mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-22 10:33:23 +00:00
1da7e8e0b3
pointers to objects. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13909 91177308-0d34-0410-b5e6-96231b3b80d8
304 lines
9.5 KiB
C++
304 lines
9.5 KiB
C++
//===- STLExtras.h - Useful functions when working with the STL -*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains some templates that are useful if you are working with the
|
|
// STL at all.
|
|
//
|
|
// No library is required when using these functinons.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SUPPORT_STLEXTRAS_H
|
|
#define SUPPORT_STLEXTRAS_H
|
|
|
|
#include <functional>
|
|
#include <utility> // for std::pair
|
|
#include "Support/iterator"
|
|
|
|
namespace llvm {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <functional>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// bind_obj - Often times you want to apply the member function of an object
|
|
// as a unary functor. This macro is shorthand that makes it happen less
|
|
// verbosely.
|
|
//
|
|
// Example:
|
|
// struct Summer { void accumulate(int x); }
|
|
// vector<int> Numbers;
|
|
// Summer MyS;
|
|
// for_each(Numbers.begin(), Numbers.end(),
|
|
// bind_obj(&MyS, &Summer::accumulate));
|
|
//
|
|
// TODO: When I get lots of extra time, convert this from an evil macro
|
|
//
|
|
#define bind_obj(OBJ, METHOD) std::bind1st(std::mem_fun(METHOD), OBJ)
|
|
|
|
|
|
// bitwise_or - This is a simple functor that applys operator| on its two
|
|
// arguments to get a boolean result.
|
|
//
|
|
template<class Ty>
|
|
struct bitwise_or : public std::binary_function<Ty, Ty, bool> {
|
|
bool operator()(const Ty& left, const Ty& right) const {
|
|
return left | right;
|
|
}
|
|
};
|
|
|
|
template<class Ty>
|
|
struct less_ptr : public std::binary_function<Ty, Ty, bool> {
|
|
bool operator()(const Ty* left, const Ty* right) const {
|
|
return *left < *right;
|
|
}
|
|
};
|
|
|
|
// deleter - Very very very simple method that is used to invoke operator
|
|
// delete on something. It is used like this:
|
|
//
|
|
// for_each(V.begin(), B.end(), deleter<Interval>);
|
|
//
|
|
template <class T>
|
|
static inline void deleter(T *Ptr) {
|
|
delete Ptr;
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <iterator>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// mapped_iterator - This is a simple iterator adapter that causes a function to
|
|
// be dereferenced whenever operator* is invoked on the iterator.
|
|
//
|
|
template <class RootIt, class UnaryFunc>
|
|
class mapped_iterator {
|
|
RootIt current;
|
|
UnaryFunc Fn;
|
|
public:
|
|
typedef typename std::iterator_traits<RootIt>::iterator_category
|
|
iterator_category;
|
|
typedef typename std::iterator_traits<RootIt>::difference_type
|
|
difference_type;
|
|
typedef typename UnaryFunc::result_type value_type;
|
|
|
|
typedef void pointer;
|
|
//typedef typename UnaryFunc::result_type *pointer;
|
|
typedef void reference; // Can't modify value returned by fn
|
|
|
|
typedef RootIt iterator_type;
|
|
typedef mapped_iterator<RootIt, UnaryFunc> _Self;
|
|
|
|
inline RootIt &getCurrent() const { return current; }
|
|
|
|
inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
|
|
: current(I), Fn(F) {}
|
|
inline mapped_iterator(const mapped_iterator &It)
|
|
: current(It.current), Fn(It.Fn) {}
|
|
|
|
inline value_type operator*() const { // All this work to do this
|
|
return Fn(*current); // little change
|
|
}
|
|
|
|
_Self& operator++() { ++current; return *this; }
|
|
_Self& operator--() { --current; return *this; }
|
|
_Self operator++(int) { _Self __tmp = *this; ++current; return __tmp; }
|
|
_Self operator--(int) { _Self __tmp = *this; --current; return __tmp; }
|
|
_Self operator+ (difference_type n) const { return _Self(current + n); }
|
|
_Self& operator+= (difference_type n) { current += n; return *this; }
|
|
_Self operator- (difference_type n) const { return _Self(current - n); }
|
|
_Self& operator-= (difference_type n) { current -= n; return *this; }
|
|
reference operator[](difference_type n) const { return *(*this + n); }
|
|
|
|
inline bool operator!=(const _Self &X) const { return !operator==(X); }
|
|
inline bool operator==(const _Self &X) const { return current == X.current; }
|
|
inline bool operator< (const _Self &X) const { return current < X.current; }
|
|
|
|
inline difference_type operator-(const _Self &X) const {
|
|
return current - X.current;
|
|
}
|
|
};
|
|
|
|
template <class _Iterator, class Func>
|
|
inline mapped_iterator<_Iterator, Func>
|
|
operator+(typename mapped_iterator<_Iterator, Func>::difference_type N,
|
|
const mapped_iterator<_Iterator, Func>& X) {
|
|
return mapped_iterator<_Iterator, Func>(X.getCurrent() - N);
|
|
}
|
|
|
|
|
|
// map_iterator - Provide a convenient way to create mapped_iterators, just like
|
|
// make_pair is useful for creating pairs...
|
|
//
|
|
template <class ItTy, class FuncTy>
|
|
inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
|
|
return mapped_iterator<ItTy, FuncTy>(I, F);
|
|
}
|
|
|
|
|
|
// next/prior - These functions unlike std::advance do not modify the
|
|
// passed iterator but return a copy.
|
|
//
|
|
// next(myIt) returns copy of myIt incremented once
|
|
// next(myIt, n) returns copy of myIt incremented n times
|
|
// prior(myIt) returns copy of myIt decremented once
|
|
// prior(myIt, n) returns copy of myIt decremented n times
|
|
|
|
template <typename ItTy, typename Dist>
|
|
inline ItTy next(ItTy it, Dist n)
|
|
{
|
|
std::advance(it, n);
|
|
return it;
|
|
}
|
|
|
|
template <typename ItTy>
|
|
inline ItTy next(ItTy it)
|
|
{
|
|
std::advance(it, 1);
|
|
return it;
|
|
}
|
|
|
|
template <typename ItTy, typename Dist>
|
|
inline ItTy prior(ItTy it, Dist n)
|
|
{
|
|
std::advance(it, -n);
|
|
return it;
|
|
}
|
|
|
|
template <typename ItTy>
|
|
inline ItTy prior(ItTy it)
|
|
{
|
|
std::advance(it, -1);
|
|
return it;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <algorithm>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// apply_until - Apply a functor to a sequence continually, unless the
|
|
// functor returns true. Return true if the functor returned true, return false
|
|
// if the functor never returned true.
|
|
//
|
|
template <class InputIt, class Function>
|
|
bool apply_until(InputIt First, InputIt Last, Function Func) {
|
|
for ( ; First != Last; ++First)
|
|
if (Func(*First)) return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
// reduce - Reduce a sequence values into a single value, given an initial
|
|
// value and an operator.
|
|
//
|
|
template <class InputIt, class Function, class ValueType>
|
|
ValueType reduce(InputIt First, InputIt Last, Function Func, ValueType Value) {
|
|
for ( ; First != Last; ++First)
|
|
Value = Func(*First, Value);
|
|
return Value;
|
|
}
|
|
|
|
#if 1 // This is likely to be more efficient
|
|
|
|
// reduce_apply - Reduce the result of applying a function to each value in a
|
|
// sequence, given an initial value, an operator, a function, and a sequence.
|
|
//
|
|
template <class InputIt, class Function, class ValueType, class TransFunc>
|
|
inline ValueType reduce_apply(InputIt First, InputIt Last, Function Func,
|
|
ValueType Value, TransFunc XForm) {
|
|
for ( ; First != Last; ++First)
|
|
Value = Func(XForm(*First), Value);
|
|
return Value;
|
|
}
|
|
|
|
#else // This is arguably more elegant
|
|
|
|
// reduce_apply - Reduce the result of applying a function to each value in a
|
|
// sequence, given an initial value, an operator, a function, and a sequence.
|
|
//
|
|
template <class InputIt, class Function, class ValueType, class TransFunc>
|
|
inline ValueType reduce_apply2(InputIt First, InputIt Last, Function Func,
|
|
ValueType Value, TransFunc XForm) {
|
|
return reduce(map_iterator(First, XForm), map_iterator(Last, XForm),
|
|
Func, Value);
|
|
}
|
|
#endif
|
|
|
|
|
|
// reduce_apply_bool - Reduce the result of applying a (bool returning) function
|
|
// to each value in a sequence. All of the bools returned by the mapped
|
|
// function are bitwise or'd together, and the result is returned.
|
|
//
|
|
template <class InputIt, class Function>
|
|
inline bool reduce_apply_bool(InputIt First, InputIt Last, Function Func) {
|
|
return reduce_apply(First, Last, bitwise_or<bool>(), false, Func);
|
|
}
|
|
|
|
|
|
// map - This function maps the specified input sequence into the specified
|
|
// output iterator, applying a unary function in between.
|
|
//
|
|
template <class InIt, class OutIt, class Functor>
|
|
inline OutIt mapto(InIt Begin, InIt End, OutIt Dest, Functor F) {
|
|
return copy(map_iterator(Begin, F), map_iterator(End, F), Dest);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <utility>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// tie - this function ties two objects and returns a temporary object
|
|
// that is assignable from a std::pair. This can be used to make code
|
|
// more readable when using values returned from functions bundled in
|
|
// a std::pair. Since an example is worth 1000 words:
|
|
//
|
|
// typedef std::map<int, int> Int2IntMap;
|
|
//
|
|
// Int2IntMap myMap;
|
|
// Int2IntMap::iterator where;
|
|
// bool inserted;
|
|
// tie(where, inserted) = myMap.insert(std::make_pair(123,456));
|
|
//
|
|
// if (inserted)
|
|
// // do stuff
|
|
// else
|
|
// // do other stuff
|
|
|
|
namespace
|
|
{
|
|
template <typename T1, typename T2>
|
|
struct tier {
|
|
typedef T1 &first_type;
|
|
typedef T2 &second_type;
|
|
|
|
first_type first;
|
|
second_type second;
|
|
|
|
tier(first_type f, second_type s) : first(f), second(s) { }
|
|
tier& operator=(const std::pair<T1, T2>& p) {
|
|
first = p.first;
|
|
second = p.second;
|
|
return *this;
|
|
}
|
|
};
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
inline tier<T1, T2> tie(T1& f, T2& s) {
|
|
return tier<T1, T2>(f, s);
|
|
}
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|