mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110460 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			267 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			267 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- Sink.cpp - Code Sinking -------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass moves instructions into successor blocks, when possible, so that
 | 
						|
// they aren't executed on paths where their results aren't needed.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "sink"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumSunk, "Number of instructions sunk");
 | 
						|
 | 
						|
namespace {
 | 
						|
  class Sinking : public FunctionPass {
 | 
						|
    DominatorTree *DT;
 | 
						|
    LoopInfo *LI;
 | 
						|
    AliasAnalysis *AA;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification
 | 
						|
    Sinking() : FunctionPass(ID) {}
 | 
						|
    
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
    
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      FunctionPass::getAnalysisUsage(AU);
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
      AU.addRequired<DominatorTree>();
 | 
						|
      AU.addRequired<LoopInfo>();
 | 
						|
      AU.addPreserved<DominatorTree>();
 | 
						|
      AU.addPreserved<LoopInfo>();
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    bool ProcessBlock(BasicBlock &BB);
 | 
						|
    bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores);
 | 
						|
    bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
  
 | 
						|
char Sinking::ID = 0;
 | 
						|
INITIALIZE_PASS(Sinking, "sink", "Code sinking", false, false);
 | 
						|
 | 
						|
FunctionPass *llvm::createSinkingPass() { return new Sinking(); }
 | 
						|
 | 
						|
/// AllUsesDominatedByBlock - Return true if all uses of the specified value
 | 
						|
/// occur in blocks dominated by the specified block.
 | 
						|
bool Sinking::AllUsesDominatedByBlock(Instruction *Inst, 
 | 
						|
                                      BasicBlock *BB) const {
 | 
						|
  // Ignoring debug uses is necessary so debug info doesn't affect the code.
 | 
						|
  // This may leave a referencing dbg_value in the original block, before
 | 
						|
  // the definition of the vreg.  Dwarf generator handles this although the
 | 
						|
  // user might not get the right info at runtime.
 | 
						|
  for (Value::use_iterator I = Inst->use_begin(),
 | 
						|
       E = Inst->use_end(); I != E; ++I) {
 | 
						|
    // Determine the block of the use.
 | 
						|
    Instruction *UseInst = cast<Instruction>(*I);
 | 
						|
    BasicBlock *UseBlock = UseInst->getParent();
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
 | 
						|
      // PHI nodes use the operand in the predecessor block, not the block with
 | 
						|
      // the PHI.
 | 
						|
      unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo());
 | 
						|
      UseBlock = PN->getIncomingBlock(Num);
 | 
						|
    }
 | 
						|
    // Check that it dominates.
 | 
						|
    if (!DT->dominates(BB, UseBlock))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Sinking::runOnFunction(Function &F) {
 | 
						|
  DT = &getAnalysis<DominatorTree>();
 | 
						|
  LI = &getAnalysis<LoopInfo>();
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  bool EverMadeChange = false;
 | 
						|
  
 | 
						|
  while (1) {
 | 
						|
    bool MadeChange = false;
 | 
						|
 | 
						|
    // Process all basic blocks.
 | 
						|
    for (Function::iterator I = F.begin(), E = F.end(); 
 | 
						|
         I != E; ++I)
 | 
						|
      MadeChange |= ProcessBlock(*I);
 | 
						|
    
 | 
						|
    // If this iteration over the code changed anything, keep iterating.
 | 
						|
    if (!MadeChange) break;
 | 
						|
    EverMadeChange = true;
 | 
						|
  } 
 | 
						|
  return EverMadeChange;
 | 
						|
}
 | 
						|
 | 
						|
bool Sinking::ProcessBlock(BasicBlock &BB) {
 | 
						|
  // Can't sink anything out of a block that has less than two successors.
 | 
						|
  if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false;
 | 
						|
 | 
						|
  // Don't bother sinking code out of unreachable blocks. In addition to being
 | 
						|
  // unprofitable, it can also lead to infinite looping, because in an unreachable
 | 
						|
  // loop there may be nowhere to stop.
 | 
						|
  if (!DT->isReachableFromEntry(&BB)) return false;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Walk the basic block bottom-up.  Remember if we saw a store.
 | 
						|
  BasicBlock::iterator I = BB.end();
 | 
						|
  --I;
 | 
						|
  bool ProcessedBegin = false;
 | 
						|
  SmallPtrSet<Instruction *, 8> Stores;
 | 
						|
  do {
 | 
						|
    Instruction *Inst = I;  // The instruction to sink.
 | 
						|
    
 | 
						|
    // Predecrement I (if it's not begin) so that it isn't invalidated by
 | 
						|
    // sinking.
 | 
						|
    ProcessedBegin = I == BB.begin();
 | 
						|
    if (!ProcessedBegin)
 | 
						|
      --I;
 | 
						|
 | 
						|
    if (isa<DbgInfoIntrinsic>(Inst))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (SinkInstruction(Inst, Stores))
 | 
						|
      ++NumSunk, MadeChange = true;
 | 
						|
    
 | 
						|
    // If we just processed the first instruction in the block, we're done.
 | 
						|
  } while (!ProcessedBegin);
 | 
						|
  
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
 | 
						|
                         SmallPtrSet<Instruction *, 8> &Stores) {
 | 
						|
  if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
 | 
						|
    if (L->isVolatile()) return false;
 | 
						|
 | 
						|
    Value *Ptr = L->getPointerOperand();
 | 
						|
    unsigned Size = AA->getTypeStoreSize(L->getType());
 | 
						|
    for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(),
 | 
						|
         E = Stores.end(); I != E; ++I)
 | 
						|
      if (AA->getModRefInfo(*I, Ptr, Size) & AliasAnalysis::Mod)
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Inst->mayWriteToMemory()) {
 | 
						|
    Stores.insert(Inst);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return Inst->isSafeToSpeculativelyExecute();
 | 
						|
}
 | 
						|
 | 
						|
/// SinkInstruction - Determine whether it is safe to sink the specified machine
 | 
						|
/// instruction out of its current block into a successor.
 | 
						|
bool Sinking::SinkInstruction(Instruction *Inst,
 | 
						|
                              SmallPtrSet<Instruction *, 8> &Stores) {
 | 
						|
  // Check if it's safe to move the instruction.
 | 
						|
  if (!isSafeToMove(Inst, AA, Stores))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // FIXME: This should include support for sinking instructions within the
 | 
						|
  // block they are currently in to shorten the live ranges.  We often get
 | 
						|
  // instructions sunk into the top of a large block, but it would be better to
 | 
						|
  // also sink them down before their first use in the block.  This xform has to
 | 
						|
  // be careful not to *increase* register pressure though, e.g. sinking
 | 
						|
  // "x = y + z" down if it kills y and z would increase the live ranges of y
 | 
						|
  // and z and only shrink the live range of x.
 | 
						|
  
 | 
						|
  // Loop over all the operands of the specified instruction.  If there is
 | 
						|
  // anything we can't handle, bail out.
 | 
						|
  BasicBlock *ParentBlock = Inst->getParent();
 | 
						|
  
 | 
						|
  // SuccToSinkTo - This is the successor to sink this instruction to, once we
 | 
						|
  // decide.
 | 
						|
  BasicBlock *SuccToSinkTo = 0;
 | 
						|
  
 | 
						|
  // FIXME: This picks a successor to sink into based on having one
 | 
						|
  // successor that dominates all the uses.  However, there are cases where
 | 
						|
  // sinking can happen but where the sink point isn't a successor.  For
 | 
						|
  // example:
 | 
						|
  //   x = computation
 | 
						|
  //   if () {} else {}
 | 
						|
  //   use x
 | 
						|
  // the instruction could be sunk over the whole diamond for the 
 | 
						|
  // if/then/else (or loop, etc), allowing it to be sunk into other blocks
 | 
						|
  // after that.
 | 
						|
  
 | 
						|
  // Instructions can only be sunk if all their uses are in blocks
 | 
						|
  // dominated by one of the successors.
 | 
						|
  // Look at all the successors and decide which one
 | 
						|
  // we should sink to.
 | 
						|
  for (succ_iterator SI = succ_begin(ParentBlock),
 | 
						|
       E = succ_end(ParentBlock); SI != E; ++SI) {
 | 
						|
    if (AllUsesDominatedByBlock(Inst, *SI)) {
 | 
						|
      SuccToSinkTo = *SI;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
      
 | 
						|
  // If we couldn't find a block to sink to, ignore this instruction.
 | 
						|
  if (SuccToSinkTo == 0)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // It is not possible to sink an instruction into its own block.  This can
 | 
						|
  // happen with loops.
 | 
						|
  if (Inst->getParent() == SuccToSinkTo)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  DEBUG(dbgs() << "Sink instr " << *Inst);
 | 
						|
  DEBUG(dbgs() << "to block ";
 | 
						|
        WriteAsOperand(dbgs(), SuccToSinkTo, false));
 | 
						|
  
 | 
						|
  // If the block has multiple predecessors, this would introduce computation on
 | 
						|
  // a path that it doesn't already exist.  We could split the critical edge,
 | 
						|
  // but for now we just punt.
 | 
						|
  // FIXME: Split critical edges if not backedges.
 | 
						|
  if (SuccToSinkTo->getUniquePredecessor() != ParentBlock) {
 | 
						|
    // We cannot sink a load across a critical edge - there may be stores in
 | 
						|
    // other code paths.
 | 
						|
    if (!Inst->isSafeToSpeculativelyExecute()) {
 | 
						|
      DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // We don't want to sink across a critical edge if we don't dominate the
 | 
						|
    // successor. We could be introducing calculations to new code paths.
 | 
						|
    if (!DT->dominates(ParentBlock, SuccToSinkTo)) {
 | 
						|
      DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't sink instructions into a loop.
 | 
						|
    if (LI->isLoopHeader(SuccToSinkTo)) {
 | 
						|
      DEBUG(dbgs() << " *** PUNTING: Loop header found\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise we are OK with sinking along a critical edge.
 | 
						|
    DEBUG(dbgs() << "Sinking along critical edge.\n");
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Determine where to insert into.  Skip phi nodes.
 | 
						|
  BasicBlock::iterator InsertPos = SuccToSinkTo->begin();
 | 
						|
  while (InsertPos != SuccToSinkTo->end() && isa<PHINode>(InsertPos))
 | 
						|
    ++InsertPos;
 | 
						|
  
 | 
						|
  // Move the instruction.
 | 
						|
  Inst->moveBefore(InsertPos);
 | 
						|
  return true;
 | 
						|
}
 |