mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	#define CL0(a) case a: f(); goto c;
 #define CL1(a) CL0(a##0) CL0(a##1) CL0(a##2) CL0(a##3) CL0(a##4) CL0(a##5) \
 CL0(a##6) CL0(a##7) CL0(a##8) CL0(a##9)
 #define CL2(a) CL1(a##0) CL1(a##1) CL1(a##2) CL1(a##3) CL1(a##4) CL1(a##5) \
 CL1(a##6) CL1(a##7) CL1(a##8) CL1(a##9)
 #define CL3(a) CL2(a##0) CL2(a##1) CL2(a##2) CL2(a##3) CL2(a##4) CL2(a##5) \
 CL2(a##6) CL2(a##7) CL2(a##8) CL2(a##9)
 #define CL4(a) CL3(a##0) CL3(a##1) CL3(a##2) CL3(a##3) CL3(a##4) CL3(a##5) \
 CL3(a##6) CL3(a##7) CL3(a##8) CL3(a##9)
 void f();
 void a() {
     int b;
  c: switch (b) {
         CL4(1)
     }
 }
This comes from GCC PR 15524
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17390 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			327 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			327 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- TailDuplication.cpp - Simplify CFG through tail duplication --------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs a limited form of tail duplication, intended to simplify
 | 
						|
// CFGs by removing some unconditional branches.  This pass is necessary to
 | 
						|
// straighten out loops created by the C front-end, but also is capable of
 | 
						|
// making other code nicer.  After this pass is run, the CFG simplify pass
 | 
						|
// should be run to clean up the mess.
 | 
						|
//
 | 
						|
// This pass could be enhanced in the future to use profile information to be
 | 
						|
// more aggressive.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Constant.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  cl::opt<unsigned>
 | 
						|
  Threshold("taildup-threshold", cl::desc("Max block size to tail duplicate"),
 | 
						|
            cl::init(6), cl::Hidden);
 | 
						|
  Statistic<> NumEliminated("tailduplicate",
 | 
						|
                            "Number of unconditional branches eliminated");
 | 
						|
  Statistic<> NumPHINodes("tailduplicate", "Number of phi nodes inserted");
 | 
						|
 | 
						|
  class TailDup : public FunctionPass {
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
  private:
 | 
						|
    inline bool shouldEliminateUnconditionalBranch(TerminatorInst *TI);
 | 
						|
    inline void eliminateUnconditionalBranch(BranchInst *BI);
 | 
						|
  };
 | 
						|
  RegisterOpt<TailDup> X("tailduplicate", "Tail Duplication");
 | 
						|
}
 | 
						|
 | 
						|
// Public interface to the Tail Duplication pass
 | 
						|
FunctionPass *llvm::createTailDuplicationPass() { return new TailDup(); }
 | 
						|
 | 
						|
/// runOnFunction - Top level algorithm - Loop over each unconditional branch in
 | 
						|
/// the function, eliminating it if it looks attractive enough.
 | 
						|
///
 | 
						|
bool TailDup::runOnFunction(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  for (Function::iterator I = F.begin(), E = F.end(); I != E; )
 | 
						|
    if (shouldEliminateUnconditionalBranch(I->getTerminator())) {
 | 
						|
      eliminateUnconditionalBranch(cast<BranchInst>(I->getTerminator()));
 | 
						|
      Changed = true;
 | 
						|
    } else {
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// shouldEliminateUnconditionalBranch - Return true if this branch looks
 | 
						|
/// attractive to eliminate.  We eliminate the branch if the destination basic
 | 
						|
/// block has <= 5 instructions in it, not counting PHI nodes.  In practice,
 | 
						|
/// since one of these is a terminator instruction, this means that we will add
 | 
						|
/// up to 4 instructions to the new block.
 | 
						|
///
 | 
						|
/// We don't count PHI nodes in the count since they will be removed when the
 | 
						|
/// contents of the block are copied over.
 | 
						|
///
 | 
						|
bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst *TI) {
 | 
						|
  BranchInst *BI = dyn_cast<BranchInst>(TI);
 | 
						|
  if (!BI || !BI->isUnconditional()) return false;  // Not an uncond branch!
 | 
						|
 | 
						|
  BasicBlock *Dest = BI->getSuccessor(0);
 | 
						|
  if (Dest == BI->getParent()) return false;        // Do not loop infinitely!
 | 
						|
 | 
						|
  // Do not inline a block if we will just get another branch to the same block!
 | 
						|
  TerminatorInst *DTI = Dest->getTerminator();
 | 
						|
  if (BranchInst *DBI = dyn_cast<BranchInst>(DTI))
 | 
						|
    if (DBI->isUnconditional() && DBI->getSuccessor(0) == Dest)
 | 
						|
      return false;                                 // Do not loop infinitely!
 | 
						|
 | 
						|
  // FIXME: DemoteRegToStack cannot yet demote invoke instructions to the stack,
 | 
						|
  // because doing so would require breaking critical edges.  This should be
 | 
						|
  // fixed eventually.
 | 
						|
  if (!DTI->use_empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do not bother working on dead blocks...
 | 
						|
  pred_iterator PI = pred_begin(Dest), PE = pred_end(Dest);
 | 
						|
  if (PI == PE && Dest != Dest->getParent()->begin())
 | 
						|
    return false;   // It's just a dead block, ignore it...
 | 
						|
 | 
						|
  // Also, do not bother with blocks with only a single predecessor: simplify
 | 
						|
  // CFG will fold these two blocks together!
 | 
						|
  ++PI;
 | 
						|
  if (PI == PE) return false;  // Exactly one predecessor!
 | 
						|
 | 
						|
  BasicBlock::iterator I = Dest->begin();
 | 
						|
  while (isa<PHINode>(*I)) ++I;
 | 
						|
 | 
						|
  for (unsigned Size = 0; I != Dest->end(); ++Size, ++I)
 | 
						|
    if (Size == Threshold) return false;  // The block is too large...
 | 
						|
 | 
						|
  // Do not tail duplicate a block that has thousands of successors into a block
 | 
						|
  // with a single successor if the block has many other predecessors.  This can
 | 
						|
  // cause an N^2 explosion in CFG edges (and PHI node entries), as seen in
 | 
						|
  // cases that have a large number of indirect gotos.
 | 
						|
  unsigned NumSuccs = DTI->getNumSuccessors();
 | 
						|
  if (NumSuccs > 8) {
 | 
						|
    unsigned TooMany = 128;
 | 
						|
    if (NumSuccs >= TooMany) return false;
 | 
						|
    TooMany = TooMany/NumSuccs;
 | 
						|
    for (; PI != PE; ++PI)
 | 
						|
      if (TooMany-- == 0) return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;  
 | 
						|
}
 | 
						|
 | 
						|
/// FindObviousSharedDomOf - We know there is a branch from SrcBlock to
 | 
						|
/// DestBlock, and that SrcBlock is not the only predecessor of DstBlock.  If we
 | 
						|
/// can find a predecessor of SrcBlock that is a dominator of both SrcBlock and
 | 
						|
/// DstBlock, return it.
 | 
						|
static BasicBlock *FindObviousSharedDomOf(BasicBlock *SrcBlock,
 | 
						|
                                          BasicBlock *DstBlock) {
 | 
						|
  // SrcBlock must have a single predecessor.
 | 
						|
  pred_iterator PI = pred_begin(SrcBlock), PE = pred_end(SrcBlock);
 | 
						|
  if (PI == PE || ++PI != PE) return 0;
 | 
						|
 | 
						|
  BasicBlock *SrcPred = *pred_begin(SrcBlock);
 | 
						|
  
 | 
						|
  // Look at the predecessors of DstBlock.  One of them will be SrcBlock.  If
 | 
						|
  // there is only one other pred, get it, otherwise we can't handle it.
 | 
						|
  PI = pred_begin(DstBlock); PE = pred_end(DstBlock);
 | 
						|
  BasicBlock *DstOtherPred = 0;
 | 
						|
  if (*PI == SrcBlock) {
 | 
						|
    if (++PI == PE) return 0;
 | 
						|
    DstOtherPred = *PI;
 | 
						|
    if (++PI != PE) return 0;
 | 
						|
  } else {
 | 
						|
    DstOtherPred = *PI;
 | 
						|
    if (++PI == PE || *PI != SrcBlock || ++PI != PE) return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // We can handle two situations here: "if then" and "if then else" blocks.  An
 | 
						|
  // 'if then' situation is just where DstOtherPred == SrcPred.
 | 
						|
  if (DstOtherPred == SrcPred)
 | 
						|
    return SrcPred;
 | 
						|
 | 
						|
  // Check to see if we have an "if then else" situation, which means that
 | 
						|
  // DstOtherPred will have a single predecessor and it will be SrcPred.
 | 
						|
  PI = pred_begin(DstOtherPred); PE = pred_end(DstOtherPred);
 | 
						|
  if (PI != PE && *PI == SrcPred) {
 | 
						|
    if (++PI != PE) return 0;  // Not a single pred.
 | 
						|
    return SrcPred;  // Otherwise, it's an "if then" situation.  Return the if.
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this is something we can't handle.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// eliminateUnconditionalBranch - Clone the instructions from the destination
 | 
						|
/// block into the source block, eliminating the specified unconditional branch.
 | 
						|
/// If the destination block defines values used by successors of the dest
 | 
						|
/// block, we may need to insert PHI nodes.
 | 
						|
///
 | 
						|
void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
 | 
						|
  BasicBlock *SourceBlock = Branch->getParent();
 | 
						|
  BasicBlock *DestBlock = Branch->getSuccessor(0);
 | 
						|
  assert(SourceBlock != DestBlock && "Our predicate is broken!");
 | 
						|
 | 
						|
  DEBUG(std::cerr << "TailDuplication[" << SourceBlock->getParent()->getName()
 | 
						|
                  << "]: Eliminating branch: " << *Branch);
 | 
						|
 | 
						|
  // See if we can avoid duplicating code by moving it up to a dominator of both
 | 
						|
  // blocks.
 | 
						|
  if (BasicBlock *DomBlock = FindObviousSharedDomOf(SourceBlock, DestBlock)) {
 | 
						|
    DEBUG(std::cerr << "Found shared dominator: " << DomBlock->getName()
 | 
						|
                    << "\n");
 | 
						|
 | 
						|
    // If there are non-phi instructions in DestBlock that have no operands
 | 
						|
    // defined in DestBlock, and if the instruction has no side effects, we can
 | 
						|
    // move the instruction to DomBlock instead of duplicating it.
 | 
						|
    BasicBlock::iterator BBI = DestBlock->begin();
 | 
						|
    while (isa<PHINode>(BBI)) ++BBI;
 | 
						|
    while (!isa<TerminatorInst>(BBI)) {
 | 
						|
      Instruction *I = BBI++;
 | 
						|
      
 | 
						|
      bool CanHoist = !I->isTrapping() && !I->mayWriteToMemory();
 | 
						|
      if (CanHoist) {
 | 
						|
        for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
 | 
						|
          if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(op)))
 | 
						|
            if (OpI->getParent() == DestBlock ||
 | 
						|
                (isa<InvokeInst>(OpI) && OpI->getParent() == DomBlock)) {
 | 
						|
              CanHoist = false;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
        if (CanHoist) {
 | 
						|
          // Remove from DestBlock, move right before the term in DomBlock.
 | 
						|
          DestBlock->getInstList().remove(I);
 | 
						|
          DomBlock->getInstList().insert(DomBlock->getTerminator(), I);
 | 
						|
          DEBUG(std::cerr << "Hoisted: " << *I);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Tail duplication can not update SSA properties correctly if the values
 | 
						|
  // defined in the duplicated tail are used outside of the tail itself.  For
 | 
						|
  // this reason, we spill all values that are used outside of the tail to the
 | 
						|
  // stack.
 | 
						|
  for (BasicBlock::iterator I = DestBlock->begin(); I != DestBlock->end(); ++I)
 | 
						|
    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | 
						|
         ++UI) {
 | 
						|
      bool ShouldDemote = false;
 | 
						|
      if (cast<Instruction>(*UI)->getParent() != DestBlock) {
 | 
						|
        // We must allow our successors to use tail values in their PHI nodes
 | 
						|
        // (if the incoming value corresponds to the tail block).
 | 
						|
        if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
 | 
						|
          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
            if (PN->getIncomingValue(i) == I &&
 | 
						|
                PN->getIncomingBlock(i) != DestBlock) {
 | 
						|
              ShouldDemote = true;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
 | 
						|
        } else {
 | 
						|
          ShouldDemote = true;
 | 
						|
        }
 | 
						|
      } else if (PHINode *PN = dyn_cast<PHINode>(cast<Instruction>(*UI))) {
 | 
						|
        // If the user of this instruction is a PHI node in the current block,
 | 
						|
        // which has an entry from another block using the value, spill it.
 | 
						|
        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
          if (PN->getIncomingValue(i) == I &&
 | 
						|
              PN->getIncomingBlock(i) != DestBlock) {
 | 
						|
            ShouldDemote = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
      }
 | 
						|
 | 
						|
      if (ShouldDemote) {
 | 
						|
        // We found a use outside of the tail.  Create a new stack slot to
 | 
						|
        // break this inter-block usage pattern.
 | 
						|
        DemoteRegToStack(*I);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // We are going to have to map operands from the original block B to the new
 | 
						|
  // copy of the block B'.  If there are PHI nodes in the DestBlock, these PHI
 | 
						|
  // nodes also define part of this mapping.  Loop over these PHI nodes, adding
 | 
						|
  // them to our mapping.
 | 
						|
  //
 | 
						|
  std::map<Value*, Value*> ValueMapping;
 | 
						|
 | 
						|
  BasicBlock::iterator BI = DestBlock->begin();
 | 
						|
  bool HadPHINodes = isa<PHINode>(BI);
 | 
						|
  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | 
						|
    ValueMapping[PN] = PN->getIncomingValueForBlock(SourceBlock);
 | 
						|
 | 
						|
  // Clone the non-phi instructions of the dest block into the source block,
 | 
						|
  // keeping track of the mapping...
 | 
						|
  //
 | 
						|
  for (; BI != DestBlock->end(); ++BI) {
 | 
						|
    Instruction *New = BI->clone();
 | 
						|
    New->setName(BI->getName());
 | 
						|
    SourceBlock->getInstList().push_back(New);
 | 
						|
    ValueMapping[BI] = New;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we have built the mapping information and cloned all of the
 | 
						|
  // instructions (giving us a new terminator, among other things), walk the new
 | 
						|
  // instructions, rewriting references of old instructions to use new
 | 
						|
  // instructions.
 | 
						|
  //
 | 
						|
  BI = Branch; ++BI;  // Get an iterator to the first new instruction
 | 
						|
  for (; BI != SourceBlock->end(); ++BI)
 | 
						|
    for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i)
 | 
						|
      if (Value *Remapped = ValueMapping[BI->getOperand(i)])
 | 
						|
        BI->setOperand(i, Remapped);
 | 
						|
 | 
						|
  // Next we check to see if any of the successors of DestBlock had PHI nodes.
 | 
						|
  // If so, we need to add entries to the PHI nodes for SourceBlock now.
 | 
						|
  for (succ_iterator SI = succ_begin(DestBlock), SE = succ_end(DestBlock);
 | 
						|
       SI != SE; ++SI) {
 | 
						|
    BasicBlock *Succ = *SI;
 | 
						|
    for (BasicBlock::iterator PNI = Succ->begin(); isa<PHINode>(PNI); ++PNI) {
 | 
						|
      PHINode *PN = cast<PHINode>(PNI);
 | 
						|
      // Ok, we have a PHI node.  Figure out what the incoming value was for the
 | 
						|
      // DestBlock.
 | 
						|
      Value *IV = PN->getIncomingValueForBlock(DestBlock);
 | 
						|
      
 | 
						|
      // Remap the value if necessary...
 | 
						|
      if (Value *MappedIV = ValueMapping[IV])
 | 
						|
        IV = MappedIV;
 | 
						|
      PN->addIncoming(IV, SourceBlock);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Next, remove the old branch instruction, and any PHI node entries that we
 | 
						|
  // had.
 | 
						|
  BI = Branch; ++BI;  // Get an iterator to the first new instruction
 | 
						|
  DestBlock->removePredecessor(SourceBlock); // Remove entries in PHI nodes...
 | 
						|
  SourceBlock->getInstList().erase(Branch);  // Destroy the uncond branch...
 | 
						|
 | 
						|
  // Final step: now that we have finished everything up, walk the cloned
 | 
						|
  // instructions one last time, constant propagating and DCE'ing them, because
 | 
						|
  // they may not be needed anymore.
 | 
						|
  //
 | 
						|
  if (HadPHINodes)
 | 
						|
    while (BI != SourceBlock->end())
 | 
						|
      if (!dceInstruction(BI) && !doConstantPropagation(BI))
 | 
						|
        ++BI;
 | 
						|
 | 
						|
  ++NumEliminated;  // We just killed a branch!
 | 
						|
}
 |