass be more fine grained so as to invalidate fewer fuction analyses. After all of the proxy analyses are done and the invalidation working, I'll finally be able to start working on the next two fun fronts: how to adapt an existing pass to work in both the legacy pass world and the new one, and building the SCC, Loop, and Region counterparts. Fun times! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195400 91177308-0d34-0410-b5e6-96231b3b80d8 |
||
---|---|---|
autoconf | ||
bindings | ||
cmake | ||
docs | ||
examples | ||
include | ||
lib | ||
projects | ||
test | ||
tools | ||
unittests | ||
utils | ||
.arcconfig | ||
.clang-format | ||
.gitignore | ||
CMakeLists.txt | ||
CODE_OWNERS.TXT | ||
configure | ||
CREDITS.TXT | ||
LICENSE.TXT | ||
llvm.spec.in | ||
LLVMBuild.txt | ||
Makefile | ||
Makefile.common | ||
Makefile.config.in | ||
Makefile.rules | ||
README.txt |
Low Level Virtual Machine (LLVM) ================================ This directory and its subdirectories contain source code for the Low Level Virtual Machine, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments. LLVM is open source software. You may freely distribute it under the terms of the license agreement found in LICENSE.txt. Please see the documentation provided in docs/ for further assistance with LLVM, and in particular docs/GettingStarted.rst for getting started with LLVM and docs/README.txt for an overview of LLVM's documentation setup. If you're writing a package for LLVM, see docs/Packaging.rst for our suggestions.