2005-04-22 06:32:48 +00:00

776 lines
24 KiB
C++

//===-- MSchedGraph.cpp - Scheduling Graph ----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// A graph class for dependencies. This graph only contains true, anti, and
// output data dependencies for a given MachineBasicBlock. Dependencies
// across iterations are also computed. Unless data dependence analysis
// is provided, a conservative approach of adding dependencies between all
// loads and stores is taken.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ModuloSched"
#include "MSchedGraph.h"
#include "../SparcV9RegisterInfo.h"
#include "../MachineCodeForInstruction.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include <cstdlib>
#include <algorithm>
#include <set>
using namespace llvm;
//MSchedGraphNode constructor
MSchedGraphNode::MSchedGraphNode(const MachineInstr* inst,
MSchedGraph *graph, unsigned idx,
unsigned late, bool isBranch)
: Inst(inst), Parent(graph), index(idx), latency(late),
isBranchInstr(isBranch) {
//Add to the graph
graph->addNode(inst, this);
}
//MSchedGraphNode copy constructor
MSchedGraphNode::MSchedGraphNode(const MSchedGraphNode &N)
: Predecessors(N.Predecessors), Successors(N.Successors) {
Inst = N.Inst;
Parent = N.Parent;
index = N.index;
latency = N.latency;
isBranchInstr = N.isBranchInstr;
}
//Print the node (instruction and latency)
void MSchedGraphNode::print(std::ostream &os) const {
os << "MSchedGraphNode: Inst=" << *Inst << ", latency= " << latency << "\n";
}
//Get the edge from a predecessor to this node
MSchedGraphEdge MSchedGraphNode::getInEdge(MSchedGraphNode *pred) {
//Loop over all the successors of our predecessor
//return the edge the corresponds to this in edge
for (MSchedGraphNode::succ_iterator I = pred->succ_begin(),
E = pred->succ_end(); I != E; ++I) {
if (*I == this)
return I.getEdge();
}
assert(0 && "Should have found edge between this node and its predecessor!");
abort();
}
//Get the iteration difference for the edge from this node to its successor
unsigned MSchedGraphNode::getIteDiff(MSchedGraphNode *succ) {
for(std::vector<MSchedGraphEdge>::iterator I = Successors.begin(),
E = Successors.end();
I != E; ++I) {
if(I->getDest() == succ)
return I->getIteDiff();
}
return 0;
}
//Get the index into the vector of edges for the edge from pred to this node
unsigned MSchedGraphNode::getInEdgeNum(MSchedGraphNode *pred) {
//Loop over all the successors of our predecessor
//return the edge the corresponds to this in edge
int count = 0;
for(MSchedGraphNode::succ_iterator I = pred->succ_begin(),
E = pred->succ_end();
I != E; ++I) {
if(*I == this)
return count;
count++;
}
assert(0 && "Should have found edge between this node and its predecessor!");
abort();
}
//Determine if succ is a successor of this node
bool MSchedGraphNode::isSuccessor(MSchedGraphNode *succ) {
for(succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
if(*I == succ)
return true;
return false;
}
//Dtermine if pred is a predecessor of this node
bool MSchedGraphNode::isPredecessor(MSchedGraphNode *pred) {
if(std::find( Predecessors.begin(), Predecessors.end(),
pred) != Predecessors.end())
return true;
else
return false;
}
//Add a node to the graph
void MSchedGraph::addNode(const MachineInstr *MI,
MSchedGraphNode *node) {
//Make sure node does not already exist
assert(GraphMap.find(MI) == GraphMap.end()
&& "New MSchedGraphNode already exists for this instruction");
GraphMap[MI] = node;
}
//Delete a node to the graph
void MSchedGraph::deleteNode(MSchedGraphNode *node) {
//Delete the edge to this node from all predecessors
while(node->pred_size() > 0) {
//DEBUG(std::cerr << "Delete edge from: " << **P << " to " << *node << "\n");
MSchedGraphNode *pred = *(node->pred_begin());
pred->deleteSuccessor(node);
}
//Remove this node from the graph
GraphMap.erase(node->getInst());
}
//Create a graph for a machine block. The ignoreInstrs map is so that
//we ignore instructions associated to the index variable since this
//is a special case in Modulo Scheduling. We only want to deal with
//the body of the loop.
MSchedGraph::MSchedGraph(const MachineBasicBlock *bb,
const TargetMachine &targ,
std::map<const MachineInstr*, unsigned> &ignoreInstrs,
DependenceAnalyzer &DA,
std::map<MachineInstr*, Instruction*> &machineTollvm)
: BB(bb), Target(targ) {
//Make sure BB is not null,
assert(BB != NULL && "Basic Block is null");
//DEBUG(std::cerr << "Constructing graph for " << bb << "\n");
//Create nodes and edges for this BB
buildNodesAndEdges(ignoreInstrs, DA, machineTollvm);
//Experimental!
//addBranchEdges();
}
//Copies the graph and keeps a map from old to new nodes
MSchedGraph::MSchedGraph(const MSchedGraph &G,
std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes)
: BB(G.BB), Target(G.Target) {
std::map<MSchedGraphNode*, MSchedGraphNode*> oldToNew;
//Copy all nodes
for(MSchedGraph::const_iterator N = G.GraphMap.begin(),
NE = G.GraphMap.end(); N != NE; ++N) {
MSchedGraphNode *newNode = new MSchedGraphNode(*(N->second));
oldToNew[&*(N->second)] = newNode;
newNodes[newNode] = &*(N->second);
GraphMap[&*(N->first)] = newNode;
}
//Loop over nodes and update edges to point to new nodes
for(MSchedGraph::iterator N = GraphMap.begin(), NE = GraphMap.end();
N != NE; ++N) {
//Get the node we are dealing with
MSchedGraphNode *node = &*(N->second);
node->setParent(this);
//Loop over nodes successors and predecessors and update to the new nodes
for(unsigned i = 0; i < node->pred_size(); ++i) {
node->setPredecessor(i, oldToNew[node->getPredecessor(i)]);
}
for(unsigned i = 0; i < node->succ_size(); ++i) {
MSchedGraphEdge *edge = node->getSuccessor(i);
MSchedGraphNode *oldDest = edge->getDest();
edge->setDest(oldToNew[oldDest]);
}
}
}
//Deconstructor, deletes all nodes in the graph
MSchedGraph::~MSchedGraph () {
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end();
I != E; ++I)
delete I->second;
}
//Print out graph
void MSchedGraph::print(std::ostream &os) const {
for(MSchedGraph::const_iterator N = GraphMap.begin(), NE = GraphMap.end();
N != NE; ++N) {
//Get the node we are dealing with
MSchedGraphNode *node = &*(N->second);
os << "Node Start\n";
node->print(os);
os << "Successors:\n";
//print successors
for(unsigned i = 0; i < node->succ_size(); ++i) {
MSchedGraphEdge *edge = node->getSuccessor(i);
MSchedGraphNode *oldDest = edge->getDest();
oldDest->print(os);
}
os << "Node End\n";
}
}
//Calculate total delay
int MSchedGraph::totalDelay() {
int sum = 0;
for(MSchedGraph::const_iterator N = GraphMap.begin(), NE = GraphMap.end();
N != NE; ++N) {
//Get the node we are dealing with
MSchedGraphNode *node = &*(N->second);
sum += node->getLatency();
}
return sum;
}
//Experimental code to add edges from the branch to all nodes dependent upon it.
void hasPath(MSchedGraphNode *node, std::set<MSchedGraphNode*> &visited,
std::set<MSchedGraphNode*> &branches, MSchedGraphNode *startNode,
std::set<std::pair<MSchedGraphNode*,MSchedGraphNode*> > &newEdges ) {
visited.insert(node);
DEBUG(std::cerr << "Visiting: " << *node << "\n");
//Loop over successors
for(unsigned i = 0; i < node->succ_size(); ++i) {
MSchedGraphEdge *edge = node->getSuccessor(i);
MSchedGraphNode *dest = edge->getDest();
if(branches.count(dest))
newEdges.insert(std::make_pair(dest, startNode));
//only visit if we have not already
else if(!visited.count(dest)) {
if(edge->getIteDiff() == 0)
hasPath(dest, visited, branches, startNode, newEdges);}
}
}
//Experimental code to add edges from the branch to all nodes dependent upon it.
void MSchedGraph::addBranchEdges() {
std::set<MSchedGraphNode*> branches;
std::set<MSchedGraphNode*> nodes;
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end();
I != E; ++I) {
if(I->second->isBranch())
if(I->second->hasPredecessors())
branches.insert(I->second);
}
//See if there is a path first instruction to the branches, if so, add an
//iteration dependence between that node and the branch
std::set<std::pair<MSchedGraphNode*, MSchedGraphNode*> > newEdges;
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end();
I != E; ++I) {
std::set<MSchedGraphNode*> visited;
hasPath((I->second), visited, branches, (I->second), newEdges);
}
//Spit out all edges we are going to add
unsigned min = GraphMap.size();
if(newEdges.size() == 1) {
((newEdges.begin())->first)->addOutEdge(((newEdges.begin())->second),
MSchedGraphEdge::BranchDep,
MSchedGraphEdge::NonDataDep, 1);
}
else {
unsigned count = 0;
MSchedGraphNode *start;
MSchedGraphNode *end;
for(std::set<std::pair<MSchedGraphNode*, MSchedGraphNode*> >::iterator I = newEdges.begin(), E = newEdges.end(); I != E; ++I) {
DEBUG(std::cerr << "Branch Edge from: " << *(I->first) << " to " << *(I->second) << "\n");
// if(I->second->getIndex() <= min) {
start = I->first;
end = I->second;
//min = I->second->getIndex();
//}
start->addOutEdge(end,
MSchedGraphEdge::BranchDep,
MSchedGraphEdge::NonDataDep, 1);
}
}
}
//Add edges between the nodes
void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ignoreInstrs,
DependenceAnalyzer &DA,
std::map<MachineInstr*, Instruction*> &machineTollvm) {
//Get Machine target information for calculating latency
const TargetInstrInfo *MTI = Target.getInstrInfo();
std::vector<MSchedGraphNode*> memInstructions;
std::map<int, std::vector<OpIndexNodePair> > regNumtoNodeMap;
std::map<const Value*, std::vector<OpIndexNodePair> > valuetoNodeMap;
//Save PHI instructions to deal with later
std::vector<const MachineInstr*> phiInstrs;
unsigned index = 0;
//Loop over instructions in MBB and add nodes and edges
for (MachineBasicBlock::const_iterator MI = BB->begin(), e = BB->end();
MI != e; ++MI) {
//Ignore indvar instructions
if(ignoreInstrs.count(MI)) {
++index;
continue;
}
//Get each instruction of machine basic block, get the delay
//using the op code, create a new node for it, and add to the
//graph.
MachineOpCode opCode = MI->getOpcode();
int delay;
#if 0 // FIXME: LOOK INTO THIS
//Check if subsequent instructions can be issued before
//the result is ready, if so use min delay.
if(MTI->hasResultInterlock(MIopCode))
delay = MTI->minLatency(MIopCode);
else
#endif
//Get delay
delay = MTI->maxLatency(opCode);
//Create new node for this machine instruction and add to the graph.
//Create only if not a nop
if(MTI->isNop(opCode))
continue;
//Sparc BE does not use PHI opcode, so assert on this case
assert(opCode != TargetInstrInfo::PHI && "Did not expect PHI opcode");
bool isBranch = false;
//We want to flag the branch node to treat it special
if(MTI->isBranch(opCode))
isBranch = true;
//Node is created and added to the graph automatically
MSchedGraphNode *node = new MSchedGraphNode(MI, this, index, delay,
isBranch);
DEBUG(std::cerr << "Created Node: " << *node << "\n");
//Check OpCode to keep track of memory operations to add memory
//dependencies later.
if(MTI->isLoad(opCode) || MTI->isStore(opCode))
memInstructions.push_back(node);
//Loop over all operands, and put them into the register number to
//graph node map for determining dependencies
//If an operands is a use/def, we have an anti dependence to itself
for(unsigned i=0; i < MI->getNumOperands(); ++i) {
//Get Operand
const MachineOperand &mOp = MI->getOperand(i);
//Check if it has an allocated register
if(mOp.hasAllocatedReg()) {
int regNum = mOp.getReg();
if(regNum != SparcV9::g0) {
//Put into our map
regNumtoNodeMap[regNum].push_back(std::make_pair(i, node));
}
continue;
}
//Add virtual registers dependencies
//Check if any exist in the value map already and create dependencies
//between them.
if(mOp.getType() == MachineOperand::MO_VirtualRegister
|| mOp.getType() == MachineOperand::MO_CCRegister) {
//Make sure virtual register value is not null
assert((mOp.getVRegValue() != NULL) && "Null value is defined");
//Check if this is a read operation in a phi node, if so DO NOT PROCESS
if(mOp.isUse() && (opCode == TargetInstrInfo::PHI)) {
DEBUG(std::cerr << "Read Operation in a PHI node\n");
continue;
}
if (const Value* srcI = mOp.getVRegValue()) {
//Find value in the map
std::map<const Value*, std::vector<OpIndexNodePair> >::iterator V
= valuetoNodeMap.find(srcI);
//If there is something in the map already, add edges from
//those instructions
//to this one we are processing
if(V != valuetoNodeMap.end()) {
addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(), phiInstrs);
//Add to value map
V->second.push_back(std::make_pair(i,node));
}
//Otherwise put it in the map
else
//Put into value map
valuetoNodeMap[mOp.getVRegValue()].push_back(std::make_pair(i, node));
}
}
}
++index;
}
//Loop over LLVM BB, examine phi instructions, and add them to our
//phiInstr list to process
const BasicBlock *llvm_bb = BB->getBasicBlock();
for(BasicBlock::const_iterator I = llvm_bb->begin(), E = llvm_bb->end();
I != E; ++I) {
if(const PHINode *PN = dyn_cast<PHINode>(I)) {
MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(PN);
for (unsigned j = 0; j < tempMvec.size(); j++) {
if(!ignoreInstrs.count(tempMvec[j])) {
DEBUG(std::cerr << "Inserting phi instr into map: " << *tempMvec[j] << "\n");
phiInstrs.push_back((MachineInstr*) tempMvec[j]);
}
}
}
}
addMemEdges(memInstructions, DA, machineTollvm);
addMachRegEdges(regNumtoNodeMap);
//Finally deal with PHI Nodes and Value*
for(std::vector<const MachineInstr*>::iterator I = phiInstrs.begin(),
E = phiInstrs.end(); I != E; ++I) {
//Get Node for this instruction
std::map<const MachineInstr*, MSchedGraphNode*>::iterator X;
X = find(*I);
if(X == GraphMap.end())
continue;
MSchedGraphNode *node = X->second;
DEBUG(std::cerr << "Adding ite diff edges for node: " << *node << "\n");
//Loop over operands for this instruction and add value edges
for(unsigned i=0; i < (*I)->getNumOperands(); ++i) {
//Get Operand
const MachineOperand &mOp = (*I)->getOperand(i);
if((mOp.getType() == MachineOperand::MO_VirtualRegister
|| mOp.getType() == MachineOperand::MO_CCRegister) && mOp.isUse()) {
//find the value in the map
if (const Value* srcI = mOp.getVRegValue()) {
//Find value in the map
std::map<const Value*, std::vector<OpIndexNodePair> >::iterator V
= valuetoNodeMap.find(srcI);
//If there is something in the map already, add edges from
//those instructions
//to this one we are processing
if(V != valuetoNodeMap.end()) {
addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(),
phiInstrs, 1);
}
}
}
}
}
}
//Add dependencies for Value*s
void MSchedGraph::addValueEdges(std::vector<OpIndexNodePair> &NodesInMap,
MSchedGraphNode *destNode, bool nodeIsUse,
bool nodeIsDef, std::vector<const MachineInstr*> &phiInstrs, int diff) {
for(std::vector<OpIndexNodePair>::iterator I = NodesInMap.begin(),
E = NodesInMap.end(); I != E; ++I) {
//Get node in vectors machine operand that is the same value as node
MSchedGraphNode *srcNode = I->second;
MachineOperand mOp = srcNode->getInst()->getOperand(I->first);
if(diff > 0)
if(std::find(phiInstrs.begin(), phiInstrs.end(), srcNode->getInst()) == phiInstrs.end())
continue;
//Node is a Def, so add output dep.
if(nodeIsDef) {
if(mOp.isUse()) {
DEBUG(std::cerr << "Edge from " << *srcNode << " to " << *destNode << " (itediff=" << diff << ", type=anti)\n");
srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep,
MSchedGraphEdge::AntiDep, diff);
}
if(mOp.isDef()) {
DEBUG(std::cerr << "Edge from " << *srcNode << " to " << *destNode << " (itediff=" << diff << ", type=output)\n");
srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep,
MSchedGraphEdge::OutputDep, diff);
}
}
if(nodeIsUse) {
if(mOp.isDef()) {
DEBUG(std::cerr << "Edge from " << *srcNode << " to " << *destNode << " (itediff=" << diff << ", type=true)\n");
srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep,
MSchedGraphEdge::TrueDep, diff);
}
}
}
}
//Add dependencies for machine registers across iterations
void MSchedGraph::addMachRegEdges(std::map<int, std::vector<OpIndexNodePair> >& regNumtoNodeMap) {
//Loop over all machine registers in the map, and add dependencies
//between the instructions that use it
typedef std::map<int, std::vector<OpIndexNodePair> > regNodeMap;
for(regNodeMap::iterator I = regNumtoNodeMap.begin();
I != regNumtoNodeMap.end(); ++I) {
//Get the register number
int regNum = (*I).first;
//Get Vector of nodes that use this register
std::vector<OpIndexNodePair> Nodes = (*I).second;
//Loop over nodes and determine the dependence between the other
//nodes in the vector
for(unsigned i =0; i < Nodes.size(); ++i) {
//Get src node operator index that uses this machine register
int srcOpIndex = Nodes[i].first;
//Get the actual src Node
MSchedGraphNode *srcNode = Nodes[i].second;
//Get Operand
const MachineOperand &srcMOp = srcNode->getInst()->getOperand(srcOpIndex);
bool srcIsUseandDef = srcMOp.isDef() && srcMOp.isUse();
bool srcIsUse = srcMOp.isUse() && !srcMOp.isDef();
//Look at all instructions after this in execution order
for(unsigned j=i+1; j < Nodes.size(); ++j) {
//Sink node is a write
if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) {
//Src only uses the register (read)
if(srcIsUse)
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::AntiDep);
else if(srcIsUseandDef) {
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::AntiDep);
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::OutputDep);
}
else
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::OutputDep);
}
//Dest node is a read
else {
if(!srcIsUse || srcIsUseandDef)
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::TrueDep);
}
}
//Look at all the instructions before this one since machine registers
//could live across iterations.
for(unsigned j = 0; j < i; ++j) {
//Sink node is a write
if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) {
//Src only uses the register (read)
if(srcIsUse)
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::AntiDep, 1);
else if(srcIsUseandDef) {
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::AntiDep, 1);
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::OutputDep, 1);
}
else
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::OutputDep, 1);
}
//Dest node is a read
else {
if(!srcIsUse || srcIsUseandDef)
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::TrueDep,1 );
}
}
}
}
}
//Add edges between all loads and stores
//Can be less strict with alias analysis and data dependence analysis.
void MSchedGraph::addMemEdges(const std::vector<MSchedGraphNode*>& memInst,
DependenceAnalyzer &DA,
std::map<MachineInstr*, Instruction*> &machineTollvm) {
//Get Target machine instruction info
const TargetInstrInfo *TMI = Target.getInstrInfo();
//Loop over all memory instructions in the vector
//Knowing that they are in execution, add true, anti, and output dependencies
for (unsigned srcIndex = 0; srcIndex < memInst.size(); ++srcIndex) {
MachineInstr *srcInst = (MachineInstr*) memInst[srcIndex]->getInst();
//Get the machine opCode to determine type of memory instruction
MachineOpCode srcNodeOpCode = srcInst->getOpcode();
//All instructions after this one in execution order have an
//iteration delay of 0
for(unsigned destIndex = 0; destIndex < memInst.size(); ++destIndex) {
//No self loops
if(destIndex == srcIndex)
continue;
MachineInstr *destInst = (MachineInstr*) memInst[destIndex]->getInst();
DEBUG(std::cerr << "MInst1: " << *srcInst << "\n");
DEBUG(std::cerr << "MInst2: " << *destInst << "\n");
//Assuming instructions without corresponding llvm instructions
//are from constant pools.
if (!machineTollvm.count(srcInst) || !machineTollvm.count(destInst))
continue;
bool useDepAnalyzer = true;
//Some machine loads and stores are generated by casts, so be
//conservative and always add deps
Instruction *srcLLVM = machineTollvm[srcInst];
Instruction *destLLVM = machineTollvm[destInst];
if(!isa<LoadInst>(srcLLVM)
&& !isa<StoreInst>(srcLLVM)) {
if(isa<BinaryOperator>(srcLLVM)) {
if(isa<ConstantFP>(srcLLVM->getOperand(0)) || isa<ConstantFP>(srcLLVM->getOperand(1)))
continue;
}
useDepAnalyzer = false;
}
if(!isa<LoadInst>(destLLVM)
&& !isa<StoreInst>(destLLVM)) {
if(isa<BinaryOperator>(destLLVM)) {
if(isa<ConstantFP>(destLLVM->getOperand(0)) || isa<ConstantFP>(destLLVM->getOperand(1)))
continue;
}
useDepAnalyzer = false;
}
//Use dep analysis when we have corresponding llvm loads/stores
if(useDepAnalyzer) {
bool srcBeforeDest = true;
if(destIndex < srcIndex)
srcBeforeDest = false;
DependenceResult dr = DA.getDependenceInfo(machineTollvm[srcInst],
machineTollvm[destInst],
srcBeforeDest);
for(std::vector<Dependence>::iterator d = dr.dependences.begin(),
de = dr.dependences.end(); d != de; ++d) {
//Add edge from load to store
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
d->getDepType(), d->getIteDiff());
}
}
//Otherwise, we can not do any further analysis and must make a dependence
else {
//Get the machine opCode to determine type of memory instruction
MachineOpCode destNodeOpCode = destInst->getOpcode();
//Get the Value* that we are reading from the load, always the first op
const MachineOperand &mOp = srcInst->getOperand(0);
const MachineOperand &mOp2 = destInst->getOperand(0);
if(mOp.hasAllocatedReg())
if(mOp.getReg() == SparcV9::g0)
continue;
if(mOp2.hasAllocatedReg())
if(mOp2.getReg() == SparcV9::g0)
continue;
DEBUG(std::cerr << "Adding dependence for machine instructions\n");
//Load-Store deps
if(TMI->isLoad(srcNodeOpCode)) {
if(TMI->isStore(destNodeOpCode))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::AntiDep, 0);
}
else if(TMI->isStore(srcNodeOpCode)) {
if(TMI->isStore(destNodeOpCode))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::OutputDep, 0);
else
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::TrueDep, 0);
}
}
}
}
}