llvm-6502/lib/VMCore/ConstantsContext.h
Devang Patel d9489cbb0c Use CallbackVH, instead of WeakVH, to hold MDNode elements.
Use FoldingSetNode to unique MDNodes in a context.
Use CallbackVH hooks to update context's MDNodeSet appropriately.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80839 91177308-0d34-0410-b5e6-96231b3b80d8
2009-09-02 21:22:09 +00:00

785 lines
29 KiB
C++

//===-- ConstantsContext.h - Constants-related Context Interals -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various helper methods and classes used by
// LLVMContextImpl for creating and managing constants.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CONSTANTSCONTEXT_H
#define LLVM_CONSTANTSCONTEXT_H
#include "llvm/Instructions.h"
#include "llvm/Operator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Mutex.h"
#include "llvm/System/RWMutex.h"
#include <map>
namespace llvm {
template<class ValType>
struct ConstantTraits;
/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement unary constant exprs.
class UnaryConstantExpr : public ConstantExpr {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 1);
}
UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
: ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
Op<0>() = C;
}
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement binary constant exprs.
class BinaryConstantExpr : public ConstantExpr {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
: ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
Op<0>() = C1;
Op<1>() = C2;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// SelectConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement select constant exprs.
class SelectConstantExpr : public ConstantExpr {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
Op<0>() = C1;
Op<1>() = C2;
Op<2>() = C3;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// ExtractElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractelement constant exprs.
class ExtractElementConstantExpr : public ConstantExpr {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
ExtractElementConstantExpr(Constant *C1, Constant *C2)
: ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
Instruction::ExtractElement, &Op<0>(), 2) {
Op<0>() = C1;
Op<1>() = C2;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// InsertElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertelement constant exprs.
class InsertElementConstantExpr : public ConstantExpr {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(C1->getType(), Instruction::InsertElement,
&Op<0>(), 3) {
Op<0>() = C1;
Op<1>() = C2;
Op<2>() = C3;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// ShuffleVectorConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// shufflevector constant exprs.
class ShuffleVectorConstantExpr : public ConstantExpr {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(VectorType::get(
cast<VectorType>(C1->getType())->getElementType(),
cast<VectorType>(C3->getType())->getNumElements()),
Instruction::ShuffleVector,
&Op<0>(), 3) {
Op<0>() = C1;
Op<1>() = C2;
Op<2>() = C3;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// ExtractValueConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractvalue constant exprs.
class ExtractValueConstantExpr : public ConstantExpr {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 1);
}
ExtractValueConstantExpr(Constant *Agg,
const SmallVector<unsigned, 4> &IdxList,
const Type *DestTy)
: ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
Indices(IdxList) {
Op<0>() = Agg;
}
/// Indices - These identify which value to extract.
const SmallVector<unsigned, 4> Indices;
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// InsertValueConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertvalue constant exprs.
class InsertValueConstantExpr : public ConstantExpr {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 2);
}
InsertValueConstantExpr(Constant *Agg, Constant *Val,
const SmallVector<unsigned, 4> &IdxList,
const Type *DestTy)
: ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
Indices(IdxList) {
Op<0>() = Agg;
Op<1>() = Val;
}
/// Indices - These identify the position for the insertion.
const SmallVector<unsigned, 4> Indices;
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
/// used behind the scenes to implement getelementpr constant exprs.
class GetElementPtrConstantExpr : public ConstantExpr {
GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
const Type *DestTy);
public:
static GetElementPtrConstantExpr *Create(Constant *C,
const std::vector<Constant*>&IdxList,
const Type *DestTy) {
return
new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
// CompareConstantExpr - This class is private to Constants.cpp, and is used
// behind the scenes to implement ICmp and FCmp constant expressions. This is
// needed in order to store the predicate value for these instructions.
struct CompareConstantExpr : public ConstantExpr {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
unsigned short predicate;
CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
unsigned short pred, Constant* LHS, Constant* RHS)
: ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
Op<0>() = LHS;
Op<1>() = RHS;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
template <>
struct OperandTraits<UnaryConstantExpr> : FixedNumOperandTraits<1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
template <>
struct OperandTraits<BinaryConstantExpr> : FixedNumOperandTraits<2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
template <>
struct OperandTraits<SelectConstantExpr> : FixedNumOperandTraits<3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
template <>
struct OperandTraits<ExtractElementConstantExpr> : FixedNumOperandTraits<2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
template <>
struct OperandTraits<InsertElementConstantExpr> : FixedNumOperandTraits<3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
template <>
struct OperandTraits<ShuffleVectorConstantExpr> : FixedNumOperandTraits<3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
template <>
struct OperandTraits<ExtractValueConstantExpr> : FixedNumOperandTraits<1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
template <>
struct OperandTraits<InsertValueConstantExpr> : FixedNumOperandTraits<2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
template <>
struct OperandTraits<GetElementPtrConstantExpr> : VariadicOperandTraits<1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
template <>
struct OperandTraits<CompareConstantExpr> : FixedNumOperandTraits<2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
struct ExprMapKeyType {
typedef SmallVector<unsigned, 4> IndexList;
ExprMapKeyType(unsigned opc,
const std::vector<Constant*> &ops,
unsigned short pred = 0,
const IndexList &inds = IndexList())
: opcode(opc), predicate(pred), operands(ops), indices(inds) {}
uint16_t opcode;
uint16_t predicate;
std::vector<Constant*> operands;
IndexList indices;
bool operator==(const ExprMapKeyType& that) const {
return this->opcode == that.opcode &&
this->predicate == that.predicate &&
this->operands == that.operands &&
this->indices == that.indices;
}
bool operator<(const ExprMapKeyType & that) const {
return this->opcode < that.opcode ||
(this->opcode == that.opcode && this->predicate < that.predicate) ||
(this->opcode == that.opcode && this->predicate == that.predicate &&
this->operands < that.operands) ||
(this->opcode == that.opcode && this->predicate == that.predicate &&
this->operands == that.operands && this->indices < that.indices);
}
bool operator!=(const ExprMapKeyType& that) const {
return !(*this == that);
}
};
// The number of operands for each ConstantCreator::create method is
// determined by the ConstantTraits template.
// ConstantCreator - A class that is used to create constants by
// ValueMap*. This class should be partially specialized if there is
// something strange that needs to be done to interface to the ctor for the
// constant.
//
template<typename T, typename Alloc>
struct ConstantTraits< std::vector<T, Alloc> > {
static unsigned uses(const std::vector<T, Alloc>& v) {
return v.size();
}
};
template<class ConstantClass, class TypeClass, class ValType>
struct ConstantCreator {
static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
}
};
template<class ConstantClass, class TypeClass>
struct ConvertConstantType {
static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
llvm_unreachable("This type cannot be converted!");
}
};
template<>
struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
unsigned short pred = 0) {
if (Instruction::isCast(V.opcode))
return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
if ((V.opcode >= Instruction::BinaryOpsBegin &&
V.opcode < Instruction::BinaryOpsEnd))
return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]);
if (V.opcode == Instruction::Select)
return new SelectConstantExpr(V.operands[0], V.operands[1],
V.operands[2]);
if (V.opcode == Instruction::ExtractElement)
return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
if (V.opcode == Instruction::InsertElement)
return new InsertElementConstantExpr(V.operands[0], V.operands[1],
V.operands[2]);
if (V.opcode == Instruction::ShuffleVector)
return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
V.operands[2]);
if (V.opcode == Instruction::InsertValue)
return new InsertValueConstantExpr(V.operands[0], V.operands[1],
V.indices, Ty);
if (V.opcode == Instruction::ExtractValue)
return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
if (V.opcode == Instruction::GetElementPtr) {
std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty);
}
// The compare instructions are weird. We have to encode the predicate
// value and it is combined with the instruction opcode by multiplying
// the opcode by one hundred. We must decode this to get the predicate.
if (V.opcode == Instruction::ICmp)
return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate,
V.operands[0], V.operands[1]);
if (V.opcode == Instruction::FCmp)
return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate,
V.operands[0], V.operands[1]);
llvm_unreachable("Invalid ConstantExpr!");
return 0;
}
};
template<>
struct ConvertConstantType<ConstantExpr, Type> {
static void convert(ConstantExpr *OldC, const Type *NewTy) {
Constant *New;
switch (OldC->getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0),
NewTy);
break;
case Instruction::Select:
New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
OldC->getOperand(1),
OldC->getOperand(2));
break;
default:
assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
OldC->getOpcode() < Instruction::BinaryOpsEnd);
New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
OldC->getOperand(1));
break;
case Instruction::GetElementPtr:
// Make everyone now use a constant of the new type...
std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0),
&Idx[0], Idx.size());
break;
}
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
// ConstantAggregateZero does not take extra "value" argument...
template<class ValType>
struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
return new ConstantAggregateZero(Ty);
}
};
template<>
struct ConvertConstantType<ConstantVector, VectorType> {
static void convert(ConstantVector *OldC, const VectorType *NewTy) {
// Make everyone now use a constant of the new type...
std::vector<Constant*> C;
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
C.push_back(cast<Constant>(OldC->getOperand(i)));
Constant *New = ConstantVector::get(NewTy, C);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
template<>
struct ConvertConstantType<ConstantAggregateZero, Type> {
static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
// Make everyone now use a constant of the new type...
Constant *New = ConstantAggregateZero::get(NewTy);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
template<>
struct ConvertConstantType<ConstantArray, ArrayType> {
static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
// Make everyone now use a constant of the new type...
std::vector<Constant*> C;
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
C.push_back(cast<Constant>(OldC->getOperand(i)));
Constant *New = ConstantArray::get(NewTy, C);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
template<>
struct ConvertConstantType<ConstantStruct, StructType> {
static void convert(ConstantStruct *OldC, const StructType *NewTy) {
// Make everyone now use a constant of the new type...
std::vector<Constant*> C;
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
C.push_back(cast<Constant>(OldC->getOperand(i)));
Constant *New = ConstantStruct::get(NewTy, C);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
// ConstantPointerNull does not take extra "value" argument...
template<class ValType>
struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
return new ConstantPointerNull(Ty);
}
};
template<>
struct ConvertConstantType<ConstantPointerNull, PointerType> {
static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
// Make everyone now use a constant of the new type...
Constant *New = ConstantPointerNull::get(NewTy);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
// UndefValue does not take extra "value" argument...
template<class ValType>
struct ConstantCreator<UndefValue, Type, ValType> {
static UndefValue *create(const Type *Ty, const ValType &V) {
return new UndefValue(Ty);
}
};
template<>
struct ConvertConstantType<UndefValue, Type> {
static void convert(UndefValue *OldC, const Type *NewTy) {
// Make everyone now use a constant of the new type.
Constant *New = UndefValue::get(NewTy);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
template<class ValType, class TypeClass, class ConstantClass,
bool HasLargeKey = false /*true for arrays and structs*/ >
class ValueMap : public AbstractTypeUser {
public:
typedef std::pair<const Type*, ValType> MapKey;
typedef std::map<MapKey, Constant *> MapTy;
typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
private:
/// Map - This is the main map from the element descriptor to the Constants.
/// This is the primary way we avoid creating two of the same shape
/// constant.
MapTy Map;
/// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
/// from the constants to their element in Map. This is important for
/// removal of constants from the array, which would otherwise have to scan
/// through the map with very large keys.
InverseMapTy InverseMap;
/// AbstractTypeMap - Map for abstract type constants.
///
AbstractTypeMapTy AbstractTypeMap;
/// ValueMapLock - Mutex for this map.
sys::SmartMutex<true> ValueMapLock;
public:
// NOTE: This function is not locked. It is the caller's responsibility
// to enforce proper synchronization.
typename MapTy::iterator map_begin() { return Map.begin(); }
typename MapTy::iterator map_end() { return Map.end(); }
void freeConstants() {
for (typename MapTy::iterator I=Map.begin(), E=Map.end();
I != E; ++I) {
if (I->second->use_empty())
delete I->second;
}
}
/// InsertOrGetItem - Return an iterator for the specified element.
/// If the element exists in the map, the returned iterator points to the
/// entry and Exists=true. If not, the iterator points to the newly
/// inserted entry and returns Exists=false. Newly inserted entries have
/// I->second == 0, and should be filled in.
/// NOTE: This function is not locked. It is the caller's responsibility
// to enforce proper synchronization.
typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
&InsertVal,
bool &Exists) {
std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
Exists = !IP.second;
return IP.first;
}
private:
typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
if (HasLargeKey) {
typename InverseMapTy::iterator IMI = InverseMap.find(CP);
assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
IMI->second->second == CP &&
"InverseMap corrupt!");
return IMI->second;
}
typename MapTy::iterator I =
Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
getValType(CP)));
if (I == Map.end() || I->second != CP) {
// FIXME: This should not use a linear scan. If this gets to be a
// performance problem, someone should look at this.
for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
/* empty */;
}
return I;
}
ConstantClass* Create(const TypeClass *Ty, const ValType &V,
typename MapTy::iterator I) {
ConstantClass* Result =
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
assert(Result->getType() == Ty && "Type specified is not correct!");
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.insert(std::make_pair(Result, I));
// If the type of the constant is abstract, make sure that an entry
// exists for it in the AbstractTypeMap.
if (Ty->isAbstract()) {
typename AbstractTypeMapTy::iterator TI =
AbstractTypeMap.find(Ty);
if (TI == AbstractTypeMap.end()) {
// Add ourselves to the ATU list of the type.
cast<DerivedType>(Ty)->addAbstractTypeUser(this);
AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
}
}
return Result;
}
public:
/// getOrCreate - Return the specified constant from the map, creating it if
/// necessary.
ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
sys::SmartScopedLock<true> Lock(ValueMapLock);
MapKey Lookup(Ty, V);
ConstantClass* Result = 0;
typename MapTy::iterator I = Map.find(Lookup);
// Is it in the map?
if (I != Map.end())
Result = static_cast<ConstantClass *>(I->second);
if (!Result) {
// If no preexisting value, create one now...
Result = Create(Ty, V, I);
}
return Result;
}
void remove(ConstantClass *CP) {
sys::SmartScopedLock<true> Lock(ValueMapLock);
typename MapTy::iterator I = FindExistingElement(CP);
assert(I != Map.end() && "Constant not found in constant table!");
assert(I->second == CP && "Didn't find correct element?");
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.erase(CP);
// Now that we found the entry, make sure this isn't the entry that
// the AbstractTypeMap points to.
const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
if (Ty->isAbstract()) {
assert(AbstractTypeMap.count(Ty) &&
"Abstract type not in AbstractTypeMap?");
typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
if (ATMEntryIt == I) {
// Yes, we are removing the representative entry for this type.
// See if there are any other entries of the same type.
typename MapTy::iterator TmpIt = ATMEntryIt;
// First check the entry before this one...
if (TmpIt != Map.begin()) {
--TmpIt;
if (TmpIt->first.first != Ty) // Not the same type, move back...
++TmpIt;
}
// If we didn't find the same type, try to move forward...
if (TmpIt == ATMEntryIt) {
++TmpIt;
if (TmpIt == Map.end() || TmpIt->first.first != Ty)
--TmpIt; // No entry afterwards with the same type
}
// If there is another entry in the map of the same abstract type,
// update the AbstractTypeMap entry now.
if (TmpIt != ATMEntryIt) {
ATMEntryIt = TmpIt;
} else {
// Otherwise, we are removing the last instance of this type
// from the table. Remove from the ATM, and from user list.
cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
AbstractTypeMap.erase(Ty);
}
}
}
Map.erase(I);
}
/// MoveConstantToNewSlot - If we are about to change C to be the element
/// specified by I, update our internal data structures to reflect this
/// fact.
/// NOTE: This function is not locked. It is the responsibility of the
/// caller to enforce proper synchronization if using this method.
void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
// First, remove the old location of the specified constant in the map.
typename MapTy::iterator OldI = FindExistingElement(C);
assert(OldI != Map.end() && "Constant not found in constant table!");
assert(OldI->second == C && "Didn't find correct element?");
// If this constant is the representative element for its abstract type,
// update the AbstractTypeMap so that the representative element is I.
if (C->getType()->isAbstract()) {
typename AbstractTypeMapTy::iterator ATI =
AbstractTypeMap.find(C->getType());
assert(ATI != AbstractTypeMap.end() &&
"Abstract type not in AbstractTypeMap?");
if (ATI->second == OldI)
ATI->second = I;
}
// Remove the old entry from the map.
Map.erase(OldI);
// Update the inverse map so that we know that this constant is now
// located at descriptor I.
if (HasLargeKey) {
assert(I->second == C && "Bad inversemap entry!");
InverseMap[C] = I;
}
}
void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
sys::SmartScopedLock<true> Lock(ValueMapLock);
typename AbstractTypeMapTy::iterator I =
AbstractTypeMap.find(cast<Type>(OldTy));
assert(I != AbstractTypeMap.end() &&
"Abstract type not in AbstractTypeMap?");
// Convert a constant at a time until the last one is gone. The last one
// leaving will remove() itself, causing the AbstractTypeMapEntry to be
// eliminated eventually.
do {
ConvertConstantType<ConstantClass,
TypeClass>::convert(
static_cast<ConstantClass *>(I->second->second),
cast<TypeClass>(NewTy));
I = AbstractTypeMap.find(cast<Type>(OldTy));
} while (I != AbstractTypeMap.end());
}
// If the type became concrete without being refined to any other existing
// type, we just remove ourselves from the ATU list.
void typeBecameConcrete(const DerivedType *AbsTy) {
AbsTy->removeAbstractTypeUser(this);
}
void dump() const {
DEBUG(errs() << "Constant.cpp: ValueMap\n");
}
};
}
#endif