mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172025 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			207 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			207 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements an abstract sparse conditional propagation algorithm,
 | 
						|
// modeled after SCCP, but with a customizable lattice function.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
 | 
						|
#define LLVM_ANALYSIS_SPARSEPROPAGATION_H
 | 
						|
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include <set>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  class Value;
 | 
						|
  class Constant;
 | 
						|
  class Argument;
 | 
						|
  class Instruction;
 | 
						|
  class PHINode;
 | 
						|
  class TerminatorInst;
 | 
						|
  class BasicBlock;
 | 
						|
  class Function;
 | 
						|
  class SparseSolver;
 | 
						|
  class raw_ostream;
 | 
						|
 | 
						|
  template<typename T> class SmallVectorImpl;
 | 
						|
  
 | 
						|
/// AbstractLatticeFunction - This class is implemented by the dataflow instance
 | 
						|
/// to specify what the lattice values are and how they handle merges etc.
 | 
						|
/// This gives the client the power to compute lattice values from instructions,
 | 
						|
/// constants, etc.  The requirement is that lattice values must all fit into
 | 
						|
/// a void*.  If a void* is not sufficient, the implementation should use this
 | 
						|
/// pointer to be a pointer into a uniquing set or something.
 | 
						|
///
 | 
						|
class AbstractLatticeFunction {
 | 
						|
public:
 | 
						|
  typedef void *LatticeVal;
 | 
						|
private:
 | 
						|
  LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
 | 
						|
public:
 | 
						|
  AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
 | 
						|
                          LatticeVal untrackedVal) {
 | 
						|
    UndefVal = undefVal;
 | 
						|
    OverdefinedVal = overdefinedVal;
 | 
						|
    UntrackedVal = untrackedVal;
 | 
						|
  }
 | 
						|
  virtual ~AbstractLatticeFunction();
 | 
						|
  
 | 
						|
  LatticeVal getUndefVal()       const { return UndefVal; }
 | 
						|
  LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
 | 
						|
  LatticeVal getUntrackedVal()   const { return UntrackedVal; }
 | 
						|
  
 | 
						|
  /// IsUntrackedValue - If the specified Value is something that is obviously
 | 
						|
  /// uninteresting to the analysis (and would always return UntrackedVal),
 | 
						|
  /// this function can return true to avoid pointless work.
 | 
						|
  virtual bool IsUntrackedValue(Value *V) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// ComputeConstant - Given a constant value, compute and return a lattice
 | 
						|
  /// value corresponding to the specified constant.
 | 
						|
  virtual LatticeVal ComputeConstant(Constant *C) {
 | 
						|
    return getOverdefinedVal(); // always safe
 | 
						|
  }
 | 
						|
 | 
						|
  /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
 | 
						|
  /// one that the we want to handle through ComputeInstructionState.
 | 
						|
  virtual bool IsSpecialCasedPHI(PHINode *PN) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// GetConstant - If the specified lattice value is representable as an LLVM
 | 
						|
  /// constant value, return it.  Otherwise return null.  The returned value
 | 
						|
  /// must be in the same LLVM type as Val.
 | 
						|
  virtual Constant *GetConstant(LatticeVal LV, Value *Val, SparseSolver &SS) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// ComputeArgument - Given a formal argument value, compute and return a
 | 
						|
  /// lattice value corresponding to the specified argument.
 | 
						|
  virtual LatticeVal ComputeArgument(Argument *I) {
 | 
						|
    return getOverdefinedVal(); // always safe
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// MergeValues - Compute and return the merge of the two specified lattice
 | 
						|
  /// values.  Merging should only move one direction down the lattice to
 | 
						|
  /// guarantee convergence (toward overdefined).
 | 
						|
  virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
 | 
						|
    return getOverdefinedVal(); // always safe, never useful.
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// ComputeInstructionState - Given an instruction and a vector of its operand
 | 
						|
  /// values, compute the result value of the instruction.
 | 
						|
  virtual LatticeVal ComputeInstructionState(Instruction &I, SparseSolver &SS) {
 | 
						|
    return getOverdefinedVal(); // always safe, never useful.
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// PrintValue - Render the specified lattice value to the specified stream.
 | 
						|
  virtual void PrintValue(LatticeVal V, raw_ostream &OS);
 | 
						|
};
 | 
						|
 | 
						|
  
 | 
						|
/// SparseSolver - This class is a general purpose solver for Sparse Conditional
 | 
						|
/// Propagation with a programmable lattice function.
 | 
						|
///
 | 
						|
class SparseSolver {
 | 
						|
  typedef AbstractLatticeFunction::LatticeVal LatticeVal;
 | 
						|
  
 | 
						|
  /// LatticeFunc - This is the object that knows the lattice and how to do
 | 
						|
  /// compute transfer functions.
 | 
						|
  AbstractLatticeFunction *LatticeFunc;
 | 
						|
  
 | 
						|
  DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
 | 
						|
  SmallPtrSet<BasicBlock*, 16> BBExecutable;   // The bbs that are executable.
 | 
						|
  
 | 
						|
  std::vector<Instruction*> InstWorkList;   // Worklist of insts to process.
 | 
						|
  
 | 
						|
  std::vector<BasicBlock*> BBWorkList;  // The BasicBlock work list
 | 
						|
  
 | 
						|
  /// KnownFeasibleEdges - Entries in this set are edges which have already had
 | 
						|
  /// PHI nodes retriggered.
 | 
						|
  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
 | 
						|
  std::set<Edge> KnownFeasibleEdges;
 | 
						|
 | 
						|
  SparseSolver(const SparseSolver&) LLVM_DELETED_FUNCTION;
 | 
						|
  void operator=(const SparseSolver&) LLVM_DELETED_FUNCTION;
 | 
						|
public:
 | 
						|
  explicit SparseSolver(AbstractLatticeFunction *Lattice)
 | 
						|
    : LatticeFunc(Lattice) {}
 | 
						|
  ~SparseSolver() {
 | 
						|
    delete LatticeFunc;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// Solve - Solve for constants and executable blocks.
 | 
						|
  ///
 | 
						|
  void Solve(Function &F);
 | 
						|
  
 | 
						|
  void Print(Function &F, raw_ostream &OS) const;
 | 
						|
 | 
						|
  /// getLatticeState - Return the LatticeVal object that corresponds to the
 | 
						|
  /// value.  If an value is not in the map, it is returned as untracked,
 | 
						|
  /// unlike the getOrInitValueState method.
 | 
						|
  LatticeVal getLatticeState(Value *V) const {
 | 
						|
    DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
 | 
						|
    return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// getOrInitValueState - Return the LatticeVal object that corresponds to the
 | 
						|
  /// value, initializing the value's state if it hasn't been entered into the
 | 
						|
  /// map yet.   This function is necessary because not all values should start
 | 
						|
  /// out in the underdefined state... Arguments should be overdefined, and
 | 
						|
  /// constants should be marked as constants.
 | 
						|
  ///
 | 
						|
  LatticeVal getOrInitValueState(Value *V);
 | 
						|
  
 | 
						|
  /// isEdgeFeasible - Return true if the control flow edge from the 'From'
 | 
						|
  /// basic block to the 'To' basic block is currently feasible.  If
 | 
						|
  /// AggressiveUndef is true, then this treats values with unknown lattice
 | 
						|
  /// values as undefined.  This is generally only useful when solving the
 | 
						|
  /// lattice, not when querying it.
 | 
						|
  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
 | 
						|
                      bool AggressiveUndef = false);
 | 
						|
 | 
						|
  /// isBlockExecutable - Return true if there are any known feasible
 | 
						|
  /// edges into the basic block.  This is generally only useful when
 | 
						|
  /// querying the lattice.
 | 
						|
  bool isBlockExecutable(BasicBlock *BB) const {
 | 
						|
    return BBExecutable.count(BB);
 | 
						|
  }
 | 
						|
  
 | 
						|
private:
 | 
						|
  /// UpdateState - When the state for some instruction is potentially updated,
 | 
						|
  /// this function notices and adds I to the worklist if needed.
 | 
						|
  void UpdateState(Instruction &Inst, LatticeVal V);
 | 
						|
  
 | 
						|
  /// MarkBlockExecutable - This method can be used by clients to mark all of
 | 
						|
  /// the blocks that are known to be intrinsically live in the processed unit.
 | 
						|
  void MarkBlockExecutable(BasicBlock *BB);
 | 
						|
  
 | 
						|
  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
 | 
						|
  /// work list if it is not already executable.
 | 
						|
  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
 | 
						|
  
 | 
						|
  /// getFeasibleSuccessors - Return a vector of booleans to indicate which
 | 
						|
  /// successors are reachable from a given terminator instruction.
 | 
						|
  void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs,
 | 
						|
                             bool AggressiveUndef);
 | 
						|
  
 | 
						|
  void visitInst(Instruction &I);
 | 
						|
  void visitPHINode(PHINode &I);
 | 
						|
  void visitTerminatorInst(TerminatorInst &TI);
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
#endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H
 |