mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 18:34:09 +00:00
da4ff69153
keep track of a sense of "mobility", i.e. how many other nodes scheduling one node will free up. For something like this: float testadd(float *X, float *Y, float *Z, float *W, float *V) { return (*X+*Y)*(*Z+*W)+*V; } For example, this makes us schedule *X then *Y, not *X then *Z. The former allows us to issue the add, the later only lets us issue other loads. This turns the above code from this: _testadd: lfs f0, 0(r3) lfs f1, 0(r6) lfs f2, 0(r4) lfs f3, 0(r5) fadds f0, f0, f2 fadds f1, f3, f1 lfs f2, 0(r7) fmadds f1, f0, f1, f2 blr into this: _testadd: lfs f0, 0(r6) lfs f1, 0(r5) fadds f0, f1, f0 lfs f1, 0(r4) lfs f2, 0(r3) fadds f1, f2, f1 lfs f2, 0(r7) fmadds f1, f1, f0, f2 blr git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26680 91177308-0d34-0410-b5e6-96231b3b80d8
1075 lines
36 KiB
C++
1075 lines
36 KiB
C++
//===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Evan Cheng and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements bottom-up and top-down list schedulers, using standard
|
|
// algorithms. The basic approach uses a priority queue of available nodes to
|
|
// schedule. One at a time, nodes are taken from the priority queue (thus in
|
|
// priority order), checked for legality to schedule, and emitted if legal.
|
|
//
|
|
// Nodes may not be legal to schedule either due to structural hazards (e.g.
|
|
// pipeline or resource constraints) or because an input to the instruction has
|
|
// not completed execution.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sched"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <climits>
|
|
#include <iostream>
|
|
#include <queue>
|
|
#include <set>
|
|
#include <vector>
|
|
#include "llvm/Support/CommandLine.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<> NumNoops ("scheduler", "Number of noops inserted");
|
|
Statistic<> NumStalls("scheduler", "Number of pipeline stalls");
|
|
|
|
/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
|
|
/// a group of nodes flagged together.
|
|
struct SUnit {
|
|
SDNode *Node; // Representative node.
|
|
std::vector<SDNode*> FlaggedNodes; // All nodes flagged to Node.
|
|
std::set<SUnit*> Preds; // All real predecessors.
|
|
std::set<SUnit*> ChainPreds; // All chain predecessors.
|
|
std::set<SUnit*> Succs; // All real successors.
|
|
std::set<SUnit*> ChainSuccs; // All chain successors.
|
|
short NumPredsLeft; // # of preds not scheduled.
|
|
short NumSuccsLeft; // # of succs not scheduled.
|
|
short NumChainPredsLeft; // # of chain preds not scheduled.
|
|
short NumChainSuccsLeft; // # of chain succs not scheduled.
|
|
bool isTwoAddress : 1; // Is a two-address instruction.
|
|
bool isDefNUseOperand : 1; // Is a def&use operand.
|
|
bool isAvailable : 1; // True once available.
|
|
bool isScheduled : 1; // True once scheduled.
|
|
unsigned short Latency; // Node latency.
|
|
unsigned CycleBound; // Upper/lower cycle to be scheduled at.
|
|
unsigned NodeNum; // Entry # of node in the node vector.
|
|
|
|
SUnit(SDNode *node, unsigned nodenum)
|
|
: Node(node), NumPredsLeft(0), NumSuccsLeft(0),
|
|
NumChainPredsLeft(0), NumChainSuccsLeft(0),
|
|
isTwoAddress(false), isDefNUseOperand(false),
|
|
isAvailable(false), isScheduled(false),
|
|
Latency(0), CycleBound(0), NodeNum(nodenum) {}
|
|
|
|
void dump(const SelectionDAG *G) const;
|
|
void dumpAll(const SelectionDAG *G) const;
|
|
};
|
|
}
|
|
|
|
void SUnit::dump(const SelectionDAG *G) const {
|
|
std::cerr << "SU: ";
|
|
Node->dump(G);
|
|
std::cerr << "\n";
|
|
if (FlaggedNodes.size() != 0) {
|
|
for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
|
|
std::cerr << " ";
|
|
FlaggedNodes[i]->dump(G);
|
|
std::cerr << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
void SUnit::dumpAll(const SelectionDAG *G) const {
|
|
dump(G);
|
|
|
|
std::cerr << " # preds left : " << NumPredsLeft << "\n";
|
|
std::cerr << " # succs left : " << NumSuccsLeft << "\n";
|
|
std::cerr << " # chain preds left : " << NumChainPredsLeft << "\n";
|
|
std::cerr << " # chain succs left : " << NumChainSuccsLeft << "\n";
|
|
std::cerr << " Latency : " << Latency << "\n";
|
|
|
|
if (Preds.size() != 0) {
|
|
std::cerr << " Predecessors:\n";
|
|
for (std::set<SUnit*>::const_iterator I = Preds.begin(),
|
|
E = Preds.end(); I != E; ++I) {
|
|
std::cerr << " ";
|
|
(*I)->dump(G);
|
|
}
|
|
}
|
|
if (ChainPreds.size() != 0) {
|
|
std::cerr << " Chained Preds:\n";
|
|
for (std::set<SUnit*>::const_iterator I = ChainPreds.begin(),
|
|
E = ChainPreds.end(); I != E; ++I) {
|
|
std::cerr << " ";
|
|
(*I)->dump(G);
|
|
}
|
|
}
|
|
if (Succs.size() != 0) {
|
|
std::cerr << " Successors:\n";
|
|
for (std::set<SUnit*>::const_iterator I = Succs.begin(),
|
|
E = Succs.end(); I != E; ++I) {
|
|
std::cerr << " ";
|
|
(*I)->dump(G);
|
|
}
|
|
}
|
|
if (ChainSuccs.size() != 0) {
|
|
std::cerr << " Chained succs:\n";
|
|
for (std::set<SUnit*>::const_iterator I = ChainSuccs.begin(),
|
|
E = ChainSuccs.end(); I != E; ++I) {
|
|
std::cerr << " ";
|
|
(*I)->dump(G);
|
|
}
|
|
}
|
|
std::cerr << "\n";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// SchedulingPriorityQueue - This interface is used to plug different
|
|
/// priorities computation algorithms into the list scheduler. It implements the
|
|
/// interface of a standard priority queue, where nodes are inserted in
|
|
/// arbitrary order and returned in priority order. The computation of the
|
|
/// priority and the representation of the queue are totally up to the
|
|
/// implementation to decide.
|
|
///
|
|
namespace {
|
|
class SchedulingPriorityQueue {
|
|
public:
|
|
virtual ~SchedulingPriorityQueue() {}
|
|
|
|
virtual void initNodes(const std::vector<SUnit> &SUnits) = 0;
|
|
virtual void releaseState() = 0;
|
|
|
|
virtual bool empty() const = 0;
|
|
virtual void push(SUnit *U) = 0;
|
|
|
|
virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
|
|
virtual SUnit *pop() = 0;
|
|
|
|
/// ScheduledNode - As each node is scheduled, this method is invoked. This
|
|
/// allows the priority function to adjust the priority of node that have
|
|
/// already been emitted.
|
|
virtual void ScheduledNode(SUnit *Node) {}
|
|
};
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
//===----------------------------------------------------------------------===//
|
|
/// ScheduleDAGList - The actual list scheduler implementation. This supports
|
|
/// both top-down and bottom-up scheduling.
|
|
///
|
|
class ScheduleDAGList : public ScheduleDAG {
|
|
private:
|
|
// SDNode to SUnit mapping (many to one).
|
|
std::map<SDNode*, SUnit*> SUnitMap;
|
|
// The schedule. Null SUnit*'s represent noop instructions.
|
|
std::vector<SUnit*> Sequence;
|
|
// Current scheduling cycle.
|
|
unsigned CurrCycle;
|
|
|
|
// The scheduling units.
|
|
std::vector<SUnit> SUnits;
|
|
|
|
/// isBottomUp - This is true if the scheduling problem is bottom-up, false if
|
|
/// it is top-down.
|
|
bool isBottomUp;
|
|
|
|
/// PriorityQueue - The priority queue to use.
|
|
SchedulingPriorityQueue *PriorityQueue;
|
|
|
|
/// HazardRec - The hazard recognizer to use.
|
|
HazardRecognizer *HazardRec;
|
|
|
|
public:
|
|
ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb,
|
|
const TargetMachine &tm, bool isbottomup,
|
|
SchedulingPriorityQueue *priorityqueue,
|
|
HazardRecognizer *HR)
|
|
: ScheduleDAG(listSchedulingBURR, dag, bb, tm),
|
|
CurrCycle(0), isBottomUp(isbottomup),
|
|
PriorityQueue(priorityqueue), HazardRec(HR) {
|
|
}
|
|
|
|
~ScheduleDAGList() {
|
|
delete HazardRec;
|
|
delete PriorityQueue;
|
|
}
|
|
|
|
void Schedule();
|
|
|
|
void dumpSchedule() const;
|
|
|
|
private:
|
|
SUnit *NewSUnit(SDNode *N);
|
|
void ReleasePred(SUnit *PredSU, bool isChain = false);
|
|
void ReleaseSucc(SUnit *SuccSU, bool isChain = false);
|
|
void ScheduleNodeBottomUp(SUnit *SU);
|
|
void ScheduleNodeTopDown(SUnit *SU);
|
|
void ListScheduleTopDown();
|
|
void ListScheduleBottomUp();
|
|
void BuildSchedUnits();
|
|
void EmitSchedule();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
HazardRecognizer::~HazardRecognizer() {}
|
|
|
|
|
|
/// NewSUnit - Creates a new SUnit and return a ptr to it.
|
|
SUnit *ScheduleDAGList::NewSUnit(SDNode *N) {
|
|
SUnits.push_back(SUnit(N, SUnits.size()));
|
|
return &SUnits.back();
|
|
}
|
|
|
|
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
|
|
/// the Available queue is the count reaches zero. Also update its cycle bound.
|
|
void ScheduleDAGList::ReleasePred(SUnit *PredSU, bool isChain) {
|
|
// FIXME: the distance between two nodes is not always == the predecessor's
|
|
// latency. For example, the reader can very well read the register written
|
|
// by the predecessor later than the issue cycle. It also depends on the
|
|
// interrupt model (drain vs. freeze).
|
|
PredSU->CycleBound = std::max(PredSU->CycleBound,CurrCycle + PredSU->Latency);
|
|
|
|
if (!isChain)
|
|
PredSU->NumSuccsLeft--;
|
|
else
|
|
PredSU->NumChainSuccsLeft--;
|
|
|
|
#ifndef NDEBUG
|
|
if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
|
|
std::cerr << "*** List scheduling failed! ***\n";
|
|
PredSU->dump(&DAG);
|
|
std::cerr << " has been released too many times!\n";
|
|
assert(0);
|
|
}
|
|
#endif
|
|
|
|
if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
|
|
// EntryToken has to go last! Special case it here.
|
|
if (PredSU->Node->getOpcode() != ISD::EntryToken) {
|
|
PredSU->isAvailable = true;
|
|
PriorityQueue->push(PredSU);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
|
/// the Available queue is the count reaches zero. Also update its cycle bound.
|
|
void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
|
|
// FIXME: the distance between two nodes is not always == the predecessor's
|
|
// latency. For example, the reader can very well read the register written
|
|
// by the predecessor later than the issue cycle. It also depends on the
|
|
// interrupt model (drain vs. freeze).
|
|
SuccSU->CycleBound = std::max(SuccSU->CycleBound,CurrCycle + SuccSU->Latency);
|
|
|
|
if (!isChain)
|
|
SuccSU->NumPredsLeft--;
|
|
else
|
|
SuccSU->NumChainPredsLeft--;
|
|
|
|
#ifndef NDEBUG
|
|
if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
|
|
std::cerr << "*** List scheduling failed! ***\n";
|
|
SuccSU->dump(&DAG);
|
|
std::cerr << " has been released too many times!\n";
|
|
abort();
|
|
}
|
|
#endif
|
|
|
|
if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
|
|
SuccSU->isAvailable = true;
|
|
PriorityQueue->push(SuccSU);
|
|
}
|
|
}
|
|
|
|
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
|
|
/// count of its predecessors. If a predecessor pending count is zero, add it to
|
|
/// the Available queue.
|
|
void ScheduleDAGList::ScheduleNodeBottomUp(SUnit *SU) {
|
|
DEBUG(std::cerr << "*** Scheduling: ");
|
|
DEBUG(SU->dump(&DAG));
|
|
|
|
Sequence.push_back(SU);
|
|
|
|
// Bottom up: release predecessors
|
|
for (std::set<SUnit*>::iterator I1 = SU->Preds.begin(),
|
|
E1 = SU->Preds.end(); I1 != E1; ++I1) {
|
|
ReleasePred(*I1);
|
|
SU->NumPredsLeft--;
|
|
}
|
|
for (std::set<SUnit*>::iterator I2 = SU->ChainPreds.begin(),
|
|
E2 = SU->ChainPreds.end(); I2 != E2; ++I2)
|
|
ReleasePred(*I2, true);
|
|
|
|
CurrCycle++;
|
|
}
|
|
|
|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
|
/// count of its successors. If a successor pending count is zero, add it to
|
|
/// the Available queue.
|
|
void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU) {
|
|
DEBUG(std::cerr << "*** Scheduling: ");
|
|
DEBUG(SU->dump(&DAG));
|
|
|
|
Sequence.push_back(SU);
|
|
|
|
// Bottom up: release successors.
|
|
for (std::set<SUnit*>::iterator I1 = SU->Succs.begin(),
|
|
E1 = SU->Succs.end(); I1 != E1; ++I1) {
|
|
ReleaseSucc(*I1);
|
|
SU->NumSuccsLeft--;
|
|
}
|
|
for (std::set<SUnit*>::iterator I2 = SU->ChainSuccs.begin(),
|
|
E2 = SU->ChainSuccs.end(); I2 != E2; ++I2)
|
|
ReleaseSucc(*I2, true);
|
|
|
|
CurrCycle++;
|
|
}
|
|
|
|
/// isReady - True if node's lower cycle bound is less or equal to the current
|
|
/// scheduling cycle. Always true if all nodes have uniform latency 1.
|
|
static inline bool isReady(SUnit *SU, unsigned CurrCycle) {
|
|
return SU->CycleBound <= CurrCycle;
|
|
}
|
|
|
|
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
|
|
/// schedulers.
|
|
void ScheduleDAGList::ListScheduleBottomUp() {
|
|
// Add root to Available queue.
|
|
PriorityQueue->push(SUnitMap[DAG.getRoot().Val]);
|
|
|
|
// While Available queue is not empty, grab the node with the highest
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
std::vector<SUnit*> NotReady;
|
|
while (!PriorityQueue->empty()) {
|
|
SUnit *CurrNode = PriorityQueue->pop();
|
|
|
|
while (!isReady(CurrNode, CurrCycle)) {
|
|
NotReady.push_back(CurrNode);
|
|
CurrNode = PriorityQueue->pop();
|
|
}
|
|
|
|
// Add the nodes that aren't ready back onto the available list.
|
|
PriorityQueue->push_all(NotReady);
|
|
NotReady.clear();
|
|
|
|
ScheduleNodeBottomUp(CurrNode);
|
|
CurrNode->isScheduled = true;
|
|
PriorityQueue->ScheduledNode(CurrNode);
|
|
}
|
|
|
|
// Add entry node last
|
|
if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
|
|
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
|
|
Sequence.push_back(Entry);
|
|
}
|
|
|
|
// Reverse the order if it is bottom up.
|
|
std::reverse(Sequence.begin(), Sequence.end());
|
|
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that all SUnits were scheduled.
|
|
bool AnyNotSched = false;
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
|
|
if (!AnyNotSched)
|
|
std::cerr << "*** List scheduling failed! ***\n";
|
|
SUnits[i].dump(&DAG);
|
|
std::cerr << "has not been scheduled!\n";
|
|
AnyNotSched = true;
|
|
}
|
|
}
|
|
assert(!AnyNotSched);
|
|
#endif
|
|
}
|
|
|
|
/// ListScheduleTopDown - The main loop of list scheduling for top-down
|
|
/// schedulers.
|
|
void ScheduleDAGList::ListScheduleTopDown() {
|
|
// Emit the entry node first.
|
|
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
|
|
ScheduleNodeTopDown(Entry);
|
|
HazardRec->EmitInstruction(Entry->Node);
|
|
|
|
// All leaves to Available queue.
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
// It is available if it has no predecessors.
|
|
if ((SUnits[i].Preds.size() + SUnits[i].ChainPreds.size()) == 0 &&
|
|
&SUnits[i] != Entry)
|
|
PriorityQueue->push(&SUnits[i]);
|
|
}
|
|
|
|
// While Available queue is not empty, grab the node with the highest
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
std::vector<SUnit*> NotReady;
|
|
while (!PriorityQueue->empty()) {
|
|
SUnit *FoundNode = 0;
|
|
|
|
bool HasNoopHazards = false;
|
|
do {
|
|
SUnit *CurNode = PriorityQueue->pop();
|
|
|
|
// Get the node represented by this SUnit.
|
|
SDNode *N = CurNode->Node;
|
|
// If this is a pseudo op, like copyfromreg, look to see if there is a
|
|
// real target node flagged to it. If so, use the target node.
|
|
for (unsigned i = 0, e = CurNode->FlaggedNodes.size();
|
|
N->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i)
|
|
N = CurNode->FlaggedNodes[i];
|
|
|
|
HazardRecognizer::HazardType HT = HazardRec->getHazardType(N);
|
|
if (HT == HazardRecognizer::NoHazard) {
|
|
FoundNode = CurNode;
|
|
break;
|
|
}
|
|
|
|
// Remember if this is a noop hazard.
|
|
HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
|
|
|
|
NotReady.push_back(CurNode);
|
|
} while (!PriorityQueue->empty());
|
|
|
|
// Add the nodes that aren't ready back onto the available list.
|
|
PriorityQueue->push_all(NotReady);
|
|
NotReady.clear();
|
|
|
|
// If we found a node to schedule, do it now.
|
|
if (FoundNode) {
|
|
ScheduleNodeTopDown(FoundNode);
|
|
HazardRec->EmitInstruction(FoundNode->Node);
|
|
FoundNode->isScheduled = true;
|
|
PriorityQueue->ScheduledNode(FoundNode);
|
|
} else if (!HasNoopHazards) {
|
|
// Otherwise, we have a pipeline stall, but no other problem, just advance
|
|
// the current cycle and try again.
|
|
DEBUG(std::cerr << "*** Advancing cycle, no work to do\n");
|
|
HazardRec->AdvanceCycle();
|
|
++NumStalls;
|
|
} else {
|
|
// Otherwise, we have no instructions to issue and we have instructions
|
|
// that will fault if we don't do this right. This is the case for
|
|
// processors without pipeline interlocks and other cases.
|
|
DEBUG(std::cerr << "*** Emitting noop\n");
|
|
HazardRec->EmitNoop();
|
|
Sequence.push_back(0); // NULL SUnit* -> noop
|
|
++NumNoops;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that all SUnits were scheduled.
|
|
bool AnyNotSched = false;
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
if (SUnits[i].NumPredsLeft != 0 || SUnits[i].NumChainPredsLeft != 0) {
|
|
if (!AnyNotSched)
|
|
std::cerr << "*** List scheduling failed! ***\n";
|
|
SUnits[i].dump(&DAG);
|
|
std::cerr << "has not been scheduled!\n";
|
|
AnyNotSched = true;
|
|
}
|
|
}
|
|
assert(!AnyNotSched);
|
|
#endif
|
|
}
|
|
|
|
|
|
void ScheduleDAGList::BuildSchedUnits() {
|
|
// Reserve entries in the vector for each of the SUnits we are creating. This
|
|
// ensure that reallocation of the vector won't happen, so SUnit*'s won't get
|
|
// invalidated.
|
|
SUnits.reserve(NodeCount);
|
|
|
|
const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
|
|
|
|
// Pass 1: create the SUnit's.
|
|
for (unsigned i = 0, NC = NodeCount; i < NC; i++) {
|
|
NodeInfo *NI = &Info[i];
|
|
SDNode *N = NI->Node;
|
|
if (isPassiveNode(N))
|
|
continue;
|
|
|
|
SUnit *SU;
|
|
if (NI->isInGroup()) {
|
|
if (NI != NI->Group->getBottom()) // Bottom up, so only look at bottom
|
|
continue; // node of the NodeGroup
|
|
|
|
SU = NewSUnit(N);
|
|
// Find the flagged nodes.
|
|
SDOperand FlagOp = N->getOperand(N->getNumOperands() - 1);
|
|
SDNode *Flag = FlagOp.Val;
|
|
unsigned ResNo = FlagOp.ResNo;
|
|
while (Flag->getValueType(ResNo) == MVT::Flag) {
|
|
NodeInfo *FNI = getNI(Flag);
|
|
assert(FNI->Group == NI->Group);
|
|
SU->FlaggedNodes.insert(SU->FlaggedNodes.begin(), Flag);
|
|
SUnitMap[Flag] = SU;
|
|
|
|
FlagOp = Flag->getOperand(Flag->getNumOperands() - 1);
|
|
Flag = FlagOp.Val;
|
|
ResNo = FlagOp.ResNo;
|
|
}
|
|
} else {
|
|
SU = NewSUnit(N);
|
|
}
|
|
SUnitMap[N] = SU;
|
|
|
|
// Compute the latency for the node. We use the sum of the latencies for
|
|
// all nodes flagged together into this SUnit.
|
|
if (InstrItins.isEmpty()) {
|
|
// No latency information.
|
|
SU->Latency = 1;
|
|
} else {
|
|
SU->Latency = 0;
|
|
if (N->isTargetOpcode()) {
|
|
unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode());
|
|
InstrStage *S = InstrItins.begin(SchedClass);
|
|
InstrStage *E = InstrItins.end(SchedClass);
|
|
for (; S != E; ++S)
|
|
SU->Latency += S->Cycles;
|
|
}
|
|
for (unsigned i = 0, e = SU->FlaggedNodes.size(); i != e; ++i) {
|
|
SDNode *FNode = SU->FlaggedNodes[i];
|
|
if (FNode->isTargetOpcode()) {
|
|
unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode());
|
|
InstrStage *S = InstrItins.begin(SchedClass);
|
|
InstrStage *E = InstrItins.end(SchedClass);
|
|
for (; S != E; ++S)
|
|
SU->Latency += S->Cycles;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Pass 2: add the preds, succs, etc.
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
SUnit *SU = &SUnits[i];
|
|
SDNode *N = SU->Node;
|
|
NodeInfo *NI = getNI(N);
|
|
|
|
if (N->isTargetOpcode() && TII->isTwoAddrInstr(N->getTargetOpcode()))
|
|
SU->isTwoAddress = true;
|
|
|
|
if (NI->isInGroup()) {
|
|
// Find all predecessors (of the group).
|
|
NodeGroupOpIterator NGOI(NI);
|
|
while (!NGOI.isEnd()) {
|
|
SDOperand Op = NGOI.next();
|
|
SDNode *OpN = Op.Val;
|
|
MVT::ValueType VT = OpN->getValueType(Op.ResNo);
|
|
NodeInfo *OpNI = getNI(OpN);
|
|
if (OpNI->Group != NI->Group && !isPassiveNode(OpN)) {
|
|
assert(VT != MVT::Flag);
|
|
SUnit *OpSU = SUnitMap[OpN];
|
|
if (VT == MVT::Other) {
|
|
if (SU->ChainPreds.insert(OpSU).second)
|
|
SU->NumChainPredsLeft++;
|
|
if (OpSU->ChainSuccs.insert(SU).second)
|
|
OpSU->NumChainSuccsLeft++;
|
|
} else {
|
|
if (SU->Preds.insert(OpSU).second)
|
|
SU->NumPredsLeft++;
|
|
if (OpSU->Succs.insert(SU).second)
|
|
OpSU->NumSuccsLeft++;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Find node predecessors.
|
|
for (unsigned j = 0, e = N->getNumOperands(); j != e; j++) {
|
|
SDOperand Op = N->getOperand(j);
|
|
SDNode *OpN = Op.Val;
|
|
MVT::ValueType VT = OpN->getValueType(Op.ResNo);
|
|
if (!isPassiveNode(OpN)) {
|
|
assert(VT != MVT::Flag);
|
|
SUnit *OpSU = SUnitMap[OpN];
|
|
if (VT == MVT::Other) {
|
|
if (SU->ChainPreds.insert(OpSU).second)
|
|
SU->NumChainPredsLeft++;
|
|
if (OpSU->ChainSuccs.insert(SU).second)
|
|
OpSU->NumChainSuccsLeft++;
|
|
} else {
|
|
if (SU->Preds.insert(OpSU).second)
|
|
SU->NumPredsLeft++;
|
|
if (OpSU->Succs.insert(SU).second)
|
|
OpSU->NumSuccsLeft++;
|
|
if (j == 0 && SU->isTwoAddress)
|
|
OpSU->isDefNUseOperand = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
DEBUG(SU->dumpAll(&DAG));
|
|
}
|
|
}
|
|
|
|
/// EmitSchedule - Emit the machine code in scheduled order.
|
|
void ScheduleDAGList::EmitSchedule() {
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
|
|
if (SUnit *SU = Sequence[i]) {
|
|
for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++) {
|
|
SDNode *N = SU->FlaggedNodes[j];
|
|
EmitNode(getNI(N));
|
|
}
|
|
EmitNode(getNI(SU->Node));
|
|
} else {
|
|
// Null SUnit* is a noop.
|
|
EmitNoop();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// dump - dump the schedule.
|
|
void ScheduleDAGList::dumpSchedule() const {
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
|
|
if (SUnit *SU = Sequence[i])
|
|
SU->dump(&DAG);
|
|
else
|
|
std::cerr << "**** NOOP ****\n";
|
|
}
|
|
}
|
|
|
|
/// Schedule - Schedule the DAG using list scheduling.
|
|
/// FIXME: Right now it only supports the burr (bottom up register reducing)
|
|
/// heuristic.
|
|
void ScheduleDAGList::Schedule() {
|
|
DEBUG(std::cerr << "********** List Scheduling **********\n");
|
|
|
|
// Build scheduling units.
|
|
BuildSchedUnits();
|
|
|
|
PriorityQueue->initNodes(SUnits);
|
|
|
|
// Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
|
|
if (isBottomUp)
|
|
ListScheduleBottomUp();
|
|
else
|
|
ListScheduleTopDown();
|
|
|
|
PriorityQueue->releaseState();
|
|
|
|
DEBUG(std::cerr << "*** Final schedule ***\n");
|
|
DEBUG(dumpSchedule());
|
|
DEBUG(std::cerr << "\n");
|
|
|
|
// Emit in scheduled order
|
|
EmitSchedule();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RegReductionPriorityQueue Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
|
|
// to reduce register pressure.
|
|
//
|
|
namespace {
|
|
class RegReductionPriorityQueue;
|
|
|
|
/// Sorting functions for the Available queue.
|
|
struct ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
|
|
RegReductionPriorityQueue *SPQ;
|
|
ls_rr_sort(RegReductionPriorityQueue *spq) : SPQ(spq) {}
|
|
ls_rr_sort(const ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
|
|
|
|
bool operator()(const SUnit* left, const SUnit* right) const;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
class RegReductionPriorityQueue : public SchedulingPriorityQueue {
|
|
// SUnits - The SUnits for the current graph.
|
|
const std::vector<SUnit> *SUnits;
|
|
|
|
// SethiUllmanNumbers - The SethiUllman number for each node.
|
|
std::vector<int> SethiUllmanNumbers;
|
|
|
|
std::priority_queue<SUnit*, std::vector<SUnit*>, ls_rr_sort> Queue;
|
|
public:
|
|
RegReductionPriorityQueue() : Queue(ls_rr_sort(this)) {
|
|
}
|
|
|
|
void initNodes(const std::vector<SUnit> &sunits) {
|
|
SUnits = &sunits;
|
|
// Calculate node priorities.
|
|
CalculatePriorities();
|
|
}
|
|
void releaseState() {
|
|
SUnits = 0;
|
|
SethiUllmanNumbers.clear();
|
|
}
|
|
|
|
unsigned getSethiUllmanNumber(unsigned NodeNum) const {
|
|
assert(NodeNum < SethiUllmanNumbers.size());
|
|
return SethiUllmanNumbers[NodeNum];
|
|
}
|
|
|
|
bool empty() const { return Queue.empty(); }
|
|
|
|
void push(SUnit *U) {
|
|
Queue.push(U);
|
|
}
|
|
void push_all(const std::vector<SUnit *> &Nodes) {
|
|
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
|
|
Queue.push(Nodes[i]);
|
|
}
|
|
|
|
SUnit *pop() {
|
|
SUnit *V = Queue.top();
|
|
Queue.pop();
|
|
return V;
|
|
}
|
|
private:
|
|
void CalculatePriorities();
|
|
int CalcNodePriority(const SUnit *SU);
|
|
};
|
|
}
|
|
|
|
bool ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
|
|
unsigned LeftNum = left->NodeNum;
|
|
unsigned RightNum = right->NodeNum;
|
|
|
|
int LBonus = (int)left ->isDefNUseOperand;
|
|
int RBonus = (int)right->isDefNUseOperand;
|
|
|
|
// Special tie breaker: if two nodes share a operand, the one that
|
|
// use it as a def&use operand is preferred.
|
|
if (left->isTwoAddress && !right->isTwoAddress) {
|
|
SDNode *DUNode = left->Node->getOperand(0).Val;
|
|
if (DUNode->isOperand(right->Node))
|
|
LBonus++;
|
|
}
|
|
if (!left->isTwoAddress && right->isTwoAddress) {
|
|
SDNode *DUNode = right->Node->getOperand(0).Val;
|
|
if (DUNode->isOperand(left->Node))
|
|
RBonus++;
|
|
}
|
|
|
|
// Priority1 is just the number of live range genned.
|
|
int LPriority1 = left ->NumPredsLeft - LBonus;
|
|
int RPriority1 = right->NumPredsLeft - RBonus;
|
|
int LPriority2 = SPQ->getSethiUllmanNumber(LeftNum) + LBonus;
|
|
int RPriority2 = SPQ->getSethiUllmanNumber(RightNum) + RBonus;
|
|
|
|
if (LPriority1 > RPriority1)
|
|
return true;
|
|
else if (LPriority1 == RPriority1)
|
|
if (LPriority2 < RPriority2)
|
|
return true;
|
|
else if (LPriority2 == RPriority2)
|
|
if (left->CycleBound > right->CycleBound)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// CalcNodePriority - Priority is the Sethi Ullman number.
|
|
/// Smaller number is the higher priority.
|
|
int RegReductionPriorityQueue::CalcNodePriority(const SUnit *SU) {
|
|
int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
|
|
if (SethiUllmanNumber != INT_MIN)
|
|
return SethiUllmanNumber;
|
|
|
|
if (SU->Preds.size() == 0) {
|
|
SethiUllmanNumber = 1;
|
|
} else {
|
|
int Extra = 0;
|
|
for (std::set<SUnit*>::const_iterator I = SU->Preds.begin(),
|
|
E = SU->Preds.end(); I != E; ++I) {
|
|
SUnit *PredSU = *I;
|
|
int PredSethiUllman = CalcNodePriority(PredSU);
|
|
if (PredSethiUllman > SethiUllmanNumber) {
|
|
SethiUllmanNumber = PredSethiUllman;
|
|
Extra = 0;
|
|
} else if (PredSethiUllman == SethiUllmanNumber)
|
|
Extra++;
|
|
}
|
|
|
|
if (SU->Node->getOpcode() != ISD::TokenFactor)
|
|
SethiUllmanNumber += Extra;
|
|
else
|
|
SethiUllmanNumber = (Extra == 1) ? 0 : Extra-1;
|
|
}
|
|
|
|
return SethiUllmanNumber;
|
|
}
|
|
|
|
/// CalculatePriorities - Calculate priorities of all scheduling units.
|
|
void RegReductionPriorityQueue::CalculatePriorities() {
|
|
SethiUllmanNumbers.assign(SUnits->size(), INT_MIN);
|
|
|
|
for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
|
|
CalcNodePriority(&(*SUnits)[i]);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LatencyPriorityQueue Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is a SchedulingPriorityQueue that schedules using latency information to
|
|
// reduce the length of the critical path through the basic block.
|
|
//
|
|
namespace {
|
|
class LatencyPriorityQueue;
|
|
|
|
/// Sorting functions for the Available queue.
|
|
struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
|
|
LatencyPriorityQueue *PQ;
|
|
latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
|
|
latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {}
|
|
|
|
bool operator()(const SUnit* left, const SUnit* right) const;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
class LatencyPriorityQueue : public SchedulingPriorityQueue {
|
|
// SUnits - The SUnits for the current graph.
|
|
const std::vector<SUnit> *SUnits;
|
|
|
|
// Latencies - The latency (max of latency from this node to the bb exit)
|
|
// for each node.
|
|
std::vector<int> Latencies;
|
|
|
|
/// NumNodesSolelyBlocking - This vector contains, for every node in the
|
|
/// Queue, the number of nodes that the node is the sole unscheduled
|
|
/// predecessor for. This is used as a tie-breaker heuristic for better
|
|
/// mobility.
|
|
std::vector<unsigned> NumNodesSolelyBlocking;
|
|
|
|
std::priority_queue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
|
|
public:
|
|
LatencyPriorityQueue() : Queue(latency_sort(this)) {
|
|
}
|
|
|
|
void initNodes(const std::vector<SUnit> &sunits) {
|
|
SUnits = &sunits;
|
|
// Calculate node priorities.
|
|
CalculatePriorities();
|
|
}
|
|
void releaseState() {
|
|
SUnits = 0;
|
|
Latencies.clear();
|
|
}
|
|
|
|
unsigned getLatency(unsigned NodeNum) const {
|
|
assert(NodeNum < Latencies.size());
|
|
return Latencies[NodeNum];
|
|
}
|
|
|
|
unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
|
|
assert(NodeNum < NumNodesSolelyBlocking.size());
|
|
return NumNodesSolelyBlocking[NodeNum];
|
|
}
|
|
|
|
bool empty() const { return Queue.empty(); }
|
|
|
|
virtual void push(SUnit *U) {
|
|
push_impl(U);
|
|
}
|
|
void push_impl(SUnit *U);
|
|
|
|
void push_all(const std::vector<SUnit *> &Nodes) {
|
|
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
|
|
push_impl(Nodes[i]);
|
|
}
|
|
|
|
SUnit *pop() {
|
|
SUnit *V = Queue.top();
|
|
Queue.pop();
|
|
return V;
|
|
}
|
|
|
|
// ScheduledNode - As nodes are scheduled, we look to see if there are any
|
|
// successor nodes that have a single unscheduled predecessor. If so, that
|
|
// single predecessor has a higher priority, since scheduling it will make
|
|
// the node available.
|
|
void ScheduledNode(SUnit *Node);
|
|
|
|
private:
|
|
void CalculatePriorities();
|
|
int CalcLatency(const SUnit &SU);
|
|
void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
|
|
|
|
/// RemoveFromPriorityQueue - This is a really inefficient way to remove a
|
|
/// node from a priority queue. We should roll our own heap to make this
|
|
/// better or something.
|
|
void RemoveFromPriorityQueue(SUnit *SU) {
|
|
std::vector<SUnit*> Temp;
|
|
|
|
assert(!Queue.empty() && "Not in queue!");
|
|
while (Queue.top() != SU) {
|
|
Temp.push_back(Queue.top());
|
|
Queue.pop();
|
|
assert(!Queue.empty() && "Not in queue!");
|
|
}
|
|
|
|
// Remove the node from the PQ.
|
|
Queue.pop();
|
|
|
|
// Add all the other nodes back.
|
|
for (unsigned i = 0, e = Temp.size(); i != e; ++i)
|
|
Queue.push(Temp[i]);
|
|
}
|
|
};
|
|
}
|
|
|
|
bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
|
|
unsigned LHSNum = LHS->NodeNum;
|
|
unsigned RHSNum = RHS->NodeNum;
|
|
|
|
// The most important heuristic is scheduling the critical path.
|
|
unsigned LHSLatency = PQ->getLatency(LHSNum);
|
|
unsigned RHSLatency = PQ->getLatency(RHSNum);
|
|
if (LHSLatency < RHSLatency) return true;
|
|
if (LHSLatency > RHSLatency) return false;
|
|
|
|
// After that, if two nodes have identical latencies, look to see if one will
|
|
// unblock more other nodes than the other.
|
|
unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
|
|
unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
|
|
if (LHSBlocked < RHSBlocked) return true;
|
|
if (LHSBlocked > RHSBlocked) return false;
|
|
|
|
// Finally, just to provide a stable ordering, use the node number as a
|
|
// deciding factor.
|
|
return LHSNum < RHSNum;
|
|
}
|
|
|
|
|
|
/// CalcNodePriority - Calculate the maximal path from the node to the exit.
|
|
///
|
|
int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
|
|
int &Latency = Latencies[SU.NodeNum];
|
|
if (Latency != -1)
|
|
return Latency;
|
|
|
|
int MaxSuccLatency = 0;
|
|
for (std::set<SUnit*>::const_iterator I = SU.Succs.begin(),
|
|
E = SU.Succs.end(); I != E; ++I)
|
|
MaxSuccLatency = std::max(MaxSuccLatency, CalcLatency(**I));
|
|
|
|
for (std::set<SUnit*>::const_iterator I = SU.ChainSuccs.begin(),
|
|
E = SU.ChainSuccs.end(); I != E; ++I)
|
|
MaxSuccLatency = std::max(MaxSuccLatency, CalcLatency(**I));
|
|
|
|
return Latency = MaxSuccLatency + SU.Latency;
|
|
}
|
|
|
|
/// CalculatePriorities - Calculate priorities of all scheduling units.
|
|
void LatencyPriorityQueue::CalculatePriorities() {
|
|
Latencies.assign(SUnits->size(), -1);
|
|
NumNodesSolelyBlocking.assign(SUnits->size(), 0);
|
|
|
|
for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
|
|
CalcLatency((*SUnits)[i]);
|
|
}
|
|
|
|
/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
|
|
/// of SU, return it, otherwise return null.
|
|
static SUnit *getSingleUnscheduledPred(SUnit *SU) {
|
|
SUnit *OnlyAvailablePred = 0;
|
|
for (std::set<SUnit*>::const_iterator I = SU->Preds.begin(),
|
|
E = SU->Preds.end(); I != E; ++I)
|
|
if (!(*I)->isScheduled) {
|
|
// We found an available, but not scheduled, predecessor. If it's the
|
|
// only one we have found, keep track of it... otherwise give up.
|
|
if (OnlyAvailablePred && OnlyAvailablePred != *I)
|
|
return 0;
|
|
OnlyAvailablePred = *I;
|
|
}
|
|
|
|
for (std::set<SUnit*>::const_iterator I = SU->ChainSuccs.begin(),
|
|
E = SU->ChainSuccs.end(); I != E; ++I)
|
|
if (!(*I)->isScheduled) {
|
|
// We found an available, but not scheduled, predecessor. If it's the
|
|
// only one we have found, keep track of it... otherwise give up.
|
|
if (OnlyAvailablePred && OnlyAvailablePred != *I)
|
|
return 0;
|
|
OnlyAvailablePred = *I;
|
|
}
|
|
|
|
return OnlyAvailablePred;
|
|
}
|
|
|
|
void LatencyPriorityQueue::push_impl(SUnit *SU) {
|
|
// Look at all of the successors of this node. Count the number of nodes that
|
|
// this node is the sole unscheduled node for.
|
|
unsigned NumNodesBlocking = 0;
|
|
for (std::set<SUnit*>::const_iterator I = SU->Succs.begin(),
|
|
E = SU->Succs.end(); I != E; ++I)
|
|
if (getSingleUnscheduledPred(*I) == SU)
|
|
++NumNodesBlocking;
|
|
|
|
for (std::set<SUnit*>::const_iterator I = SU->ChainSuccs.begin(),
|
|
E = SU->ChainSuccs.end(); I != E; ++I)
|
|
if (getSingleUnscheduledPred(*I) == SU)
|
|
++NumNodesBlocking;
|
|
|
|
Queue.push(SU);
|
|
}
|
|
|
|
|
|
// ScheduledNode - As nodes are scheduled, we look to see if there are any
|
|
// successor nodes that have a single unscheduled predecessor. If so, that
|
|
// single predecessor has a higher priority, since scheduling it will make
|
|
// the node available.
|
|
void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
|
|
for (std::set<SUnit*>::const_iterator I = SU->Succs.begin(),
|
|
E = SU->Succs.end(); I != E; ++I)
|
|
AdjustPriorityOfUnscheduledPreds(*I);
|
|
|
|
for (std::set<SUnit*>::const_iterator I = SU->ChainSuccs.begin(),
|
|
E = SU->ChainSuccs.end(); I != E; ++I)
|
|
AdjustPriorityOfUnscheduledPreds(*I);
|
|
}
|
|
|
|
/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
|
|
/// scheduled. If SU is not itself available, then there is at least one
|
|
/// predecessor node that has not been scheduled yet. If SU has exactly ONE
|
|
/// unscheduled predecessor, we want to increase its priority: it getting
|
|
/// scheduled will make this node available, so it is better than some other
|
|
/// node of the same priority that will not make a node available.
|
|
void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
|
|
if (SU->isAvailable) return; // All preds scheduled.
|
|
|
|
SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
|
|
if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
|
|
|
|
// Okay, we found a single predecessor that is available, but not scheduled.
|
|
// Since it is available, it must be in the priority queue. First remove it.
|
|
RemoveFromPriorityQueue(OnlyAvailablePred);
|
|
|
|
// Reinsert the node into the priority queue, which recomputes its
|
|
// NumNodesSolelyBlocking value.
|
|
push(OnlyAvailablePred);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public Constructor Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG,
|
|
MachineBasicBlock *BB) {
|
|
return new ScheduleDAGList(DAG, BB, DAG.getTarget(), true,
|
|
new RegReductionPriorityQueue(),
|
|
new HazardRecognizer());
|
|
}
|
|
|
|
/// createTDListDAGScheduler - This creates a top-down list scheduler with the
|
|
/// specified hazard recognizer.
|
|
ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAG &DAG,
|
|
MachineBasicBlock *BB,
|
|
HazardRecognizer *HR) {
|
|
return new ScheduleDAGList(DAG, BB, DAG.getTarget(), false,
|
|
new LatencyPriorityQueue(),
|
|
HR);
|
|
}
|