mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142213 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2030 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2030 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file describes how to lower LLVM code to machine code.  This has two
 | |
| // main components:
 | |
| //
 | |
| //  1. Which ValueTypes are natively supported by the target.
 | |
| //  2. Which operations are supported for supported ValueTypes.
 | |
| //  3. Cost thresholds for alternative implementations of certain operations.
 | |
| //
 | |
| // In addition it has a few other components, like information about FP
 | |
| // immediates.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_TARGET_TARGETLOWERING_H
 | |
| #define LLVM_TARGET_TARGETLOWERING_H
 | |
| 
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Attributes.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include "llvm/CodeGen/RuntimeLibcalls.h"
 | |
| #include "llvm/Support/DebugLoc.h"
 | |
| #include "llvm/Target/TargetCallingConv.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include <climits>
 | |
| #include <map>
 | |
| #include <vector>
 | |
| 
 | |
| namespace llvm {
 | |
|   class AllocaInst;
 | |
|   class APFloat;
 | |
|   class CallInst;
 | |
|   class CCState;
 | |
|   class Function;
 | |
|   class FastISel;
 | |
|   class FunctionLoweringInfo;
 | |
|   class ImmutableCallSite;
 | |
|   class MachineBasicBlock;
 | |
|   class MachineFunction;
 | |
|   class MachineFrameInfo;
 | |
|   class MachineInstr;
 | |
|   class MachineJumpTableInfo;
 | |
|   class MCContext;
 | |
|   class MCExpr;
 | |
|   class SDNode;
 | |
|   class SDValue;
 | |
|   class SelectionDAG;
 | |
|   template<typename T> class SmallVectorImpl;
 | |
|   class TargetData;
 | |
|   class TargetMachine;
 | |
|   class TargetRegisterClass;
 | |
|   class TargetLoweringObjectFile;
 | |
|   class Value;
 | |
| 
 | |
|   // FIXME: should this be here?
 | |
|   namespace TLSModel {
 | |
|     enum Model {
 | |
|       GeneralDynamic,
 | |
|       LocalDynamic,
 | |
|       InitialExec,
 | |
|       LocalExec
 | |
|     };
 | |
|   }
 | |
|   TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// TargetLowering - This class defines information used to lower LLVM code to
 | |
| /// legal SelectionDAG operators that the target instruction selector can accept
 | |
| /// natively.
 | |
| ///
 | |
| /// This class also defines callbacks that targets must implement to lower
 | |
| /// target-specific constructs to SelectionDAG operators.
 | |
| ///
 | |
| class TargetLowering {
 | |
|   TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
 | |
|   void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   /// LegalizeAction - This enum indicates whether operations are valid for a
 | |
|   /// target, and if not, what action should be used to make them valid.
 | |
|   enum LegalizeAction {
 | |
|     Legal,      // The target natively supports this operation.
 | |
|     Promote,    // This operation should be executed in a larger type.
 | |
|     Expand,     // Try to expand this to other ops, otherwise use a libcall.
 | |
|     Custom      // Use the LowerOperation hook to implement custom lowering.
 | |
|   };
 | |
| 
 | |
|   /// LegalizeAction - This enum indicates whether a types are legal for a
 | |
|   /// target, and if not, what action should be used to make them valid.
 | |
|   enum LegalizeTypeAction {
 | |
|     TypeLegal,           // The target natively supports this type.
 | |
|     TypePromoteInteger,  // Replace this integer with a larger one.
 | |
|     TypeExpandInteger,   // Split this integer into two of half the size.
 | |
|     TypeSoftenFloat,     // Convert this float to a same size integer type.
 | |
|     TypeExpandFloat,     // Split this float into two of half the size.
 | |
|     TypeScalarizeVector, // Replace this one-element vector with its element.
 | |
|     TypeSplitVector,     // Split this vector into two of half the size.
 | |
|     TypeWidenVector      // This vector should be widened into a larger vector.
 | |
|   };
 | |
| 
 | |
|   enum BooleanContent { // How the target represents true/false values.
 | |
|     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
 | |
|     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
 | |
|     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
 | |
|   };
 | |
| 
 | |
|   static ISD::NodeType getExtendForContent(BooleanContent Content) {
 | |
|     switch (Content) {
 | |
|     default:
 | |
|       assert(false && "Unknown BooleanContent!");
 | |
|     case UndefinedBooleanContent:
 | |
|       // Extend by adding rubbish bits.
 | |
|       return ISD::ANY_EXTEND;
 | |
|     case ZeroOrOneBooleanContent:
 | |
|       // Extend by adding zero bits.
 | |
|       return ISD::ZERO_EXTEND;
 | |
|     case ZeroOrNegativeOneBooleanContent:
 | |
|       // Extend by copying the sign bit.
 | |
|       return ISD::SIGN_EXTEND;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// NOTE: The constructor takes ownership of TLOF.
 | |
|   explicit TargetLowering(const TargetMachine &TM,
 | |
|                           const TargetLoweringObjectFile *TLOF);
 | |
|   virtual ~TargetLowering();
 | |
| 
 | |
|   const TargetMachine &getTargetMachine() const { return TM; }
 | |
|   const TargetData *getTargetData() const { return TD; }
 | |
|   const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
 | |
| 
 | |
|   bool isBigEndian() const { return !IsLittleEndian; }
 | |
|   bool isLittleEndian() const { return IsLittleEndian; }
 | |
|   MVT getPointerTy() const { return PointerTy; }
 | |
|   virtual MVT getShiftAmountTy(EVT LHSTy) const;
 | |
| 
 | |
|   /// isSelectExpensive - Return true if the select operation is expensive for
 | |
|   /// this target.
 | |
|   bool isSelectExpensive() const { return SelectIsExpensive; }
 | |
| 
 | |
|   /// isIntDivCheap() - Return true if integer divide is usually cheaper than
 | |
|   /// a sequence of several shifts, adds, and multiplies for this target.
 | |
|   bool isIntDivCheap() const { return IntDivIsCheap; }
 | |
| 
 | |
|   /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
 | |
|   /// srl/add/sra.
 | |
|   bool isPow2DivCheap() const { return Pow2DivIsCheap; }
 | |
| 
 | |
|   /// isJumpExpensive() - Return true if Flow Control is an expensive operation
 | |
|   /// that should be avoided.
 | |
|   bool isJumpExpensive() const { return JumpIsExpensive; }
 | |
| 
 | |
|   /// getSetCCResultType - Return the ValueType of the result of SETCC
 | |
|   /// operations.  Also used to obtain the target's preferred type for
 | |
|   /// the condition operand of SELECT and BRCOND nodes.  In the case of
 | |
|   /// BRCOND the argument passed is MVT::Other since there are no other
 | |
|   /// operands to get a type hint from.
 | |
|   virtual EVT getSetCCResultType(EVT VT) const;
 | |
| 
 | |
|   /// getCmpLibcallReturnType - Return the ValueType for comparison
 | |
|   /// libcalls. Comparions libcalls include floating point comparion calls,
 | |
|   /// and Ordered/Unordered check calls on floating point numbers.
 | |
|   virtual
 | |
|   MVT::SimpleValueType getCmpLibcallReturnType() const;
 | |
| 
 | |
|   /// getBooleanContents - For targets without i1 registers, this gives the
 | |
|   /// nature of the high-bits of boolean values held in types wider than i1.
 | |
|   /// "Boolean values" are special true/false values produced by nodes like
 | |
|   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
 | |
|   /// Not to be confused with general values promoted from i1.
 | |
|   /// Some cpus distinguish between vectors of boolean and scalars; the isVec
 | |
|   /// parameter selects between the two kinds.  For example on X86 a scalar
 | |
|   /// boolean should be zero extended from i1, while the elements of a vector
 | |
|   /// of booleans should be sign extended from i1.
 | |
|   BooleanContent getBooleanContents(bool isVec) const {
 | |
|     return isVec ? BooleanVectorContents : BooleanContents;
 | |
|   }
 | |
| 
 | |
|   /// getSchedulingPreference - Return target scheduling preference.
 | |
|   Sched::Preference getSchedulingPreference() const {
 | |
|     return SchedPreferenceInfo;
 | |
|   }
 | |
| 
 | |
|   /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
 | |
|   /// different scheduling heuristics for different nodes. This function returns
 | |
|   /// the preference (or none) for the given node.
 | |
|   virtual Sched::Preference getSchedulingPreference(SDNode *N) const {
 | |
|     return Sched::None;
 | |
|   }
 | |
| 
 | |
|   /// getRegClassFor - Return the register class that should be used for the
 | |
|   /// specified value type.
 | |
|   virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
 | |
|     assert(VT.isSimple() && "getRegClassFor called on illegal type!");
 | |
|     TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
 | |
|     assert(RC && "This value type is not natively supported!");
 | |
|     return RC;
 | |
|   }
 | |
| 
 | |
|   /// getRepRegClassFor - Return the 'representative' register class for the
 | |
|   /// specified value type. The 'representative' register class is the largest
 | |
|   /// legal super-reg register class for the register class of the value type.
 | |
|   /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
 | |
|   /// while the rep register class is GR64 on x86_64.
 | |
|   virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
 | |
|     assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
 | |
|     const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
 | |
|     return RC;
 | |
|   }
 | |
| 
 | |
|   /// getRepRegClassCostFor - Return the cost of the 'representative' register
 | |
|   /// class for the specified value type.
 | |
|   virtual uint8_t getRepRegClassCostFor(EVT VT) const {
 | |
|     assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
 | |
|     return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
 | |
|   }
 | |
| 
 | |
|   /// isTypeLegal - Return true if the target has native support for the
 | |
|   /// specified value type.  This means that it has a register that directly
 | |
|   /// holds it without promotions or expansions.
 | |
|   bool isTypeLegal(EVT VT) const {
 | |
|     assert(!VT.isSimple() ||
 | |
|            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
 | |
|     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
 | |
|   }
 | |
| 
 | |
|   class ValueTypeActionImpl {
 | |
|     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
 | |
|     /// that indicates how instruction selection should deal with the type.
 | |
|     uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   public:
 | |
|     ValueTypeActionImpl() {
 | |
|       std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
 | |
|     }
 | |
| 
 | |
|     LegalizeTypeAction getTypeAction(MVT VT) const {
 | |
|       return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
 | |
|     }
 | |
| 
 | |
|     void setTypeAction(EVT VT, LegalizeTypeAction Action) {
 | |
|       unsigned I = VT.getSimpleVT().SimpleTy;
 | |
|       ValueTypeActions[I] = Action;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   const ValueTypeActionImpl &getValueTypeActions() const {
 | |
|     return ValueTypeActions;
 | |
|   }
 | |
| 
 | |
|   /// getTypeAction - Return how we should legalize values of this type, either
 | |
|   /// it is already legal (return 'Legal') or we need to promote it to a larger
 | |
|   /// type (return 'Promote'), or we need to expand it into multiple registers
 | |
|   /// of smaller integer type (return 'Expand').  'Custom' is not an option.
 | |
|   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
 | |
|     return getTypeConversion(Context, VT).first;
 | |
|   }
 | |
|   LegalizeTypeAction getTypeAction(MVT VT) const {
 | |
|     return ValueTypeActions.getTypeAction(VT);
 | |
|   }
 | |
| 
 | |
|   /// getTypeToTransformTo - For types supported by the target, this is an
 | |
|   /// identity function.  For types that must be promoted to larger types, this
 | |
|   /// returns the larger type to promote to.  For integer types that are larger
 | |
|   /// than the largest integer register, this contains one step in the expansion
 | |
|   /// to get to the smaller register. For illegal floating point types, this
 | |
|   /// returns the integer type to transform to.
 | |
|   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
 | |
|     return getTypeConversion(Context, VT).second;
 | |
|   }
 | |
| 
 | |
|   /// getTypeToExpandTo - For types supported by the target, this is an
 | |
|   /// identity function.  For types that must be expanded (i.e. integer types
 | |
|   /// that are larger than the largest integer register or illegal floating
 | |
|   /// point types), this returns the largest legal type it will be expanded to.
 | |
|   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
 | |
|     assert(!VT.isVector());
 | |
|     while (true) {
 | |
|       switch (getTypeAction(Context, VT)) {
 | |
|       case TypeLegal:
 | |
|         return VT;
 | |
|       case TypeExpandInteger:
 | |
|         VT = getTypeToTransformTo(Context, VT);
 | |
|         break;
 | |
|       default:
 | |
|         assert(false && "Type is not legal nor is it to be expanded!");
 | |
|         return VT;
 | |
|       }
 | |
|     }
 | |
|     return VT;
 | |
|   }
 | |
| 
 | |
|   /// getVectorTypeBreakdown - Vector types are broken down into some number of
 | |
|   /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
 | |
|   /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
 | |
|   /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
 | |
|   ///
 | |
|   /// This method returns the number of registers needed, and the VT for each
 | |
|   /// register.  It also returns the VT and quantity of the intermediate values
 | |
|   /// before they are promoted/expanded.
 | |
|   ///
 | |
|   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
 | |
|                                   EVT &IntermediateVT,
 | |
|                                   unsigned &NumIntermediates,
 | |
|                                   EVT &RegisterVT) const;
 | |
| 
 | |
|   /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
 | |
|   /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
 | |
|   /// this is the case, it returns true and store the intrinsic
 | |
|   /// information into the IntrinsicInfo that was passed to the function.
 | |
|   struct IntrinsicInfo {
 | |
|     unsigned     opc;         // target opcode
 | |
|     EVT          memVT;       // memory VT
 | |
|     const Value* ptrVal;      // value representing memory location
 | |
|     int          offset;      // offset off of ptrVal
 | |
|     unsigned     align;       // alignment
 | |
|     bool         vol;         // is volatile?
 | |
|     bool         readMem;     // reads memory?
 | |
|     bool         writeMem;    // writes memory?
 | |
|   };
 | |
| 
 | |
|   virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
 | |
|                                   const CallInst &I, unsigned Intrinsic) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// isFPImmLegal - Returns true if the target can instruction select the
 | |
|   /// specified FP immediate natively. If false, the legalizer will materialize
 | |
|   /// the FP immediate as a load from a constant pool.
 | |
|   virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// isShuffleMaskLegal - Targets can use this to indicate that they only
 | |
|   /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
 | |
|   /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
 | |
|   /// are assumed to be legal.
 | |
|   virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
 | |
|                                   EVT VT) const {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// canOpTrap - Returns true if the operation can trap for the value type.
 | |
|   /// VT must be a legal type. By default, we optimistically assume most
 | |
|   /// operations don't trap except for divide and remainder.
 | |
|   virtual bool canOpTrap(unsigned Op, EVT VT) const;
 | |
| 
 | |
|   /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
 | |
|   /// used by Targets can use this to indicate if there is a suitable
 | |
|   /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
 | |
|   /// pool entry.
 | |
|   virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
 | |
|                                       EVT VT) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// getOperationAction - Return how this operation should be treated: either
 | |
|   /// it is legal, needs to be promoted to a larger size, needs to be
 | |
|   /// expanded to some other code sequence, or the target has a custom expander
 | |
|   /// for it.
 | |
|   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
 | |
|     if (VT.isExtended()) return Expand;
 | |
|     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
 | |
|     unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
 | |
|     return (LegalizeAction)OpActions[I][Op];
 | |
|   }
 | |
| 
 | |
|   /// isOperationLegalOrCustom - Return true if the specified operation is
 | |
|   /// legal on this target or can be made legal with custom lowering. This
 | |
|   /// is used to help guide high-level lowering decisions.
 | |
|   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
 | |
|     return (VT == MVT::Other || isTypeLegal(VT)) &&
 | |
|       (getOperationAction(Op, VT) == Legal ||
 | |
|        getOperationAction(Op, VT) == Custom);
 | |
|   }
 | |
| 
 | |
|   /// isOperationLegal - Return true if the specified operation is legal on this
 | |
|   /// target.
 | |
|   bool isOperationLegal(unsigned Op, EVT VT) const {
 | |
|     return (VT == MVT::Other || isTypeLegal(VT)) &&
 | |
|            getOperationAction(Op, VT) == Legal;
 | |
|   }
 | |
| 
 | |
|   /// getLoadExtAction - Return how this load with extension should be treated:
 | |
|   /// either it is legal, needs to be promoted to a larger size, needs to be
 | |
|   /// expanded to some other code sequence, or the target has a custom expander
 | |
|   /// for it.
 | |
|   LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
 | |
|     assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
 | |
|            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
 | |
|            "Table isn't big enough!");
 | |
|     return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
 | |
|   }
 | |
| 
 | |
|   /// isLoadExtLegal - Return true if the specified load with extension is legal
 | |
|   /// on this target.
 | |
|   bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
 | |
|     return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
 | |
|   }
 | |
| 
 | |
|   /// getTruncStoreAction - Return how this store with truncation should be
 | |
|   /// treated: either it is legal, needs to be promoted to a larger size, needs
 | |
|   /// to be expanded to some other code sequence, or the target has a custom
 | |
|   /// expander for it.
 | |
|   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
 | |
|     assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
 | |
|            MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
 | |
|            "Table isn't big enough!");
 | |
|     return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
 | |
|                                             [MemVT.getSimpleVT().SimpleTy];
 | |
|   }
 | |
| 
 | |
|   /// isTruncStoreLegal - Return true if the specified store with truncation is
 | |
|   /// legal on this target.
 | |
|   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
 | |
|     return isTypeLegal(ValVT) && MemVT.isSimple() &&
 | |
|            getTruncStoreAction(ValVT, MemVT) == Legal;
 | |
|   }
 | |
| 
 | |
|   /// getIndexedLoadAction - Return how the indexed load should be treated:
 | |
|   /// either it is legal, needs to be promoted to a larger size, needs to be
 | |
|   /// expanded to some other code sequence, or the target has a custom expander
 | |
|   /// for it.
 | |
|   LegalizeAction
 | |
|   getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
 | |
|     assert(IdxMode < ISD::LAST_INDEXED_MODE &&
 | |
|            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
 | |
|            "Table isn't big enough!");
 | |
|     unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
 | |
|     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
 | |
|   }
 | |
| 
 | |
|   /// isIndexedLoadLegal - Return true if the specified indexed load is legal
 | |
|   /// on this target.
 | |
|   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
 | |
|     return VT.isSimple() &&
 | |
|       (getIndexedLoadAction(IdxMode, VT) == Legal ||
 | |
|        getIndexedLoadAction(IdxMode, VT) == Custom);
 | |
|   }
 | |
| 
 | |
|   /// getIndexedStoreAction - Return how the indexed store should be treated:
 | |
|   /// either it is legal, needs to be promoted to a larger size, needs to be
 | |
|   /// expanded to some other code sequence, or the target has a custom expander
 | |
|   /// for it.
 | |
|   LegalizeAction
 | |
|   getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
 | |
|     assert(IdxMode < ISD::LAST_INDEXED_MODE &&
 | |
|            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
 | |
|            "Table isn't big enough!");
 | |
|     unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
 | |
|     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
 | |
|   }
 | |
| 
 | |
|   /// isIndexedStoreLegal - Return true if the specified indexed load is legal
 | |
|   /// on this target.
 | |
|   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
 | |
|     return VT.isSimple() &&
 | |
|       (getIndexedStoreAction(IdxMode, VT) == Legal ||
 | |
|        getIndexedStoreAction(IdxMode, VT) == Custom);
 | |
|   }
 | |
| 
 | |
|   /// getCondCodeAction - Return how the condition code should be treated:
 | |
|   /// either it is legal, needs to be expanded to some other code sequence,
 | |
|   /// or the target has a custom expander for it.
 | |
|   LegalizeAction
 | |
|   getCondCodeAction(ISD::CondCode CC, EVT VT) const {
 | |
|     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
 | |
|            (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
 | |
|            "Table isn't big enough!");
 | |
|     LegalizeAction Action = (LegalizeAction)
 | |
|       ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
 | |
|     assert(Action != Promote && "Can't promote condition code!");
 | |
|     return Action;
 | |
|   }
 | |
| 
 | |
|   /// isCondCodeLegal - Return true if the specified condition code is legal
 | |
|   /// on this target.
 | |
|   bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
 | |
|     return getCondCodeAction(CC, VT) == Legal ||
 | |
|            getCondCodeAction(CC, VT) == Custom;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /// getTypeToPromoteTo - If the action for this operation is to promote, this
 | |
|   /// method returns the ValueType to promote to.
 | |
|   EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
 | |
|     assert(getOperationAction(Op, VT) == Promote &&
 | |
|            "This operation isn't promoted!");
 | |
| 
 | |
|     // See if this has an explicit type specified.
 | |
|     std::map<std::pair<unsigned, MVT::SimpleValueType>,
 | |
|              MVT::SimpleValueType>::const_iterator PTTI =
 | |
|       PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
 | |
|     if (PTTI != PromoteToType.end()) return PTTI->second;
 | |
| 
 | |
|     assert((VT.isInteger() || VT.isFloatingPoint()) &&
 | |
|            "Cannot autopromote this type, add it with AddPromotedToType.");
 | |
| 
 | |
|     EVT NVT = VT;
 | |
|     do {
 | |
|       NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
 | |
|       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
 | |
|              "Didn't find type to promote to!");
 | |
|     } while (!isTypeLegal(NVT) ||
 | |
|               getOperationAction(Op, NVT) == Promote);
 | |
|     return NVT;
 | |
|   }
 | |
| 
 | |
|   /// getValueType - Return the EVT corresponding to this LLVM type.
 | |
|   /// This is fixed by the LLVM operations except for the pointer size.  If
 | |
|   /// AllowUnknown is true, this will return MVT::Other for types with no EVT
 | |
|   /// counterpart (e.g. structs), otherwise it will assert.
 | |
|   EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
 | |
|     EVT VT = EVT::getEVT(Ty, AllowUnknown);
 | |
|     return VT == MVT::iPTR ? PointerTy : VT;
 | |
|   }
 | |
| 
 | |
|   /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 | |
|   /// function arguments in the caller parameter area.  This is the actual
 | |
|   /// alignment, not its logarithm.
 | |
|   virtual unsigned getByValTypeAlignment(Type *Ty) const;
 | |
| 
 | |
|   /// getRegisterType - Return the type of registers that this ValueType will
 | |
|   /// eventually require.
 | |
|   EVT getRegisterType(MVT VT) const {
 | |
|     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
 | |
|     return RegisterTypeForVT[VT.SimpleTy];
 | |
|   }
 | |
| 
 | |
|   /// getRegisterType - Return the type of registers that this ValueType will
 | |
|   /// eventually require.
 | |
|   EVT getRegisterType(LLVMContext &Context, EVT VT) const {
 | |
|     if (VT.isSimple()) {
 | |
|       assert((unsigned)VT.getSimpleVT().SimpleTy <
 | |
|                 array_lengthof(RegisterTypeForVT));
 | |
|       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
 | |
|     }
 | |
|     if (VT.isVector()) {
 | |
|       EVT VT1, RegisterVT;
 | |
|       unsigned NumIntermediates;
 | |
|       (void)getVectorTypeBreakdown(Context, VT, VT1,
 | |
|                                    NumIntermediates, RegisterVT);
 | |
|       return RegisterVT;
 | |
|     }
 | |
|     if (VT.isInteger()) {
 | |
|       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
 | |
|     }
 | |
|     assert(0 && "Unsupported extended type!");
 | |
|     return EVT(MVT::Other); // Not reached
 | |
|   }
 | |
| 
 | |
|   /// getNumRegisters - Return the number of registers that this ValueType will
 | |
|   /// eventually require.  This is one for any types promoted to live in larger
 | |
|   /// registers, but may be more than one for types (like i64) that are split
 | |
|   /// into pieces.  For types like i140, which are first promoted then expanded,
 | |
|   /// it is the number of registers needed to hold all the bits of the original
 | |
|   /// type.  For an i140 on a 32 bit machine this means 5 registers.
 | |
|   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
 | |
|     if (VT.isSimple()) {
 | |
|       assert((unsigned)VT.getSimpleVT().SimpleTy <
 | |
|                 array_lengthof(NumRegistersForVT));
 | |
|       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
 | |
|     }
 | |
|     if (VT.isVector()) {
 | |
|       EVT VT1, VT2;
 | |
|       unsigned NumIntermediates;
 | |
|       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
 | |
|     }
 | |
|     if (VT.isInteger()) {
 | |
|       unsigned BitWidth = VT.getSizeInBits();
 | |
|       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
 | |
|       return (BitWidth + RegWidth - 1) / RegWidth;
 | |
|     }
 | |
|     assert(0 && "Unsupported extended type!");
 | |
|     return 0; // Not reached
 | |
|   }
 | |
| 
 | |
|   /// ShouldShrinkFPConstant - If true, then instruction selection should
 | |
|   /// seek to shrink the FP constant of the specified type to a smaller type
 | |
|   /// in order to save space and / or reduce runtime.
 | |
|   virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
 | |
| 
 | |
|   /// hasTargetDAGCombine - If true, the target has custom DAG combine
 | |
|   /// transformations that it can perform for the specified node.
 | |
|   bool hasTargetDAGCombine(ISD::NodeType NT) const {
 | |
|     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
 | |
|     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
 | |
|   }
 | |
| 
 | |
|   /// This function returns the maximum number of store operations permitted
 | |
|   /// to replace a call to llvm.memset. The value is set by the target at the
 | |
|   /// performance threshold for such a replacement. If OptSize is true,
 | |
|   /// return the limit for functions that have OptSize attribute.
 | |
|   /// @brief Get maximum # of store operations permitted for llvm.memset
 | |
|   unsigned getMaxStoresPerMemset(bool OptSize) const {
 | |
|     return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
 | |
|   }
 | |
| 
 | |
|   /// This function returns the maximum number of store operations permitted
 | |
|   /// to replace a call to llvm.memcpy. The value is set by the target at the
 | |
|   /// performance threshold for such a replacement. If OptSize is true,
 | |
|   /// return the limit for functions that have OptSize attribute.
 | |
|   /// @brief Get maximum # of store operations permitted for llvm.memcpy
 | |
|   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
 | |
|     return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
 | |
|   }
 | |
| 
 | |
|   /// This function returns the maximum number of store operations permitted
 | |
|   /// to replace a call to llvm.memmove. The value is set by the target at the
 | |
|   /// performance threshold for such a replacement. If OptSize is true,
 | |
|   /// return the limit for functions that have OptSize attribute.
 | |
|   /// @brief Get maximum # of store operations permitted for llvm.memmove
 | |
|   unsigned getMaxStoresPerMemmove(bool OptSize) const {
 | |
|     return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
 | |
|   }
 | |
| 
 | |
|   /// This function returns true if the target allows unaligned memory accesses.
 | |
|   /// of the specified type. This is used, for example, in situations where an
 | |
|   /// array copy/move/set is  converted to a sequence of store operations. It's
 | |
|   /// use helps to ensure that such replacements don't generate code that causes
 | |
|   /// an alignment error  (trap) on the target machine.
 | |
|   /// @brief Determine if the target supports unaligned memory accesses.
 | |
|   virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// This function returns true if the target would benefit from code placement
 | |
|   /// optimization.
 | |
|   /// @brief Determine if the target should perform code placement optimization.
 | |
|   bool shouldOptimizeCodePlacement() const {
 | |
|     return benefitFromCodePlacementOpt;
 | |
|   }
 | |
| 
 | |
|   /// getOptimalMemOpType - Returns the target specific optimal type for load
 | |
|   /// and store operations as a result of memset, memcpy, and memmove
 | |
|   /// lowering. If DstAlign is zero that means it's safe to destination
 | |
|   /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
 | |
|   /// means there isn't a need to check it against alignment requirement,
 | |
|   /// probably because the source does not need to be loaded. If
 | |
|   /// 'NonScalarIntSafe' is true, that means it's safe to return a
 | |
|   /// non-scalar-integer type, e.g. empty string source, constant, or loaded
 | |
|   /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
 | |
|   /// constant so it does not need to be loaded.
 | |
|   /// It returns EVT::Other if the type should be determined using generic
 | |
|   /// target-independent logic.
 | |
|   virtual EVT getOptimalMemOpType(uint64_t Size,
 | |
|                                   unsigned DstAlign, unsigned SrcAlign,
 | |
|                                   bool NonScalarIntSafe, bool MemcpyStrSrc,
 | |
|                                   MachineFunction &MF) const {
 | |
|     return MVT::Other;
 | |
|   }
 | |
| 
 | |
|   /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
 | |
|   /// to implement llvm.setjmp.
 | |
|   bool usesUnderscoreSetJmp() const {
 | |
|     return UseUnderscoreSetJmp;
 | |
|   }
 | |
| 
 | |
|   /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
 | |
|   /// to implement llvm.longjmp.
 | |
|   bool usesUnderscoreLongJmp() const {
 | |
|     return UseUnderscoreLongJmp;
 | |
|   }
 | |
| 
 | |
|   /// getStackPointerRegisterToSaveRestore - If a physical register, this
 | |
|   /// specifies the register that llvm.savestack/llvm.restorestack should save
 | |
|   /// and restore.
 | |
|   unsigned getStackPointerRegisterToSaveRestore() const {
 | |
|     return StackPointerRegisterToSaveRestore;
 | |
|   }
 | |
| 
 | |
|   /// getExceptionAddressRegister - If a physical register, this returns
 | |
|   /// the register that receives the exception address on entry to a landing
 | |
|   /// pad.
 | |
|   unsigned getExceptionAddressRegister() const {
 | |
|     return ExceptionPointerRegister;
 | |
|   }
 | |
| 
 | |
|   /// getExceptionSelectorRegister - If a physical register, this returns
 | |
|   /// the register that receives the exception typeid on entry to a landing
 | |
|   /// pad.
 | |
|   unsigned getExceptionSelectorRegister() const {
 | |
|     return ExceptionSelectorRegister;
 | |
|   }
 | |
| 
 | |
|   /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
 | |
|   /// set, the default is 200)
 | |
|   unsigned getJumpBufSize() const {
 | |
|     return JumpBufSize;
 | |
|   }
 | |
| 
 | |
|   /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
 | |
|   /// (if never set, the default is 0)
 | |
|   unsigned getJumpBufAlignment() const {
 | |
|     return JumpBufAlignment;
 | |
|   }
 | |
| 
 | |
|   /// getMinStackArgumentAlignment - return the minimum stack alignment of an
 | |
|   /// argument.
 | |
|   unsigned getMinStackArgumentAlignment() const {
 | |
|     return MinStackArgumentAlignment;
 | |
|   }
 | |
| 
 | |
|   /// getMinFunctionAlignment - return the minimum function alignment.
 | |
|   ///
 | |
|   unsigned getMinFunctionAlignment() const {
 | |
|     return MinFunctionAlignment;
 | |
|   }
 | |
| 
 | |
|   /// getPrefFunctionAlignment - return the preferred function alignment.
 | |
|   ///
 | |
|   unsigned getPrefFunctionAlignment() const {
 | |
|     return PrefFunctionAlignment;
 | |
|   }
 | |
| 
 | |
|   /// getPrefLoopAlignment - return the preferred loop alignment.
 | |
|   ///
 | |
|   unsigned getPrefLoopAlignment() const {
 | |
|     return PrefLoopAlignment;
 | |
|   }
 | |
| 
 | |
|   /// getShouldFoldAtomicFences - return whether the combiner should fold
 | |
|   /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
 | |
|   ///
 | |
|   bool getShouldFoldAtomicFences() const {
 | |
|     return ShouldFoldAtomicFences;
 | |
|   }
 | |
| 
 | |
|   /// getInsertFencesFor - return whether the DAG builder should automatically
 | |
|   /// insert fences and reduce ordering for atomics.
 | |
|   ///
 | |
|   bool getInsertFencesForAtomic() const {
 | |
|     return InsertFencesForAtomic;
 | |
|   }
 | |
| 
 | |
|   /// getPreIndexedAddressParts - returns true by value, base pointer and
 | |
|   /// offset pointer and addressing mode by reference if the node's address
 | |
|   /// can be legally represented as pre-indexed load / store address.
 | |
|   virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
 | |
|                                          SDValue &Offset,
 | |
|                                          ISD::MemIndexedMode &AM,
 | |
|                                          SelectionDAG &DAG) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// getPostIndexedAddressParts - returns true by value, base pointer and
 | |
|   /// offset pointer and addressing mode by reference if this node can be
 | |
|   /// combined with a load / store to form a post-indexed load / store.
 | |
|   virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
 | |
|                                           SDValue &Base, SDValue &Offset,
 | |
|                                           ISD::MemIndexedMode &AM,
 | |
|                                           SelectionDAG &DAG) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// getJumpTableEncoding - Return the entry encoding for a jump table in the
 | |
|   /// current function.  The returned value is a member of the
 | |
|   /// MachineJumpTableInfo::JTEntryKind enum.
 | |
|   virtual unsigned getJumpTableEncoding() const;
 | |
| 
 | |
|   virtual const MCExpr *
 | |
|   LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
 | |
|                             const MachineBasicBlock *MBB, unsigned uid,
 | |
|                             MCContext &Ctx) const {
 | |
|     assert(0 && "Need to implement this hook if target has custom JTIs");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
 | |
|   /// jumptable.
 | |
|   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
 | |
|                                            SelectionDAG &DAG) const;
 | |
| 
 | |
|   /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
 | |
|   /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
 | |
|   /// MCExpr.
 | |
|   virtual const MCExpr *
 | |
|   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
 | |
|                                unsigned JTI, MCContext &Ctx) const;
 | |
| 
 | |
|   /// isOffsetFoldingLegal - Return true if folding a constant offset
 | |
|   /// with the given GlobalAddress is legal.  It is frequently not legal in
 | |
|   /// PIC relocation models.
 | |
|   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
 | |
| 
 | |
|   /// getStackCookieLocation - Return true if the target stores stack
 | |
|   /// protector cookies at a fixed offset in some non-standard address
 | |
|   /// space, and populates the address space and offset as
 | |
|   /// appropriate.
 | |
|   virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
 | |
|   /// used for loads / stores from the global.
 | |
|   virtual unsigned getMaximalGlobalOffset() const {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // TargetLowering Optimization Methods
 | |
|   //
 | |
| 
 | |
|   /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
 | |
|   /// SDValues for returning information from TargetLowering to its clients
 | |
|   /// that want to combine
 | |
|   struct TargetLoweringOpt {
 | |
|     SelectionDAG &DAG;
 | |
|     bool LegalTys;
 | |
|     bool LegalOps;
 | |
|     SDValue Old;
 | |
|     SDValue New;
 | |
| 
 | |
|     explicit TargetLoweringOpt(SelectionDAG &InDAG,
 | |
|                                bool LT, bool LO) :
 | |
|       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
 | |
| 
 | |
|     bool LegalTypes() const { return LegalTys; }
 | |
|     bool LegalOperations() const { return LegalOps; }
 | |
| 
 | |
|     bool CombineTo(SDValue O, SDValue N) {
 | |
|       Old = O;
 | |
|       New = N;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /// ShrinkDemandedConstant - Check to see if the specified operand of the
 | |
|     /// specified instruction is a constant integer.  If so, check to see if
 | |
|     /// there are any bits set in the constant that are not demanded.  If so,
 | |
|     /// shrink the constant and return true.
 | |
|     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
 | |
| 
 | |
|     /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
 | |
|     /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
 | |
|     /// cast, but it could be generalized for targets with other types of
 | |
|     /// implicit widening casts.
 | |
|     bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
 | |
|                           DebugLoc dl);
 | |
|   };
 | |
| 
 | |
|   /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
 | |
|   /// DemandedMask bits of the result of Op are ever used downstream.  If we can
 | |
|   /// use this information to simplify Op, create a new simplified DAG node and
 | |
|   /// return true, returning the original and new nodes in Old and New.
 | |
|   /// Otherwise, analyze the expression and return a mask of KnownOne and
 | |
|   /// KnownZero bits for the expression (used to simplify the caller).
 | |
|   /// The KnownZero/One bits may only be accurate for those bits in the
 | |
|   /// DemandedMask.
 | |
|   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
 | |
|                             APInt &KnownZero, APInt &KnownOne,
 | |
|                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
 | |
| 
 | |
|   /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
 | |
|   /// Mask are known to be either zero or one and return them in the
 | |
|   /// KnownZero/KnownOne bitsets.
 | |
|   virtual void computeMaskedBitsForTargetNode(const SDValue Op,
 | |
|                                               const APInt &Mask,
 | |
|                                               APInt &KnownZero,
 | |
|                                               APInt &KnownOne,
 | |
|                                               const SelectionDAG &DAG,
 | |
|                                               unsigned Depth = 0) const;
 | |
| 
 | |
|   /// ComputeNumSignBitsForTargetNode - This method can be implemented by
 | |
|   /// targets that want to expose additional information about sign bits to the
 | |
|   /// DAG Combiner.
 | |
|   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
 | |
|                                                    unsigned Depth = 0) const;
 | |
| 
 | |
|   struct DAGCombinerInfo {
 | |
|     void *DC;  // The DAG Combiner object.
 | |
|     bool BeforeLegalize;
 | |
|     bool BeforeLegalizeOps;
 | |
|     bool CalledByLegalizer;
 | |
|   public:
 | |
|     SelectionDAG &DAG;
 | |
| 
 | |
|     DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
 | |
|       : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
 | |
|         CalledByLegalizer(cl), DAG(dag) {}
 | |
| 
 | |
|     bool isBeforeLegalize() const { return BeforeLegalize; }
 | |
|     bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
 | |
|     bool isCalledByLegalizer() const { return CalledByLegalizer; }
 | |
| 
 | |
|     void AddToWorklist(SDNode *N);
 | |
|     void RemoveFromWorklist(SDNode *N);
 | |
|     SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
 | |
|                       bool AddTo = true);
 | |
|     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
 | |
|     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
 | |
| 
 | |
|     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
 | |
|   };
 | |
| 
 | |
|   /// SimplifySetCC - Try to simplify a setcc built with the specified operands
 | |
|   /// and cc. If it is unable to simplify it, return a null SDValue.
 | |
|   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
 | |
|                           ISD::CondCode Cond, bool foldBooleans,
 | |
|                           DAGCombinerInfo &DCI, DebugLoc dl) const;
 | |
| 
 | |
|   /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
 | |
|   /// node is a GlobalAddress + offset.
 | |
|   virtual bool
 | |
|   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
 | |
| 
 | |
|   /// PerformDAGCombine - This method will be invoked for all target nodes and
 | |
|   /// for any target-independent nodes that the target has registered with
 | |
|   /// invoke it for.
 | |
|   ///
 | |
|   /// The semantics are as follows:
 | |
|   /// Return Value:
 | |
|   ///   SDValue.Val == 0   - No change was made
 | |
|   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
 | |
|   ///   otherwise          - N should be replaced by the returned Operand.
 | |
|   ///
 | |
|   /// In addition, methods provided by DAGCombinerInfo may be used to perform
 | |
|   /// more complex transformations.
 | |
|   ///
 | |
|   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
 | |
| 
 | |
|   /// isTypeDesirableForOp - Return true if the target has native support for
 | |
|   /// the specified value type and it is 'desirable' to use the type for the
 | |
|   /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
 | |
|   /// instruction encodings are longer and some i16 instructions are slow.
 | |
|   virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
 | |
|     // By default, assume all legal types are desirable.
 | |
|     return isTypeLegal(VT);
 | |
|   }
 | |
| 
 | |
|   /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
 | |
|   /// to transform a floating point op of specified opcode to a equivalent op of
 | |
|   /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
 | |
|   virtual bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// IsDesirableToPromoteOp - This method query the target whether it is
 | |
|   /// beneficial for dag combiner to promote the specified node. If true, it
 | |
|   /// should return the desired promotion type by reference.
 | |
|   virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // TargetLowering Configuration Methods - These methods should be invoked by
 | |
|   // the derived class constructor to configure this object for the target.
 | |
|   //
 | |
| 
 | |
| protected:
 | |
|   /// setBooleanContents - Specify how the target extends the result of a
 | |
|   /// boolean value from i1 to a wider type.  See getBooleanContents.
 | |
|   void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
 | |
|   /// setBooleanVectorContents - Specify how the target extends the result
 | |
|   /// of a vector boolean value from a vector of i1 to a wider type.  See
 | |
|   /// getBooleanContents.
 | |
|   void setBooleanVectorContents(BooleanContent Ty) {
 | |
|     BooleanVectorContents = Ty;
 | |
|   }
 | |
| 
 | |
|   /// setSchedulingPreference - Specify the target scheduling preference.
 | |
|   void setSchedulingPreference(Sched::Preference Pref) {
 | |
|     SchedPreferenceInfo = Pref;
 | |
|   }
 | |
| 
 | |
|   /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
 | |
|   /// use _setjmp to implement llvm.setjmp or the non _ version.
 | |
|   /// Defaults to false.
 | |
|   void setUseUnderscoreSetJmp(bool Val) {
 | |
|     UseUnderscoreSetJmp = Val;
 | |
|   }
 | |
| 
 | |
|   /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
 | |
|   /// use _longjmp to implement llvm.longjmp or the non _ version.
 | |
|   /// Defaults to false.
 | |
|   void setUseUnderscoreLongJmp(bool Val) {
 | |
|     UseUnderscoreLongJmp = Val;
 | |
|   }
 | |
| 
 | |
|   /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
 | |
|   /// specifies the register that llvm.savestack/llvm.restorestack should save
 | |
|   /// and restore.
 | |
|   void setStackPointerRegisterToSaveRestore(unsigned R) {
 | |
|     StackPointerRegisterToSaveRestore = R;
 | |
|   }
 | |
| 
 | |
|   /// setExceptionPointerRegister - If set to a physical register, this sets
 | |
|   /// the register that receives the exception address on entry to a landing
 | |
|   /// pad.
 | |
|   void setExceptionPointerRegister(unsigned R) {
 | |
|     ExceptionPointerRegister = R;
 | |
|   }
 | |
| 
 | |
|   /// setExceptionSelectorRegister - If set to a physical register, this sets
 | |
|   /// the register that receives the exception typeid on entry to a landing
 | |
|   /// pad.
 | |
|   void setExceptionSelectorRegister(unsigned R) {
 | |
|     ExceptionSelectorRegister = R;
 | |
|   }
 | |
| 
 | |
|   /// SelectIsExpensive - Tells the code generator not to expand operations
 | |
|   /// into sequences that use the select operations if possible.
 | |
|   void setSelectIsExpensive(bool isExpensive = true) {
 | |
|     SelectIsExpensive = isExpensive;
 | |
|   }
 | |
| 
 | |
|   /// JumpIsExpensive - Tells the code generator not to expand sequence of
 | |
|   /// operations into a separate sequences that increases the amount of
 | |
|   /// flow control.
 | |
|   void setJumpIsExpensive(bool isExpensive = true) {
 | |
|     JumpIsExpensive = isExpensive;
 | |
|   }
 | |
| 
 | |
|   /// setIntDivIsCheap - Tells the code generator that integer divide is
 | |
|   /// expensive, and if possible, should be replaced by an alternate sequence
 | |
|   /// of instructions not containing an integer divide.
 | |
|   void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
 | |
| 
 | |
|   /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
 | |
|   /// srl/add/sra for a signed divide by power of two, and let the target handle
 | |
|   /// it.
 | |
|   void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
 | |
| 
 | |
|   /// addRegisterClass - Add the specified register class as an available
 | |
|   /// regclass for the specified value type.  This indicates the selector can
 | |
|   /// handle values of that class natively.
 | |
|   void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
 | |
|     assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
 | |
|     AvailableRegClasses.push_back(std::make_pair(VT, RC));
 | |
|     RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
 | |
|   }
 | |
| 
 | |
|   /// findRepresentativeClass - Return the largest legal super-reg register class
 | |
|   /// of the register class for the specified type and its associated "cost".
 | |
|   virtual std::pair<const TargetRegisterClass*, uint8_t>
 | |
|   findRepresentativeClass(EVT VT) const;
 | |
| 
 | |
|   /// computeRegisterProperties - Once all of the register classes are added,
 | |
|   /// this allows us to compute derived properties we expose.
 | |
|   void computeRegisterProperties();
 | |
| 
 | |
|   /// setOperationAction - Indicate that the specified operation does not work
 | |
|   /// with the specified type and indicate what to do about it.
 | |
|   void setOperationAction(unsigned Op, MVT VT,
 | |
|                           LegalizeAction Action) {
 | |
|     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
 | |
|     OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
 | |
|   }
 | |
| 
 | |
|   /// setLoadExtAction - Indicate that the specified load with extension does
 | |
|   /// not work with the specified type and indicate what to do about it.
 | |
|   void setLoadExtAction(unsigned ExtType, MVT VT,
 | |
|                         LegalizeAction Action) {
 | |
|     assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
 | |
|            "Table isn't big enough!");
 | |
|     LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
 | |
|   }
 | |
| 
 | |
|   /// setTruncStoreAction - Indicate that the specified truncating store does
 | |
|   /// not work with the specified type and indicate what to do about it.
 | |
|   void setTruncStoreAction(MVT ValVT, MVT MemVT,
 | |
|                            LegalizeAction Action) {
 | |
|     assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
 | |
|            "Table isn't big enough!");
 | |
|     TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
 | |
|   }
 | |
| 
 | |
|   /// setIndexedLoadAction - Indicate that the specified indexed load does or
 | |
|   /// does not work with the specified type and indicate what to do abort
 | |
|   /// it. NOTE: All indexed mode loads are initialized to Expand in
 | |
|   /// TargetLowering.cpp
 | |
|   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
 | |
|                             LegalizeAction Action) {
 | |
|     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
 | |
|            (unsigned)Action < 0xf && "Table isn't big enough!");
 | |
|     // Load action are kept in the upper half.
 | |
|     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
 | |
|     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
 | |
|   }
 | |
| 
 | |
|   /// setIndexedStoreAction - Indicate that the specified indexed store does or
 | |
|   /// does not work with the specified type and indicate what to do about
 | |
|   /// it. NOTE: All indexed mode stores are initialized to Expand in
 | |
|   /// TargetLowering.cpp
 | |
|   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
 | |
|                              LegalizeAction Action) {
 | |
|     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
 | |
|            (unsigned)Action < 0xf && "Table isn't big enough!");
 | |
|     // Store action are kept in the lower half.
 | |
|     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
 | |
|     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
 | |
|   }
 | |
| 
 | |
|   /// setCondCodeAction - Indicate that the specified condition code is or isn't
 | |
|   /// supported on the target and indicate what to do about it.
 | |
|   void setCondCodeAction(ISD::CondCode CC, MVT VT,
 | |
|                          LegalizeAction Action) {
 | |
|     assert(VT < MVT::LAST_VALUETYPE &&
 | |
|            (unsigned)CC < array_lengthof(CondCodeActions) &&
 | |
|            "Table isn't big enough!");
 | |
|     CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
 | |
|     CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
 | |
|   }
 | |
| 
 | |
|   /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
 | |
|   /// promotion code defaults to trying a larger integer/fp until it can find
 | |
|   /// one that works.  If that default is insufficient, this method can be used
 | |
|   /// by the target to override the default.
 | |
|   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
 | |
|     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
 | |
|   }
 | |
| 
 | |
|   /// setTargetDAGCombine - Targets should invoke this method for each target
 | |
|   /// independent node that they want to provide a custom DAG combiner for by
 | |
|   /// implementing the PerformDAGCombine virtual method.
 | |
|   void setTargetDAGCombine(ISD::NodeType NT) {
 | |
|     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
 | |
|     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
 | |
|   }
 | |
| 
 | |
|   /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
 | |
|   /// bytes); default is 200
 | |
|   void setJumpBufSize(unsigned Size) {
 | |
|     JumpBufSize = Size;
 | |
|   }
 | |
| 
 | |
|   /// setJumpBufAlignment - Set the target's required jmp_buf buffer
 | |
|   /// alignment (in bytes); default is 0
 | |
|   void setJumpBufAlignment(unsigned Align) {
 | |
|     JumpBufAlignment = Align;
 | |
|   }
 | |
| 
 | |
|   /// setMinFunctionAlignment - Set the target's minimum function alignment (in
 | |
|   /// log2(bytes))
 | |
|   void setMinFunctionAlignment(unsigned Align) {
 | |
|     MinFunctionAlignment = Align;
 | |
|   }
 | |
| 
 | |
|   /// setPrefFunctionAlignment - Set the target's preferred function alignment.
 | |
|   /// This should be set if there is a performance benefit to
 | |
|   /// higher-than-minimum alignment (in log2(bytes))
 | |
|   void setPrefFunctionAlignment(unsigned Align) {
 | |
|     PrefFunctionAlignment = Align;
 | |
|   }
 | |
| 
 | |
|   /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
 | |
|   /// alignment is zero, it means the target does not care about loop alignment.
 | |
|   /// The alignment is specified in log2(bytes).
 | |
|   void setPrefLoopAlignment(unsigned Align) {
 | |
|     PrefLoopAlignment = Align;
 | |
|   }
 | |
| 
 | |
|   /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
 | |
|   /// argument (in log2(bytes)).
 | |
|   void setMinStackArgumentAlignment(unsigned Align) {
 | |
|     MinStackArgumentAlignment = Align;
 | |
|   }
 | |
| 
 | |
|   /// setShouldFoldAtomicFences - Set if the target's implementation of the
 | |
|   /// atomic operation intrinsics includes locking. Default is false.
 | |
|   void setShouldFoldAtomicFences(bool fold) {
 | |
|     ShouldFoldAtomicFences = fold;
 | |
|   }
 | |
| 
 | |
|   /// setInsertFencesForAtomic - Set if the the DAG builder should
 | |
|   /// automatically insert fences and reduce the order of atomic memory
 | |
|   /// operations to Monotonic.
 | |
|   void setInsertFencesForAtomic(bool fence) {
 | |
|     InsertFencesForAtomic = fence;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Lowering methods - These methods must be implemented by targets so that
 | |
|   // the SelectionDAGLowering code knows how to lower these.
 | |
|   //
 | |
| 
 | |
|   /// LowerFormalArguments - This hook must be implemented to lower the
 | |
|   /// incoming (formal) arguments, described by the Ins array, into the
 | |
|   /// specified DAG. The implementation should fill in the InVals array
 | |
|   /// with legal-type argument values, and return the resulting token
 | |
|   /// chain value.
 | |
|   ///
 | |
|   virtual SDValue
 | |
|     LowerFormalArguments(SDValue Chain,
 | |
|                          CallingConv::ID CallConv, bool isVarArg,
 | |
|                          const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                          DebugLoc dl, SelectionDAG &DAG,
 | |
|                          SmallVectorImpl<SDValue> &InVals) const {
 | |
|     assert(0 && "Not Implemented");
 | |
|     return SDValue();    // this is here to silence compiler errors
 | |
|   }
 | |
| 
 | |
|   /// LowerCallTo - This function lowers an abstract call to a function into an
 | |
|   /// actual call.  This returns a pair of operands.  The first element is the
 | |
|   /// return value for the function (if RetTy is not VoidTy).  The second
 | |
|   /// element is the outgoing token chain. It calls LowerCall to do the actual
 | |
|   /// lowering.
 | |
|   struct ArgListEntry {
 | |
|     SDValue Node;
 | |
|     Type* Ty;
 | |
|     bool isSExt  : 1;
 | |
|     bool isZExt  : 1;
 | |
|     bool isInReg : 1;
 | |
|     bool isSRet  : 1;
 | |
|     bool isNest  : 1;
 | |
|     bool isByVal : 1;
 | |
|     uint16_t Alignment;
 | |
| 
 | |
|     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
 | |
|       isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
 | |
|   };
 | |
|   typedef std::vector<ArgListEntry> ArgListTy;
 | |
|   std::pair<SDValue, SDValue>
 | |
|   LowerCallTo(SDValue Chain, Type *RetTy, bool RetSExt, bool RetZExt,
 | |
|               bool isVarArg, bool isInreg, unsigned NumFixedArgs,
 | |
|               CallingConv::ID CallConv, bool isTailCall,
 | |
|               bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
 | |
|               SelectionDAG &DAG, DebugLoc dl) const;
 | |
| 
 | |
|   /// LowerCall - This hook must be implemented to lower calls into the
 | |
|   /// the specified DAG. The outgoing arguments to the call are described
 | |
|   /// by the Outs array, and the values to be returned by the call are
 | |
|   /// described by the Ins array. The implementation should fill in the
 | |
|   /// InVals array with legal-type return values from the call, and return
 | |
|   /// the resulting token chain value.
 | |
|   virtual SDValue
 | |
|     LowerCall(SDValue Chain, SDValue Callee,
 | |
|               CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
 | |
|               const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|               const SmallVectorImpl<SDValue> &OutVals,
 | |
|               const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|               DebugLoc dl, SelectionDAG &DAG,
 | |
|               SmallVectorImpl<SDValue> &InVals) const {
 | |
|     assert(0 && "Not Implemented");
 | |
|     return SDValue();    // this is here to silence compiler errors
 | |
|   }
 | |
| 
 | |
|   /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
 | |
|   virtual void HandleByVal(CCState *, unsigned &) const {}
 | |
| 
 | |
|   /// CanLowerReturn - This hook should be implemented to check whether the
 | |
|   /// return values described by the Outs array can fit into the return
 | |
|   /// registers.  If false is returned, an sret-demotion is performed.
 | |
|   ///
 | |
|   virtual bool CanLowerReturn(CallingConv::ID CallConv,
 | |
| 			      MachineFunction &MF, bool isVarArg,
 | |
|                const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                LLVMContext &Context) const
 | |
|   {
 | |
|     // Return true by default to get preexisting behavior.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// LowerReturn - This hook must be implemented to lower outgoing
 | |
|   /// return values, described by the Outs array, into the specified
 | |
|   /// DAG. The implementation should return the resulting token chain
 | |
|   /// value.
 | |
|   ///
 | |
|   virtual SDValue
 | |
|     LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | |
|                 const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                 const SmallVectorImpl<SDValue> &OutVals,
 | |
|                 DebugLoc dl, SelectionDAG &DAG) const {
 | |
|     assert(0 && "Not Implemented");
 | |
|     return SDValue();    // this is here to silence compiler errors
 | |
|   }
 | |
| 
 | |
|   /// isUsedByReturnOnly - Return true if result of the specified node is used
 | |
|   /// by a return node only. This is used to determine whether it is possible
 | |
|   /// to codegen a libcall as tail call at legalization time.
 | |
|   virtual bool isUsedByReturnOnly(SDNode *N) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
 | |
|   /// call instruction as a tail call. This is used by optimization passes to
 | |
|   /// determine if it's profitable to duplicate return instructions to enable
 | |
|   /// tailcall optimization.
 | |
|   virtual bool mayBeEmittedAsTailCall(CallInst *CI) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
 | |
|   /// sign extend a zeroext/signext integer argument or return value.
 | |
|   /// FIXME: Most C calling convention requires the return type to be promoted,
 | |
|   /// but this is not true all the time, e.g. i1 on x86-64. It is also not
 | |
|   /// necessary for non-C calling conventions. The frontend should handle this
 | |
|   /// and include all of the necessary information.
 | |
|   virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
 | |
|                                        ISD::NodeType ExtendKind) const {
 | |
|     EVT MinVT = getRegisterType(Context, MVT::i32);
 | |
|     return VT.bitsLT(MinVT) ? MinVT : VT;
 | |
|   }
 | |
| 
 | |
|   /// LowerOperationWrapper - This callback is invoked by the type legalizer
 | |
|   /// to legalize nodes with an illegal operand type but legal result types.
 | |
|   /// It replaces the LowerOperation callback in the type Legalizer.
 | |
|   /// The reason we can not do away with LowerOperation entirely is that
 | |
|   /// LegalizeDAG isn't yet ready to use this callback.
 | |
|   /// TODO: Consider merging with ReplaceNodeResults.
 | |
| 
 | |
|   /// The target places new result values for the node in Results (their number
 | |
|   /// and types must exactly match those of the original return values of
 | |
|   /// the node), or leaves Results empty, which indicates that the node is not
 | |
|   /// to be custom lowered after all.
 | |
|   /// The default implementation calls LowerOperation.
 | |
|   virtual void LowerOperationWrapper(SDNode *N,
 | |
|                                      SmallVectorImpl<SDValue> &Results,
 | |
|                                      SelectionDAG &DAG) const;
 | |
| 
 | |
|   /// LowerOperation - This callback is invoked for operations that are
 | |
|   /// unsupported by the target, which are registered to use 'custom' lowering,
 | |
|   /// and whose defined values are all legal.
 | |
|   /// If the target has no operations that require custom lowering, it need not
 | |
|   /// implement this.  The default implementation of this aborts.
 | |
|   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
 | |
| 
 | |
|   /// ReplaceNodeResults - This callback is invoked when a node result type is
 | |
|   /// illegal for the target, and the operation was registered to use 'custom'
 | |
|   /// lowering for that result type.  The target places new result values for
 | |
|   /// the node in Results (their number and types must exactly match those of
 | |
|   /// the original return values of the node), or leaves Results empty, which
 | |
|   /// indicates that the node is not to be custom lowered after all.
 | |
|   ///
 | |
|   /// If the target has no operations that require custom lowering, it need not
 | |
|   /// implement this.  The default implementation aborts.
 | |
|   virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
 | |
|                                   SelectionDAG &DAG) const {
 | |
|     assert(0 && "ReplaceNodeResults not implemented for this target!");
 | |
|   }
 | |
| 
 | |
|   /// getTargetNodeName() - This method returns the name of a target specific
 | |
|   /// DAG node.
 | |
|   virtual const char *getTargetNodeName(unsigned Opcode) const;
 | |
| 
 | |
|   /// createFastISel - This method returns a target specific FastISel object,
 | |
|   /// or null if the target does not support "fast" ISel.
 | |
|   virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Inline Asm Support hooks
 | |
|   //
 | |
| 
 | |
|   /// ExpandInlineAsm - This hook allows the target to expand an inline asm
 | |
|   /// call to be explicit llvm code if it wants to.  This is useful for
 | |
|   /// turning simple inline asms into LLVM intrinsics, which gives the
 | |
|   /// compiler more information about the behavior of the code.
 | |
|   virtual bool ExpandInlineAsm(CallInst *CI) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   enum ConstraintType {
 | |
|     C_Register,            // Constraint represents specific register(s).
 | |
|     C_RegisterClass,       // Constraint represents any of register(s) in class.
 | |
|     C_Memory,              // Memory constraint.
 | |
|     C_Other,               // Something else.
 | |
|     C_Unknown              // Unsupported constraint.
 | |
|   };
 | |
| 
 | |
|   enum ConstraintWeight {
 | |
|     // Generic weights.
 | |
|     CW_Invalid  = -1,     // No match.
 | |
|     CW_Okay     = 0,      // Acceptable.
 | |
|     CW_Good     = 1,      // Good weight.
 | |
|     CW_Better   = 2,      // Better weight.
 | |
|     CW_Best     = 3,      // Best weight.
 | |
| 
 | |
|     // Well-known weights.
 | |
|     CW_SpecificReg  = CW_Okay,    // Specific register operands.
 | |
|     CW_Register     = CW_Good,    // Register operands.
 | |
|     CW_Memory       = CW_Better,  // Memory operands.
 | |
|     CW_Constant     = CW_Best,    // Constant operand.
 | |
|     CW_Default      = CW_Okay     // Default or don't know type.
 | |
|   };
 | |
| 
 | |
|   /// AsmOperandInfo - This contains information for each constraint that we are
 | |
|   /// lowering.
 | |
|   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
 | |
|     /// ConstraintCode - This contains the actual string for the code, like "m".
 | |
|     /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
 | |
|     /// most closely matches the operand.
 | |
|     std::string ConstraintCode;
 | |
| 
 | |
|     /// ConstraintType - Information about the constraint code, e.g. Register,
 | |
|     /// RegisterClass, Memory, Other, Unknown.
 | |
|     TargetLowering::ConstraintType ConstraintType;
 | |
| 
 | |
|     /// CallOperandval - If this is the result output operand or a
 | |
|     /// clobber, this is null, otherwise it is the incoming operand to the
 | |
|     /// CallInst.  This gets modified as the asm is processed.
 | |
|     Value *CallOperandVal;
 | |
| 
 | |
|     /// ConstraintVT - The ValueType for the operand value.
 | |
|     EVT ConstraintVT;
 | |
| 
 | |
|     /// isMatchingInputConstraint - Return true of this is an input operand that
 | |
|     /// is a matching constraint like "4".
 | |
|     bool isMatchingInputConstraint() const;
 | |
| 
 | |
|     /// getMatchedOperand - If this is an input matching constraint, this method
 | |
|     /// returns the output operand it matches.
 | |
|     unsigned getMatchedOperand() const;
 | |
| 
 | |
|     /// Copy constructor for copying from an AsmOperandInfo.
 | |
|     AsmOperandInfo(const AsmOperandInfo &info)
 | |
|       : InlineAsm::ConstraintInfo(info),
 | |
|         ConstraintCode(info.ConstraintCode),
 | |
|         ConstraintType(info.ConstraintType),
 | |
|         CallOperandVal(info.CallOperandVal),
 | |
|         ConstraintVT(info.ConstraintVT) {
 | |
|     }
 | |
| 
 | |
|     /// Copy constructor for copying from a ConstraintInfo.
 | |
|     AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
 | |
|       : InlineAsm::ConstraintInfo(info),
 | |
|         ConstraintType(TargetLowering::C_Unknown),
 | |
|         CallOperandVal(0), ConstraintVT(MVT::Other) {
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
 | |
| 
 | |
|   /// ParseConstraints - Split up the constraint string from the inline
 | |
|   /// assembly value into the specific constraints and their prefixes,
 | |
|   /// and also tie in the associated operand values.
 | |
|   /// If this returns an empty vector, and if the constraint string itself
 | |
|   /// isn't empty, there was an error parsing.
 | |
|   virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
 | |
| 
 | |
|   /// Examine constraint type and operand type and determine a weight value.
 | |
|   /// The operand object must already have been set up with the operand type.
 | |
|   virtual ConstraintWeight getMultipleConstraintMatchWeight(
 | |
|       AsmOperandInfo &info, int maIndex) const;
 | |
| 
 | |
|   /// Examine constraint string and operand type and determine a weight value.
 | |
|   /// The operand object must already have been set up with the operand type.
 | |
|   virtual ConstraintWeight getSingleConstraintMatchWeight(
 | |
|       AsmOperandInfo &info, const char *constraint) const;
 | |
| 
 | |
|   /// ComputeConstraintToUse - Determines the constraint code and constraint
 | |
|   /// type to use for the specific AsmOperandInfo, setting
 | |
|   /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
 | |
|   /// being passed in is available, it can be passed in as Op, otherwise an
 | |
|   /// empty SDValue can be passed.
 | |
|   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
 | |
|                                       SDValue Op,
 | |
|                                       SelectionDAG *DAG = 0) const;
 | |
| 
 | |
|   /// getConstraintType - Given a constraint, return the type of constraint it
 | |
|   /// is for this target.
 | |
|   virtual ConstraintType getConstraintType(const std::string &Constraint) const;
 | |
| 
 | |
|   /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
 | |
|   /// {edx}), return the register number and the register class for the
 | |
|   /// register.
 | |
|   ///
 | |
|   /// Given a register class constraint, like 'r', if this corresponds directly
 | |
|   /// to an LLVM register class, return a register of 0 and the register class
 | |
|   /// pointer.
 | |
|   ///
 | |
|   /// This should only be used for C_Register constraints.  On error,
 | |
|   /// this returns a register number of 0 and a null register class pointer..
 | |
|   virtual std::pair<unsigned, const TargetRegisterClass*>
 | |
|     getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                  EVT VT) const;
 | |
| 
 | |
|   /// LowerXConstraint - try to replace an X constraint, which matches anything,
 | |
|   /// with another that has more specific requirements based on the type of the
 | |
|   /// corresponding operand.  This returns null if there is no replacement to
 | |
|   /// make.
 | |
|   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
 | |
| 
 | |
|   /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | |
|   /// vector.  If it is invalid, don't add anything to Ops.
 | |
|   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
 | |
|                                             std::vector<SDValue> &Ops,
 | |
|                                             SelectionDAG &DAG) const;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Instruction Emitting Hooks
 | |
|   //
 | |
| 
 | |
|   // EmitInstrWithCustomInserter - This method should be implemented by targets
 | |
|   // that mark instructions with the 'usesCustomInserter' flag.  These
 | |
|   // instructions are special in various ways, which require special support to
 | |
|   // insert.  The specified MachineInstr is created but not inserted into any
 | |
|   // basic blocks, and this method is called to expand it into a sequence of
 | |
|   // instructions, potentially also creating new basic blocks and control flow.
 | |
|   virtual MachineBasicBlock *
 | |
|     EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
 | |
| 
 | |
|   /// AdjustInstrPostInstrSelection - This method should be implemented by
 | |
|   /// targets that mark instructions with the 'hasPostISelHook' flag. These
 | |
|   /// instructions must be adjusted after instruction selection by target hooks.
 | |
|   /// e.g. To fill in optional defs for ARM 's' setting instructions.
 | |
|   virtual void
 | |
|   AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Addressing mode description hooks (used by LSR etc).
 | |
|   //
 | |
| 
 | |
|   /// AddrMode - This represents an addressing mode of:
 | |
|   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
 | |
|   /// If BaseGV is null,  there is no BaseGV.
 | |
|   /// If BaseOffs is zero, there is no base offset.
 | |
|   /// If HasBaseReg is false, there is no base register.
 | |
|   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
 | |
|   /// no scale.
 | |
|   ///
 | |
|   struct AddrMode {
 | |
|     GlobalValue *BaseGV;
 | |
|     int64_t      BaseOffs;
 | |
|     bool         HasBaseReg;
 | |
|     int64_t      Scale;
 | |
|     AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
 | |
|   };
 | |
| 
 | |
|   /// isLegalAddressingMode - Return true if the addressing mode represented by
 | |
|   /// AM is legal for this target, for a load/store of the specified type.
 | |
|   /// The type may be VoidTy, in which case only return true if the addressing
 | |
|   /// mode is legal for a load/store of any legal type.
 | |
|   /// TODO: Handle pre/postinc as well.
 | |
|   virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
 | |
| 
 | |
|   /// isLegalICmpImmediate - Return true if the specified immediate is legal
 | |
|   /// icmp immediate, that is the target has icmp instructions which can compare
 | |
|   /// a register against the immediate without having to materialize the
 | |
|   /// immediate into a register.
 | |
|   virtual bool isLegalICmpImmediate(int64_t Imm) const {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// isLegalAddImmediate - Return true if the specified immediate is legal
 | |
|   /// add immediate, that is the target has add instructions which can add
 | |
|   /// a register with the immediate without having to materialize the
 | |
|   /// immediate into a register.
 | |
|   virtual bool isLegalAddImmediate(int64_t Imm) const {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// isTruncateFree - Return true if it's free to truncate a value of
 | |
|   /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
 | |
|   /// register EAX to i16 by referencing its sub-register AX.
 | |
|   virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// isZExtFree - Return true if any actual instruction that defines a
 | |
|   /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
 | |
|   /// register. This does not necessarily include registers defined in
 | |
|   /// unknown ways, such as incoming arguments, or copies from unknown
 | |
|   /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
 | |
|   /// does not necessarily apply to truncate instructions. e.g. on x86-64,
 | |
|   /// all instructions that define 32-bit values implicit zero-extend the
 | |
|   /// result out to 64 bits.
 | |
|   virtual bool isZExtFree(Type *Ty1, Type *Ty2) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   virtual bool isZExtFree(EVT VT1, EVT VT2) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// isNarrowingProfitable - Return true if it's profitable to narrow
 | |
|   /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
 | |
|   /// from i32 to i8 but not from i32 to i16.
 | |
|   virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Div utility functions
 | |
|   //
 | |
|   SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
 | |
|                          SelectionDAG &DAG) const;
 | |
|   SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
 | |
|                       std::vector<SDNode*>* Created) const;
 | |
|   SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
 | |
|                       std::vector<SDNode*>* Created) const;
 | |
| 
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Runtime Library hooks
 | |
|   //
 | |
| 
 | |
|   /// setLibcallName - Rename the default libcall routine name for the specified
 | |
|   /// libcall.
 | |
|   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
 | |
|     LibcallRoutineNames[Call] = Name;
 | |
|   }
 | |
| 
 | |
|   /// getLibcallName - Get the libcall routine name for the specified libcall.
 | |
|   ///
 | |
|   const char *getLibcallName(RTLIB::Libcall Call) const {
 | |
|     return LibcallRoutineNames[Call];
 | |
|   }
 | |
| 
 | |
|   /// setCmpLibcallCC - Override the default CondCode to be used to test the
 | |
|   /// result of the comparison libcall against zero.
 | |
|   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
 | |
|     CmpLibcallCCs[Call] = CC;
 | |
|   }
 | |
| 
 | |
|   /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
 | |
|   /// the comparison libcall against zero.
 | |
|   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
 | |
|     return CmpLibcallCCs[Call];
 | |
|   }
 | |
| 
 | |
|   /// setLibcallCallingConv - Set the CallingConv that should be used for the
 | |
|   /// specified libcall.
 | |
|   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
 | |
|     LibcallCallingConvs[Call] = CC;
 | |
|   }
 | |
| 
 | |
|   /// getLibcallCallingConv - Get the CallingConv that should be used for the
 | |
|   /// specified libcall.
 | |
|   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
 | |
|     return LibcallCallingConvs[Call];
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   const TargetMachine &TM;
 | |
|   const TargetData *TD;
 | |
|   const TargetLoweringObjectFile &TLOF;
 | |
| 
 | |
|   /// We are in the process of implementing a new TypeLegalization action
 | |
|   /// which is the promotion of vector elements. This feature is under
 | |
|   /// development. Until this feature is complete, it is only enabled using a
 | |
|   /// flag. We pass this flag using a member because of circular dep issues.
 | |
|   /// This member will be removed with the flag once we complete the transition.
 | |
|   bool mayPromoteElements;
 | |
| 
 | |
|   /// PointerTy - The type to use for pointers, usually i32 or i64.
 | |
|   ///
 | |
|   MVT PointerTy;
 | |
| 
 | |
|   /// IsLittleEndian - True if this is a little endian target.
 | |
|   ///
 | |
|   bool IsLittleEndian;
 | |
| 
 | |
|   /// SelectIsExpensive - Tells the code generator not to expand operations
 | |
|   /// into sequences that use the select operations if possible.
 | |
|   bool SelectIsExpensive;
 | |
| 
 | |
|   /// IntDivIsCheap - Tells the code generator not to expand integer divides by
 | |
|   /// constants into a sequence of muls, adds, and shifts.  This is a hack until
 | |
|   /// a real cost model is in place.  If we ever optimize for size, this will be
 | |
|   /// set to true unconditionally.
 | |
|   bool IntDivIsCheap;
 | |
| 
 | |
|   /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
 | |
|   /// srl/add/sra for a signed divide by power of two, and let the target handle
 | |
|   /// it.
 | |
|   bool Pow2DivIsCheap;
 | |
| 
 | |
|   /// JumpIsExpensive - Tells the code generator that it shouldn't generate
 | |
|   /// extra flow control instructions and should attempt to combine flow
 | |
|   /// control instructions via predication.
 | |
|   bool JumpIsExpensive;
 | |
| 
 | |
|   /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
 | |
|   /// llvm.setjmp.  Defaults to false.
 | |
|   bool UseUnderscoreSetJmp;
 | |
| 
 | |
|   /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
 | |
|   /// llvm.longjmp.  Defaults to false.
 | |
|   bool UseUnderscoreLongJmp;
 | |
| 
 | |
|   /// BooleanContents - Information about the contents of the high-bits in
 | |
|   /// boolean values held in a type wider than i1.  See getBooleanContents.
 | |
|   BooleanContent BooleanContents;
 | |
|   /// BooleanVectorContents - Information about the contents of the high-bits
 | |
|   /// in boolean vector values when the element type is wider than i1.  See
 | |
|   /// getBooleanContents.
 | |
|   BooleanContent BooleanVectorContents;
 | |
| 
 | |
|   /// SchedPreferenceInfo - The target scheduling preference: shortest possible
 | |
|   /// total cycles or lowest register usage.
 | |
|   Sched::Preference SchedPreferenceInfo;
 | |
| 
 | |
|   /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
 | |
|   unsigned JumpBufSize;
 | |
| 
 | |
|   /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
 | |
|   /// buffers
 | |
|   unsigned JumpBufAlignment;
 | |
| 
 | |
|   /// MinStackArgumentAlignment - The minimum alignment that any argument
 | |
|   /// on the stack needs to have.
 | |
|   ///
 | |
|   unsigned MinStackArgumentAlignment;
 | |
| 
 | |
|   /// MinFunctionAlignment - The minimum function alignment (used when
 | |
|   /// optimizing for size, and to prevent explicitly provided alignment
 | |
|   /// from leading to incorrect code).
 | |
|   ///
 | |
|   unsigned MinFunctionAlignment;
 | |
| 
 | |
|   /// PrefFunctionAlignment - The preferred function alignment (used when
 | |
|   /// alignment unspecified and optimizing for speed).
 | |
|   ///
 | |
|   unsigned PrefFunctionAlignment;
 | |
| 
 | |
|   /// PrefLoopAlignment - The preferred loop alignment.
 | |
|   ///
 | |
|   unsigned PrefLoopAlignment;
 | |
| 
 | |
|   /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
 | |
|   /// be folded into the enclosed atomic intrinsic instruction by the
 | |
|   /// combiner.
 | |
|   bool ShouldFoldAtomicFences;
 | |
| 
 | |
|   /// InsertFencesForAtomic - Whether the DAG builder should automatically
 | |
|   /// insert fences and reduce ordering for atomics.  (This will be set for
 | |
|   /// for most architectures with weak memory ordering.)
 | |
|   bool InsertFencesForAtomic;
 | |
| 
 | |
|   /// StackPointerRegisterToSaveRestore - If set to a physical register, this
 | |
|   /// specifies the register that llvm.savestack/llvm.restorestack should save
 | |
|   /// and restore.
 | |
|   unsigned StackPointerRegisterToSaveRestore;
 | |
| 
 | |
|   /// ExceptionPointerRegister - If set to a physical register, this specifies
 | |
|   /// the register that receives the exception address on entry to a landing
 | |
|   /// pad.
 | |
|   unsigned ExceptionPointerRegister;
 | |
| 
 | |
|   /// ExceptionSelectorRegister - If set to a physical register, this specifies
 | |
|   /// the register that receives the exception typeid on entry to a landing
 | |
|   /// pad.
 | |
|   unsigned ExceptionSelectorRegister;
 | |
| 
 | |
|   /// RegClassForVT - This indicates the default register class to use for
 | |
|   /// each ValueType the target supports natively.
 | |
|   TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
 | |
|   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
 | |
|   EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// RepRegClassForVT - This indicates the "representative" register class to
 | |
|   /// use for each ValueType the target supports natively. This information is
 | |
|   /// used by the scheduler to track register pressure. By default, the
 | |
|   /// representative register class is the largest legal super-reg register
 | |
|   /// class of the register class of the specified type. e.g. On x86, i8, i16,
 | |
|   /// and i32's representative class would be GR32.
 | |
|   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
 | |
|   /// register class for each ValueType. The cost is used by the scheduler to
 | |
|   /// approximate register pressure.
 | |
|   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// TransformToType - For any value types we are promoting or expanding, this
 | |
|   /// contains the value type that we are changing to.  For Expanded types, this
 | |
|   /// contains one step of the expand (e.g. i64 -> i32), even if there are
 | |
|   /// multiple steps required (e.g. i64 -> i16).  For types natively supported
 | |
|   /// by the system, this holds the same type (e.g. i32 -> i32).
 | |
|   EVT TransformToType[MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// OpActions - For each operation and each value type, keep a LegalizeAction
 | |
|   /// that indicates how instruction selection should deal with the operation.
 | |
|   /// Most operations are Legal (aka, supported natively by the target), but
 | |
|   /// operations that are not should be described.  Note that operations on
 | |
|   /// non-legal value types are not described here.
 | |
|   uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
 | |
| 
 | |
|   /// LoadExtActions - For each load extension type and each value type,
 | |
|   /// keep a LegalizeAction that indicates how instruction selection should deal
 | |
|   /// with a load of a specific value type and extension type.
 | |
|   uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
 | |
| 
 | |
|   /// TruncStoreActions - For each value type pair keep a LegalizeAction that
 | |
|   /// indicates whether a truncating store of a specific value type and
 | |
|   /// truncating type is legal.
 | |
|   uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
 | |
| 
 | |
|   /// IndexedModeActions - For each indexed mode and each value type,
 | |
|   /// keep a pair of LegalizeAction that indicates how instruction
 | |
|   /// selection should deal with the load / store.  The first dimension is the
 | |
|   /// value_type for the reference. The second dimension represents the various
 | |
|   /// modes for load store.
 | |
|   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
 | |
| 
 | |
|   /// CondCodeActions - For each condition code (ISD::CondCode) keep a
 | |
|   /// LegalizeAction that indicates how instruction selection should
 | |
|   /// deal with the condition code.
 | |
|   uint64_t CondCodeActions[ISD::SETCC_INVALID];
 | |
| 
 | |
|   ValueTypeActionImpl ValueTypeActions;
 | |
| 
 | |
|   typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
 | |
| 
 | |
|   LegalizeKind
 | |
|   getTypeConversion(LLVMContext &Context, EVT VT) const {
 | |
|     // If this is a simple type, use the ComputeRegisterProp mechanism.
 | |
|     if (VT.isSimple()) {
 | |
|       assert((unsigned)VT.getSimpleVT().SimpleTy <
 | |
|              array_lengthof(TransformToType));
 | |
|       EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
 | |
|       LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
 | |
| 
 | |
|       assert(
 | |
|         (!(NVT.isSimple() && LA != TypeLegal) ||
 | |
|          ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
 | |
|          && "Promote may not follow Expand or Promote");
 | |
| 
 | |
|       return LegalizeKind(LA, NVT);
 | |
|     }
 | |
| 
 | |
|     // Handle Extended Scalar Types.
 | |
|     if (!VT.isVector()) {
 | |
|       assert(VT.isInteger() && "Float types must be simple");
 | |
|       unsigned BitSize = VT.getSizeInBits();
 | |
|       // First promote to a power-of-two size, then expand if necessary.
 | |
|       if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
 | |
|         EVT NVT = VT.getRoundIntegerType(Context);
 | |
|         assert(NVT != VT && "Unable to round integer VT");
 | |
|         LegalizeKind NextStep = getTypeConversion(Context, NVT);
 | |
|         // Avoid multi-step promotion.
 | |
|         if (NextStep.first == TypePromoteInteger) return NextStep;
 | |
|         // Return rounded integer type.
 | |
|         return LegalizeKind(TypePromoteInteger, NVT);
 | |
|       }
 | |
| 
 | |
|       return LegalizeKind(TypeExpandInteger,
 | |
|                           EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
 | |
|     }
 | |
| 
 | |
|     // Handle vector types.
 | |
|     unsigned NumElts = VT.getVectorNumElements();
 | |
|     EVT EltVT = VT.getVectorElementType();
 | |
| 
 | |
|     // Vectors with only one element are always scalarized.
 | |
|     if (NumElts == 1)
 | |
|       return LegalizeKind(TypeScalarizeVector, EltVT);
 | |
| 
 | |
|     // If we allow the promotion of vector elements using a flag,
 | |
|     // then try to widen vector elements until a legal type is found.
 | |
|     if (mayPromoteElements && EltVT.isInteger()) {
 | |
|       // Vectors with a number of elements that is not a power of two are always
 | |
|       // widened, for example <3 x float> -> <4 x float>.
 | |
|       if (!VT.isPow2VectorType()) {
 | |
|         NumElts = (unsigned)NextPowerOf2(NumElts);
 | |
|         EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
 | |
|         return LegalizeKind(TypeWidenVector, NVT);
 | |
|       }
 | |
| 
 | |
|       // Examine the element type.
 | |
|       LegalizeKind LK = getTypeConversion(Context, EltVT);
 | |
| 
 | |
|       // If type is to be expanded, split the vector.
 | |
|       //  <4 x i140> -> <2 x i140>
 | |
|       if (LK.first == TypeExpandInteger)
 | |
|         return LegalizeKind(TypeSplitVector,
 | |
|                             EVT::getVectorVT(Context, EltVT, NumElts / 2));
 | |
| 
 | |
|       // Promote the integer element types until a legal vector type is found
 | |
|       // or until the element integer type is too big. If a legal type was not
 | |
|       // found, fallback to the usual mechanism of widening/splitting the
 | |
|       // vector.
 | |
|       while (1) {
 | |
|         // Increase the bitwidth of the element to the next pow-of-two
 | |
|         // (which is greater than 8 bits).
 | |
|         EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
 | |
|                                  ).getRoundIntegerType(Context);
 | |
| 
 | |
|         // Stop trying when getting a non-simple element type.
 | |
|         // Note that vector elements may be greater than legal vector element
 | |
|         // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
 | |
|         if (!EltVT.isSimple()) break;
 | |
| 
 | |
|         // Build a new vector type and check if it is legal.
 | |
|         MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
 | |
|         // Found a legal promoted vector type.
 | |
|         if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
 | |
|           return LegalizeKind(TypePromoteInteger,
 | |
|                               EVT::getVectorVT(Context, EltVT, NumElts));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to widen the vector until a legal type is found.
 | |
|     // If there is no wider legal type, split the vector.
 | |
|     while (1) {
 | |
|       // Round up to the next power of 2.
 | |
|       NumElts = (unsigned)NextPowerOf2(NumElts);
 | |
| 
 | |
|       // If there is no simple vector type with this many elements then there
 | |
|       // cannot be a larger legal vector type.  Note that this assumes that
 | |
|       // there are no skipped intermediate vector types in the simple types.
 | |
|       if (!EltVT.isSimple()) break;
 | |
|       MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
 | |
|       if (LargerVector == MVT()) break;
 | |
| 
 | |
|       // If this type is legal then widen the vector.
 | |
|       if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
 | |
|         return LegalizeKind(TypeWidenVector, LargerVector);
 | |
|     }
 | |
| 
 | |
|     // Widen odd vectors to next power of two.
 | |
|     if (!VT.isPow2VectorType()) {
 | |
|       EVT NVT = VT.getPow2VectorType(Context);
 | |
|       return LegalizeKind(TypeWidenVector, NVT);
 | |
|     }
 | |
| 
 | |
|     // Vectors with illegal element types are expanded.
 | |
|     EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
 | |
|     return LegalizeKind(TypeSplitVector, NVT);
 | |
| 
 | |
|     assert(false && "Unable to handle this kind of vector type");
 | |
|     return LegalizeKind(TypeLegal, VT);
 | |
|   }
 | |
| 
 | |
|   std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
 | |
| 
 | |
|   /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
 | |
|   /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
 | |
|   /// which sets a bit in this array.
 | |
|   unsigned char
 | |
|   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
 | |
| 
 | |
|   /// PromoteToType - For operations that must be promoted to a specific type,
 | |
|   /// this holds the destination type.  This map should be sparse, so don't hold
 | |
|   /// it as an array.
 | |
|   ///
 | |
|   /// Targets add entries to this map with AddPromotedToType(..), clients access
 | |
|   /// this with getTypeToPromoteTo(..).
 | |
|   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
 | |
|     PromoteToType;
 | |
| 
 | |
|   /// LibcallRoutineNames - Stores the name each libcall.
 | |
|   ///
 | |
|   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
 | |
| 
 | |
|   /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
 | |
|   /// of each of the comparison libcall against zero.
 | |
|   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
 | |
| 
 | |
|   /// LibcallCallingConvs - Stores the CallingConv that should be used for each
 | |
|   /// libcall.
 | |
|   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
 | |
| 
 | |
| protected:
 | |
|   /// When lowering \@llvm.memset this field specifies the maximum number of
 | |
|   /// store operations that may be substituted for the call to memset. Targets
 | |
|   /// must set this value based on the cost threshold for that target. Targets
 | |
|   /// should assume that the memset will be done using as many of the largest
 | |
|   /// store operations first, followed by smaller ones, if necessary, per
 | |
|   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
 | |
|   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
 | |
|   /// store.  This only applies to setting a constant array of a constant size.
 | |
|   /// @brief Specify maximum number of store instructions per memset call.
 | |
|   unsigned maxStoresPerMemset;
 | |
| 
 | |
|   /// Maximum number of stores operations that may be substituted for the call
 | |
|   /// to memset, used for functions with OptSize attribute.
 | |
|   unsigned maxStoresPerMemsetOptSize;
 | |
| 
 | |
|   /// When lowering \@llvm.memcpy this field specifies the maximum number of
 | |
|   /// store operations that may be substituted for a call to memcpy. Targets
 | |
|   /// must set this value based on the cost threshold for that target. Targets
 | |
|   /// should assume that the memcpy will be done using as many of the largest
 | |
|   /// store operations first, followed by smaller ones, if necessary, per
 | |
|   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
 | |
|   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
 | |
|   /// and one 1-byte store. This only applies to copying a constant array of
 | |
|   /// constant size.
 | |
|   /// @brief Specify maximum bytes of store instructions per memcpy call.
 | |
|   unsigned maxStoresPerMemcpy;
 | |
| 
 | |
|   /// Maximum number of store operations that may be substituted for a call
 | |
|   /// to memcpy, used for functions with OptSize attribute.
 | |
|   unsigned maxStoresPerMemcpyOptSize;
 | |
| 
 | |
|   /// When lowering \@llvm.memmove this field specifies the maximum number of
 | |
|   /// store instructions that may be substituted for a call to memmove. Targets
 | |
|   /// must set this value based on the cost threshold for that target. Targets
 | |
|   /// should assume that the memmove will be done using as many of the largest
 | |
|   /// store operations first, followed by smaller ones, if necessary, per
 | |
|   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
 | |
|   /// with 8-bit alignment would result in nine 1-byte stores.  This only
 | |
|   /// applies to copying a constant array of constant size.
 | |
|   /// @brief Specify maximum bytes of store instructions per memmove call.
 | |
|   unsigned maxStoresPerMemmove;
 | |
| 
 | |
|   /// Maximum number of store instructions that may be substituted for a call
 | |
|   /// to memmove, used for functions with OpSize attribute.
 | |
|   unsigned maxStoresPerMemmoveOptSize;
 | |
| 
 | |
|   /// This field specifies whether the target can benefit from code placement
 | |
|   /// optimization.
 | |
|   bool benefitFromCodePlacementOpt;
 | |
| 
 | |
| private:
 | |
|   /// isLegalRC - Return true if the value types that can be represented by the
 | |
|   /// specified register class are all legal.
 | |
|   bool isLegalRC(const TargetRegisterClass *RC) const;
 | |
| 
 | |
|   /// hasLegalSuperRegRegClasses - Return true if the specified register class
 | |
|   /// has one or more super-reg register classes that are legal.
 | |
|   bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
 | |
| };
 | |
| 
 | |
| /// GetReturnInfo - Given an LLVM IR type and return type attributes,
 | |
| /// compute the return value EVTs and flags, and optionally also
 | |
| /// the offsets, if the return value is being lowered to memory.
 | |
| void GetReturnInfo(Type* ReturnType, Attributes attr,
 | |
|                    SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                    const TargetLowering &TLI,
 | |
|                    SmallVectorImpl<uint64_t> *Offsets = 0);
 | |
| 
 | |
| } // end llvm namespace
 | |
| 
 | |
| #endif
 |