mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	The patch is generated using this command: tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \ -checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \ llvm/lib/ Thanks to Eugene Kosov for the original patch! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240137 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			537 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			537 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements induction variable simplification. It does
 | |
| // not define any actual pass or policy, but provides a single function to
 | |
| // simplify a loop's induction variables based on ScalarEvolution.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/SimplifyIndVar.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "indvars"
 | |
| 
 | |
| STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
 | |
| STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
 | |
| STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
 | |
| STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
 | |
| 
 | |
| namespace {
 | |
|   /// This is a utility for simplifying induction variables
 | |
|   /// based on ScalarEvolution. It is the primary instrument of the
 | |
|   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
 | |
|   /// other loop passes that preserve SCEV.
 | |
|   class SimplifyIndvar {
 | |
|     Loop             *L;
 | |
|     LoopInfo         *LI;
 | |
|     ScalarEvolution  *SE;
 | |
| 
 | |
|     SmallVectorImpl<WeakVH> &DeadInsts;
 | |
| 
 | |
|     bool Changed;
 | |
| 
 | |
|   public:
 | |
|     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LoopInfo *LI,
 | |
|                    SmallVectorImpl<WeakVH> &Dead)
 | |
|         : L(Loop), LI(LI), SE(SE), DeadInsts(Dead), Changed(false) {
 | |
|       assert(LI && "IV simplification requires LoopInfo");
 | |
|     }
 | |
| 
 | |
|     bool hasChanged() const { return Changed; }
 | |
| 
 | |
|     /// Iteratively perform simplification on a worklist of users of the
 | |
|     /// specified induction variable. This is the top-level driver that applies
 | |
|     /// all simplicitions to users of an IV.
 | |
|     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
 | |
| 
 | |
|     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
 | |
| 
 | |
|     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
 | |
|     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
 | |
|     void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand,
 | |
|                               bool IsSigned);
 | |
|     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
 | |
| 
 | |
|     Instruction *splitOverflowIntrinsic(Instruction *IVUser,
 | |
|                                         const DominatorTree *DT);
 | |
|   };
 | |
| } // namespace
 | |
| 
 | |
| /// Fold an IV operand into its use.  This removes increments of an
 | |
| /// aligned IV when used by a instruction that ignores the low bits.
 | |
| ///
 | |
| /// IVOperand is guaranteed SCEVable, but UseInst may not be.
 | |
| ///
 | |
| /// Return the operand of IVOperand for this induction variable if IVOperand can
 | |
| /// be folded (in case more folding opportunities have been exposed).
 | |
| /// Otherwise return null.
 | |
| Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
 | |
|   Value *IVSrc = nullptr;
 | |
|   unsigned OperIdx = 0;
 | |
|   const SCEV *FoldedExpr = nullptr;
 | |
|   switch (UseInst->getOpcode()) {
 | |
|   default:
 | |
|     return nullptr;
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::LShr:
 | |
|     // We're only interested in the case where we know something about
 | |
|     // the numerator and have a constant denominator.
 | |
|     if (IVOperand != UseInst->getOperand(OperIdx) ||
 | |
|         !isa<ConstantInt>(UseInst->getOperand(1)))
 | |
|       return nullptr;
 | |
| 
 | |
|     // Attempt to fold a binary operator with constant operand.
 | |
|     // e.g. ((I + 1) >> 2) => I >> 2
 | |
|     if (!isa<BinaryOperator>(IVOperand)
 | |
|         || !isa<ConstantInt>(IVOperand->getOperand(1)))
 | |
|       return nullptr;
 | |
| 
 | |
|     IVSrc = IVOperand->getOperand(0);
 | |
|     // IVSrc must be the (SCEVable) IV, since the other operand is const.
 | |
|     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
 | |
| 
 | |
|     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
 | |
|     if (UseInst->getOpcode() == Instruction::LShr) {
 | |
|       // Get a constant for the divisor. See createSCEV.
 | |
|       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
 | |
|       if (D->getValue().uge(BitWidth))
 | |
|         return nullptr;
 | |
| 
 | |
|       D = ConstantInt::get(UseInst->getContext(),
 | |
|                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
 | |
|     }
 | |
|     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
 | |
|   }
 | |
|   // We have something that might fold it's operand. Compare SCEVs.
 | |
|   if (!SE->isSCEVable(UseInst->getType()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Bypass the operand if SCEV can prove it has no effect.
 | |
|   if (SE->getSCEV(UseInst) != FoldedExpr)
 | |
|     return nullptr;
 | |
| 
 | |
|   DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
 | |
|         << " -> " << *UseInst << '\n');
 | |
| 
 | |
|   UseInst->setOperand(OperIdx, IVSrc);
 | |
|   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
 | |
| 
 | |
|   ++NumElimOperand;
 | |
|   Changed = true;
 | |
|   if (IVOperand->use_empty())
 | |
|     DeadInsts.emplace_back(IVOperand);
 | |
|   return IVSrc;
 | |
| }
 | |
| 
 | |
| /// SimplifyIVUsers helper for eliminating useless
 | |
| /// comparisons against an induction variable.
 | |
| void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
 | |
|   unsigned IVOperIdx = 0;
 | |
|   ICmpInst::Predicate Pred = ICmp->getPredicate();
 | |
|   if (IVOperand != ICmp->getOperand(0)) {
 | |
|     // Swapped
 | |
|     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
 | |
|     IVOperIdx = 1;
 | |
|     Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   // Get the SCEVs for the ICmp operands.
 | |
|   const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
 | |
|   const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
 | |
| 
 | |
|   // Simplify unnecessary loops away.
 | |
|   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
 | |
|   S = SE->getSCEVAtScope(S, ICmpLoop);
 | |
|   X = SE->getSCEVAtScope(X, ICmpLoop);
 | |
| 
 | |
|   // If the condition is always true or always false, replace it with
 | |
|   // a constant value.
 | |
|   if (SE->isKnownPredicate(Pred, S, X))
 | |
|     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
 | |
|   else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
 | |
|     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
 | |
|   else
 | |
|     return;
 | |
| 
 | |
|   DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
 | |
|   ++NumElimCmp;
 | |
|   Changed = true;
 | |
|   DeadInsts.emplace_back(ICmp);
 | |
| }
 | |
| 
 | |
| /// SimplifyIVUsers helper for eliminating useless
 | |
| /// remainder operations operating on an induction variable.
 | |
| void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
 | |
|                                       Value *IVOperand,
 | |
|                                       bool IsSigned) {
 | |
|   // We're only interested in the case where we know something about
 | |
|   // the numerator.
 | |
|   if (IVOperand != Rem->getOperand(0))
 | |
|     return;
 | |
| 
 | |
|   // Get the SCEVs for the ICmp operands.
 | |
|   const SCEV *S = SE->getSCEV(Rem->getOperand(0));
 | |
|   const SCEV *X = SE->getSCEV(Rem->getOperand(1));
 | |
| 
 | |
|   // Simplify unnecessary loops away.
 | |
|   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
 | |
|   S = SE->getSCEVAtScope(S, ICmpLoop);
 | |
|   X = SE->getSCEVAtScope(X, ICmpLoop);
 | |
| 
 | |
|   // i % n  -->  i  if i is in [0,n).
 | |
|   if ((!IsSigned || SE->isKnownNonNegative(S)) &&
 | |
|       SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
 | |
|                            S, X))
 | |
|     Rem->replaceAllUsesWith(Rem->getOperand(0));
 | |
|   else {
 | |
|     // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
 | |
|     const SCEV *LessOne =
 | |
|       SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
 | |
|     if (IsSigned && !SE->isKnownNonNegative(LessOne))
 | |
|       return;
 | |
| 
 | |
|     if (!SE->isKnownPredicate(IsSigned ?
 | |
|                               ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
 | |
|                               LessOne, X))
 | |
|       return;
 | |
| 
 | |
|     ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
 | |
|                                   Rem->getOperand(0), Rem->getOperand(1));
 | |
|     SelectInst *Sel =
 | |
|       SelectInst::Create(ICmp,
 | |
|                          ConstantInt::get(Rem->getType(), 0),
 | |
|                          Rem->getOperand(0), "tmp", Rem);
 | |
|     Rem->replaceAllUsesWith(Sel);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
 | |
|   ++NumElimRem;
 | |
|   Changed = true;
 | |
|   DeadInsts.emplace_back(Rem);
 | |
| }
 | |
| 
 | |
| /// Eliminate an operation that consumes a simple IV and has
 | |
| /// no observable side-effect given the range of IV values.
 | |
| /// IVOperand is guaranteed SCEVable, but UseInst may not be.
 | |
| bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
 | |
|                                      Instruction *IVOperand) {
 | |
|   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
 | |
|     eliminateIVComparison(ICmp, IVOperand);
 | |
|     return true;
 | |
|   }
 | |
|   if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
 | |
|     bool IsSigned = Rem->getOpcode() == Instruction::SRem;
 | |
|     if (IsSigned || Rem->getOpcode() == Instruction::URem) {
 | |
|       eliminateIVRemainder(Rem, IVOperand, IsSigned);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Eliminate any operation that SCEV can prove is an identity function.
 | |
|   if (!SE->isSCEVable(UseInst->getType()) ||
 | |
|       (UseInst->getType() != IVOperand->getType()) ||
 | |
|       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
 | |
| 
 | |
|   UseInst->replaceAllUsesWith(IVOperand);
 | |
|   ++NumElimIdentity;
 | |
|   Changed = true;
 | |
|   DeadInsts.emplace_back(UseInst);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
 | |
| /// unsigned-overflow.  Returns true if anything changed, false otherwise.
 | |
| bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
 | |
|                                                     Value *IVOperand) {
 | |
| 
 | |
|   // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
 | |
|   if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
 | |
|     return false;
 | |
| 
 | |
|   const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *,
 | |
|                                                SCEV::NoWrapFlags);
 | |
| 
 | |
|   switch (BO->getOpcode()) {
 | |
|   default:
 | |
|     return false;
 | |
| 
 | |
|   case Instruction::Add:
 | |
|     GetExprForBO = &ScalarEvolution::getAddExpr;
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Sub:
 | |
|     GetExprForBO = &ScalarEvolution::getMinusSCEV;
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Mul:
 | |
|     GetExprForBO = &ScalarEvolution::getMulExpr;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth();
 | |
|   Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2);
 | |
|   const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
 | |
|   const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   if (!BO->hasNoUnsignedWrap()) {
 | |
|     const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy);
 | |
|     const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
 | |
|       SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy),
 | |
|       SCEV::FlagAnyWrap);
 | |
|     if (ExtendAfterOp == OpAfterExtend) {
 | |
|       BO->setHasNoUnsignedWrap();
 | |
|       SE->forgetValue(BO);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!BO->hasNoSignedWrap()) {
 | |
|     const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy);
 | |
|     const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
 | |
|       SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy),
 | |
|       SCEV::FlagAnyWrap);
 | |
|     if (ExtendAfterOp == OpAfterExtend) {
 | |
|       BO->setHasNoSignedWrap();
 | |
|       SE->forgetValue(BO);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow
 | |
| /// analysis and optimization.
 | |
| ///
 | |
| /// \return A new value representing the non-overflowing add if possible,
 | |
| /// otherwise return the original value.
 | |
| Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser,
 | |
|                                                     const DominatorTree *DT) {
 | |
|   IntrinsicInst *II = dyn_cast<IntrinsicInst>(IVUser);
 | |
|   if (!II || II->getIntrinsicID() != Intrinsic::sadd_with_overflow)
 | |
|     return IVUser;
 | |
| 
 | |
|   // Find a branch guarded by the overflow check.
 | |
|   BranchInst *Branch = nullptr;
 | |
|   Instruction *AddVal = nullptr;
 | |
|   for (User *U : II->users()) {
 | |
|     if (ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(U)) {
 | |
|       if (ExtractInst->getNumIndices() != 1)
 | |
|         continue;
 | |
|       if (ExtractInst->getIndices()[0] == 0)
 | |
|         AddVal = ExtractInst;
 | |
|       else if (ExtractInst->getIndices()[0] == 1 && ExtractInst->hasOneUse())
 | |
|         Branch = dyn_cast<BranchInst>(ExtractInst->user_back());
 | |
|     }
 | |
|   }
 | |
|   if (!AddVal || !Branch)
 | |
|     return IVUser;
 | |
| 
 | |
|   BasicBlock *ContinueBB = Branch->getSuccessor(1);
 | |
|   if (std::next(pred_begin(ContinueBB)) != pred_end(ContinueBB))
 | |
|     return IVUser;
 | |
| 
 | |
|   // Check if all users of the add are provably NSW.
 | |
|   bool AllNSW = true;
 | |
|   for (Use &U : AddVal->uses()) {
 | |
|     if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) {
 | |
|       BasicBlock *UseBB = UseInst->getParent();
 | |
|       if (PHINode *PHI = dyn_cast<PHINode>(UseInst))
 | |
|         UseBB = PHI->getIncomingBlock(U);
 | |
|       if (!DT->dominates(ContinueBB, UseBB)) {
 | |
|         AllNSW = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (!AllNSW)
 | |
|     return IVUser;
 | |
| 
 | |
|   // Go for it...
 | |
|   IRBuilder<> Builder(IVUser);
 | |
|   Instruction *AddInst = dyn_cast<Instruction>(
 | |
|     Builder.CreateNSWAdd(II->getOperand(0), II->getOperand(1)));
 | |
| 
 | |
|   // The caller expects the new add to have the same form as the intrinsic. The
 | |
|   // IV operand position must be the same.
 | |
|   assert((AddInst->getOpcode() == Instruction::Add &&
 | |
|           AddInst->getOperand(0) == II->getOperand(0)) &&
 | |
|          "Bad add instruction created from overflow intrinsic.");
 | |
| 
 | |
|   AddVal->replaceAllUsesWith(AddInst);
 | |
|   DeadInsts.emplace_back(AddVal);
 | |
|   return AddInst;
 | |
| }
 | |
| 
 | |
| /// Add all uses of Def to the current IV's worklist.
 | |
| static void pushIVUsers(
 | |
|   Instruction *Def,
 | |
|   SmallPtrSet<Instruction*,16> &Simplified,
 | |
|   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
 | |
| 
 | |
|   for (User *U : Def->users()) {
 | |
|     Instruction *UI = cast<Instruction>(U);
 | |
| 
 | |
|     // Avoid infinite or exponential worklist processing.
 | |
|     // Also ensure unique worklist users.
 | |
|     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
 | |
|     // self edges first.
 | |
|     if (UI != Def && Simplified.insert(UI).second)
 | |
|       SimpleIVUsers.push_back(std::make_pair(UI, Def));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return true if this instruction generates a simple SCEV
 | |
| /// expression in terms of that IV.
 | |
| ///
 | |
| /// This is similar to IVUsers' isInteresting() but processes each instruction
 | |
| /// non-recursively when the operand is already known to be a simpleIVUser.
 | |
| ///
 | |
| static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
 | |
|   if (!SE->isSCEVable(I->getType()))
 | |
|     return false;
 | |
| 
 | |
|   // Get the symbolic expression for this instruction.
 | |
|   const SCEV *S = SE->getSCEV(I);
 | |
| 
 | |
|   // Only consider affine recurrences.
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
 | |
|   if (AR && AR->getLoop() == L)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Iteratively perform simplification on a worklist of users
 | |
| /// of the specified induction variable. Each successive simplification may push
 | |
| /// more users which may themselves be candidates for simplification.
 | |
| ///
 | |
| /// This algorithm does not require IVUsers analysis. Instead, it simplifies
 | |
| /// instructions in-place during analysis. Rather than rewriting induction
 | |
| /// variables bottom-up from their users, it transforms a chain of IVUsers
 | |
| /// top-down, updating the IR only when it encouters a clear optimization
 | |
| /// opportunitiy.
 | |
| ///
 | |
| /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
 | |
| ///
 | |
| void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
 | |
|   if (!SE->isSCEVable(CurrIV->getType()))
 | |
|     return;
 | |
| 
 | |
|   // Instructions processed by SimplifyIndvar for CurrIV.
 | |
|   SmallPtrSet<Instruction*,16> Simplified;
 | |
| 
 | |
|   // Use-def pairs if IV users waiting to be processed for CurrIV.
 | |
|   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
 | |
| 
 | |
|   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
 | |
|   // called multiple times for the same LoopPhi. This is the proper thing to
 | |
|   // do for loop header phis that use each other.
 | |
|   pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
 | |
| 
 | |
|   while (!SimpleIVUsers.empty()) {
 | |
|     std::pair<Instruction*, Instruction*> UseOper =
 | |
|       SimpleIVUsers.pop_back_val();
 | |
|     Instruction *UseInst = UseOper.first;
 | |
| 
 | |
|     // Bypass back edges to avoid extra work.
 | |
|     if (UseInst == CurrIV) continue;
 | |
| 
 | |
|     if (V && V->shouldSplitOverflowInstrinsics()) {
 | |
|       UseInst = splitOverflowIntrinsic(UseInst, V->getDomTree());
 | |
|       if (!UseInst)
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     Instruction *IVOperand = UseOper.second;
 | |
|     for (unsigned N = 0; IVOperand; ++N) {
 | |
|       assert(N <= Simplified.size() && "runaway iteration");
 | |
| 
 | |
|       Value *NewOper = foldIVUser(UseOper.first, IVOperand);
 | |
|       if (!NewOper)
 | |
|         break; // done folding
 | |
|       IVOperand = dyn_cast<Instruction>(NewOper);
 | |
|     }
 | |
|     if (!IVOperand)
 | |
|       continue;
 | |
| 
 | |
|     if (eliminateIVUser(UseOper.first, IVOperand)) {
 | |
|       pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) {
 | |
|       if (isa<OverflowingBinaryOperator>(BO) &&
 | |
|           strengthenOverflowingOperation(BO, IVOperand)) {
 | |
|         // re-queue uses of the now modified binary operator and fall
 | |
|         // through to the checks that remain.
 | |
|         pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
 | |
|     if (V && Cast) {
 | |
|       V->visitCast(Cast);
 | |
|       continue;
 | |
|     }
 | |
|     if (isSimpleIVUser(UseOper.first, L, SE)) {
 | |
|       pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| void IVVisitor::anchor() { }
 | |
| 
 | |
| /// Simplify instructions that use this induction variable
 | |
| /// by using ScalarEvolution to analyze the IV's recurrence.
 | |
| bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM,
 | |
|                        SmallVectorImpl<WeakVH> &Dead, IVVisitor *V)
 | |
| {
 | |
|   LoopInfo *LI = &LPM->getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LI, Dead);
 | |
|   SIV.simplifyUsers(CurrIV, V);
 | |
|   return SIV.hasChanged();
 | |
| }
 | |
| 
 | |
| /// Simplify users of induction variables within this
 | |
| /// loop. This does not actually change or add IVs.
 | |
| bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM,
 | |
|                      SmallVectorImpl<WeakVH> &Dead) {
 | |
|   bool Changed = false;
 | |
|   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
 | |
|     Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead);
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| } // namespace llvm
 |