mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	Ordered memory operations are more constrained than volatile loads and stores because they must be ordered with respect to all other memory operations. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162861 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1035 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1035 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements the ScheduleDAGInstrs class, which implements re-scheduling
 | 
						|
// of MachineInstrs.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "sched-instrs"
 | 
						|
#include "llvm/Operator.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/CodeGen/RegisterPressure.h"
 | 
						|
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
 | 
						|
#include "llvm/MC/MCInstrItineraries.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
 | 
						|
    cl::ZeroOrMore, cl::init(false),
 | 
						|
    cl::desc("Enable use of AA during MI GAD construction"));
 | 
						|
 | 
						|
ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
 | 
						|
                                     const MachineLoopInfo &mli,
 | 
						|
                                     const MachineDominatorTree &mdt,
 | 
						|
                                     bool IsPostRAFlag,
 | 
						|
                                     LiveIntervals *lis)
 | 
						|
  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
 | 
						|
    InstrItins(mf.getTarget().getInstrItineraryData()), LIS(lis),
 | 
						|
    IsPostRA(IsPostRAFlag), UnitLatencies(false), CanHandleTerminators(false),
 | 
						|
    LoopRegs(MDT), FirstDbgValue(0) {
 | 
						|
  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
 | 
						|
  DbgValues.clear();
 | 
						|
  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
 | 
						|
         "Virtual registers must be removed prior to PostRA scheduling");
 | 
						|
}
 | 
						|
 | 
						|
/// getUnderlyingObjectFromInt - This is the function that does the work of
 | 
						|
/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
 | 
						|
static const Value *getUnderlyingObjectFromInt(const Value *V) {
 | 
						|
  do {
 | 
						|
    if (const Operator *U = dyn_cast<Operator>(V)) {
 | 
						|
      // If we find a ptrtoint, we can transfer control back to the
 | 
						|
      // regular getUnderlyingObjectFromInt.
 | 
						|
      if (U->getOpcode() == Instruction::PtrToInt)
 | 
						|
        return U->getOperand(0);
 | 
						|
      // If we find an add of a constant or a multiplied value, it's
 | 
						|
      // likely that the other operand will lead us to the base
 | 
						|
      // object. We don't have to worry about the case where the
 | 
						|
      // object address is somehow being computed by the multiply,
 | 
						|
      // because our callers only care when the result is an
 | 
						|
      // identifibale object.
 | 
						|
      if (U->getOpcode() != Instruction::Add ||
 | 
						|
          (!isa<ConstantInt>(U->getOperand(1)) &&
 | 
						|
           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
 | 
						|
        return V;
 | 
						|
      V = U->getOperand(0);
 | 
						|
    } else {
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
 | 
						|
  } while (1);
 | 
						|
}
 | 
						|
 | 
						|
/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
 | 
						|
/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
 | 
						|
static const Value *getUnderlyingObject(const Value *V) {
 | 
						|
  // First just call Value::getUnderlyingObject to let it do what it does.
 | 
						|
  do {
 | 
						|
    V = GetUnderlyingObject(V);
 | 
						|
    // If it found an inttoptr, use special code to continue climing.
 | 
						|
    if (Operator::getOpcode(V) != Instruction::IntToPtr)
 | 
						|
      break;
 | 
						|
    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
 | 
						|
    // If that succeeded in finding a pointer, continue the search.
 | 
						|
    if (!O->getType()->isPointerTy())
 | 
						|
      break;
 | 
						|
    V = O;
 | 
						|
  } while (1);
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// getUnderlyingObjectForInstr - If this machine instr has memory reference
 | 
						|
/// information and it can be tracked to a normal reference to a known
 | 
						|
/// object, return the Value for that object. Otherwise return null.
 | 
						|
static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
 | 
						|
                                                const MachineFrameInfo *MFI,
 | 
						|
                                                bool &MayAlias) {
 | 
						|
  MayAlias = true;
 | 
						|
  if (!MI->hasOneMemOperand() ||
 | 
						|
      !(*MI->memoperands_begin())->getValue() ||
 | 
						|
      (*MI->memoperands_begin())->isVolatile())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  const Value *V = (*MI->memoperands_begin())->getValue();
 | 
						|
  if (!V)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  V = getUnderlyingObject(V);
 | 
						|
  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
 | 
						|
    // For now, ignore PseudoSourceValues which may alias LLVM IR values
 | 
						|
    // because the code that uses this function has no way to cope with
 | 
						|
    // such aliases.
 | 
						|
    if (PSV->isAliased(MFI))
 | 
						|
      return 0;
 | 
						|
 | 
						|
    MayAlias = PSV->mayAlias(MFI);
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isIdentifiedObject(V))
 | 
						|
    return V;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
 | 
						|
  BB = bb;
 | 
						|
  LoopRegs.Deps.clear();
 | 
						|
  if (MachineLoop *ML = MLI.getLoopFor(BB))
 | 
						|
    if (BB == ML->getLoopLatch())
 | 
						|
      LoopRegs.VisitLoop(ML);
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::finishBlock() {
 | 
						|
  // Subclasses should no longer refer to the old block.
 | 
						|
  BB = 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize the map with the number of registers.
 | 
						|
void Reg2SUnitsMap::setRegLimit(unsigned Limit) {
 | 
						|
  PhysRegSet.setUniverse(Limit);
 | 
						|
  SUnits.resize(Limit);
 | 
						|
}
 | 
						|
 | 
						|
/// Clear the map without deallocating storage.
 | 
						|
void Reg2SUnitsMap::clear() {
 | 
						|
  for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
 | 
						|
    SUnits[*I].clear();
 | 
						|
  }
 | 
						|
  PhysRegSet.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize the DAG and common scheduler state for the current scheduling
 | 
						|
/// region. This does not actually create the DAG, only clears it. The
 | 
						|
/// scheduling driver may call BuildSchedGraph multiple times per scheduling
 | 
						|
/// region.
 | 
						|
void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
 | 
						|
                                    MachineBasicBlock::iterator begin,
 | 
						|
                                    MachineBasicBlock::iterator end,
 | 
						|
                                    unsigned endcount) {
 | 
						|
  assert(bb == BB && "startBlock should set BB");
 | 
						|
  RegionBegin = begin;
 | 
						|
  RegionEnd = end;
 | 
						|
  EndIndex = endcount;
 | 
						|
  MISUnitMap.clear();
 | 
						|
 | 
						|
  // Check to see if the scheduler cares about latencies.
 | 
						|
  UnitLatencies = forceUnitLatencies();
 | 
						|
 | 
						|
  ScheduleDAG::clearDAG();
 | 
						|
}
 | 
						|
 | 
						|
/// Close the current scheduling region. Don't clear any state in case the
 | 
						|
/// driver wants to refer to the previous scheduling region.
 | 
						|
void ScheduleDAGInstrs::exitRegion() {
 | 
						|
  // Nothing to do.
 | 
						|
}
 | 
						|
 | 
						|
/// addSchedBarrierDeps - Add dependencies from instructions in the current
 | 
						|
/// list of instructions being scheduled to scheduling barrier by adding
 | 
						|
/// the exit SU to the register defs and use list. This is because we want to
 | 
						|
/// make sure instructions which define registers that are either used by
 | 
						|
/// the terminator or are live-out are properly scheduled. This is
 | 
						|
/// especially important when the definition latency of the return value(s)
 | 
						|
/// are too high to be hidden by the branch or when the liveout registers
 | 
						|
/// used by instructions in the fallthrough block.
 | 
						|
void ScheduleDAGInstrs::addSchedBarrierDeps() {
 | 
						|
  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
 | 
						|
  ExitSU.setInstr(ExitMI);
 | 
						|
  bool AllDepKnown = ExitMI &&
 | 
						|
    (ExitMI->isCall() || ExitMI->isBarrier());
 | 
						|
  if (ExitMI && AllDepKnown) {
 | 
						|
    // If it's a call or a barrier, add dependencies on the defs and uses of
 | 
						|
    // instruction.
 | 
						|
    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
 | 
						|
      const MachineOperand &MO = ExitMI->getOperand(i);
 | 
						|
      if (!MO.isReg() || MO.isDef()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (Reg == 0) continue;
 | 
						|
 | 
						|
      if (TRI->isPhysicalRegister(Reg))
 | 
						|
        Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
 | 
						|
      else {
 | 
						|
        assert(!IsPostRA && "Virtual register encountered after regalloc.");
 | 
						|
        addVRegUseDeps(&ExitSU, i);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // For others, e.g. fallthrough, conditional branch, assume the exit
 | 
						|
    // uses all the registers that are livein to the successor blocks.
 | 
						|
    assert(Uses.empty() && "Uses in set before adding deps?");
 | 
						|
    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
 | 
						|
           SE = BB->succ_end(); SI != SE; ++SI)
 | 
						|
      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
 | 
						|
             E = (*SI)->livein_end(); I != E; ++I) {
 | 
						|
        unsigned Reg = *I;
 | 
						|
        if (!Uses.contains(Reg))
 | 
						|
          Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// MO is an operand of SU's instruction that defines a physical register. Add
 | 
						|
/// data dependencies from SU to any uses of the physical register.
 | 
						|
void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
 | 
						|
  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
 | 
						|
  assert(MO.isDef() && "expect physreg def");
 | 
						|
 | 
						|
  // Ask the target if address-backscheduling is desirable, and if so how much.
 | 
						|
  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
 | 
						|
  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
 | 
						|
  unsigned DataLatency = SU->Latency;
 | 
						|
 | 
						|
  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
 | 
						|
       Alias.isValid(); ++Alias) {
 | 
						|
    if (!Uses.contains(*Alias))
 | 
						|
      continue;
 | 
						|
    std::vector<PhysRegSUOper> &UseList = Uses[*Alias];
 | 
						|
    for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
 | 
						|
      SUnit *UseSU = UseList[i].SU;
 | 
						|
      if (UseSU == SU)
 | 
						|
        continue;
 | 
						|
      MachineInstr *UseMI = UseSU->getInstr();
 | 
						|
      int UseOp = UseList[i].OpIdx;
 | 
						|
      unsigned LDataLatency = DataLatency;
 | 
						|
      // Optionally add in a special extra latency for nodes that
 | 
						|
      // feed addresses.
 | 
						|
      // TODO: Perhaps we should get rid of
 | 
						|
      // SpecialAddressLatency and just move this into
 | 
						|
      // adjustSchedDependency for the targets that care about it.
 | 
						|
      if (SpecialAddressLatency != 0 && !UnitLatencies &&
 | 
						|
          UseSU != &ExitSU) {
 | 
						|
        const MCInstrDesc &UseMCID = UseMI->getDesc();
 | 
						|
        int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias);
 | 
						|
        assert(RegUseIndex >= 0 && "UseMI doesn't use register!");
 | 
						|
        if (RegUseIndex >= 0 &&
 | 
						|
            (UseMI->mayLoad() || UseMI->mayStore()) &&
 | 
						|
            (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
 | 
						|
            UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
 | 
						|
          LDataLatency += SpecialAddressLatency;
 | 
						|
      }
 | 
						|
      // Adjust the dependence latency using operand def/use
 | 
						|
      // information (if any), and then allow the target to
 | 
						|
      // perform its own adjustments.
 | 
						|
      SDep dep(SU, SDep::Data, LDataLatency, *Alias);
 | 
						|
      if (!UnitLatencies) {
 | 
						|
        unsigned Latency =
 | 
						|
          TII->computeOperandLatency(InstrItins, SU->getInstr(), OperIdx,
 | 
						|
                                     (UseOp < 0 ? 0 : UseMI), UseOp);
 | 
						|
        dep.setLatency(Latency);
 | 
						|
        unsigned MinLatency =
 | 
						|
          TII->computeOperandLatency(InstrItins, SU->getInstr(), OperIdx,
 | 
						|
                                     (UseOp < 0 ? 0 : UseMI), UseOp,
 | 
						|
                                     /*FindMin=*/true);
 | 
						|
        dep.setMinLatency(MinLatency);
 | 
						|
 | 
						|
        ST.adjustSchedDependency(SU, UseSU, dep);
 | 
						|
      }
 | 
						|
      UseSU->addPred(dep);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
 | 
						|
/// this SUnit to following instructions in the same scheduling region that
 | 
						|
/// depend the physical register referenced at OperIdx.
 | 
						|
void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
 | 
						|
  const MachineInstr *MI = SU->getInstr();
 | 
						|
  const MachineOperand &MO = MI->getOperand(OperIdx);
 | 
						|
 | 
						|
  // Optionally add output and anti dependencies. For anti
 | 
						|
  // dependencies we use a latency of 0 because for a multi-issue
 | 
						|
  // target we want to allow the defining instruction to issue
 | 
						|
  // in the same cycle as the using instruction.
 | 
						|
  // TODO: Using a latency of 1 here for output dependencies assumes
 | 
						|
  //       there's no cost for reusing registers.
 | 
						|
  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
 | 
						|
  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
 | 
						|
       Alias.isValid(); ++Alias) {
 | 
						|
    if (!Defs.contains(*Alias))
 | 
						|
      continue;
 | 
						|
    std::vector<PhysRegSUOper> &DefList = Defs[*Alias];
 | 
						|
    for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
 | 
						|
      SUnit *DefSU = DefList[i].SU;
 | 
						|
      if (DefSU == &ExitSU)
 | 
						|
        continue;
 | 
						|
      if (DefSU != SU &&
 | 
						|
          (Kind != SDep::Output || !MO.isDead() ||
 | 
						|
           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
 | 
						|
        if (Kind == SDep::Anti)
 | 
						|
          DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
 | 
						|
        else {
 | 
						|
          unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
 | 
						|
                                                 DefSU->getInstr());
 | 
						|
          DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MO.isDef()) {
 | 
						|
    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
 | 
						|
    // retrieve the existing SUnits list for this register's uses.
 | 
						|
    // Push this SUnit on the use list.
 | 
						|
    Uses[MO.getReg()].push_back(PhysRegSUOper(SU, OperIdx));
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    addPhysRegDataDeps(SU, OperIdx);
 | 
						|
 | 
						|
    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
 | 
						|
    // retrieve the existing SUnits list for this register's defs.
 | 
						|
    std::vector<PhysRegSUOper> &DefList = Defs[MO.getReg()];
 | 
						|
 | 
						|
    // If a def is going to wrap back around to the top of the loop,
 | 
						|
    // backschedule it.
 | 
						|
    if (!UnitLatencies && DefList.empty()) {
 | 
						|
      LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg());
 | 
						|
      if (I != LoopRegs.Deps.end()) {
 | 
						|
        const MachineOperand *UseMO = I->second.first;
 | 
						|
        unsigned Count = I->second.second;
 | 
						|
        const MachineInstr *UseMI = UseMO->getParent();
 | 
						|
        unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
 | 
						|
        const MCInstrDesc &UseMCID = UseMI->getDesc();
 | 
						|
        const TargetSubtargetInfo &ST =
 | 
						|
          TM.getSubtarget<TargetSubtargetInfo>();
 | 
						|
        unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
 | 
						|
        // TODO: If we knew the total depth of the region here, we could
 | 
						|
        // handle the case where the whole loop is inside the region but
 | 
						|
        // is large enough that the isScheduleHigh trick isn't needed.
 | 
						|
        if (UseMOIdx < UseMCID.getNumOperands()) {
 | 
						|
          // Currently, we only support scheduling regions consisting of
 | 
						|
          // single basic blocks. Check to see if the instruction is in
 | 
						|
          // the same region by checking to see if it has the same parent.
 | 
						|
          if (UseMI->getParent() != MI->getParent()) {
 | 
						|
            unsigned Latency = SU->Latency;
 | 
						|
            if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
 | 
						|
              Latency += SpecialAddressLatency;
 | 
						|
            // This is a wild guess as to the portion of the latency which
 | 
						|
            // will be overlapped by work done outside the current
 | 
						|
            // scheduling region.
 | 
						|
            Latency -= std::min(Latency, Count);
 | 
						|
            // Add the artificial edge.
 | 
						|
            ExitSU.addPred(SDep(SU, SDep::Order, Latency,
 | 
						|
                                /*Reg=*/0, /*isNormalMemory=*/false,
 | 
						|
                                /*isMustAlias=*/false,
 | 
						|
                                /*isArtificial=*/true));
 | 
						|
          } else if (SpecialAddressLatency > 0 &&
 | 
						|
                     UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
 | 
						|
            // The entire loop body is within the current scheduling region
 | 
						|
            // and the latency of this operation is assumed to be greater
 | 
						|
            // than the latency of the loop.
 | 
						|
            // TODO: Recursively mark data-edge predecessors as
 | 
						|
            //       isScheduleHigh too.
 | 
						|
            SU->isScheduleHigh = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        LoopRegs.Deps.erase(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // clear this register's use list
 | 
						|
    if (Uses.contains(MO.getReg()))
 | 
						|
      Uses[MO.getReg()].clear();
 | 
						|
 | 
						|
    if (!MO.isDead())
 | 
						|
      DefList.clear();
 | 
						|
 | 
						|
    // Calls will not be reordered because of chain dependencies (see
 | 
						|
    // below). Since call operands are dead, calls may continue to be added
 | 
						|
    // to the DefList making dependence checking quadratic in the size of
 | 
						|
    // the block. Instead, we leave only one call at the back of the
 | 
						|
    // DefList.
 | 
						|
    if (SU->isCall) {
 | 
						|
      while (!DefList.empty() && DefList.back().SU->isCall)
 | 
						|
        DefList.pop_back();
 | 
						|
    }
 | 
						|
    // Defs are pushed in the order they are visited and never reordered.
 | 
						|
    DefList.push_back(PhysRegSUOper(SU, OperIdx));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// addVRegDefDeps - Add register output and data dependencies from this SUnit
 | 
						|
/// to instructions that occur later in the same scheduling region if they read
 | 
						|
/// from or write to the virtual register defined at OperIdx.
 | 
						|
///
 | 
						|
/// TODO: Hoist loop induction variable increments. This has to be
 | 
						|
/// reevaluated. Generally, IV scheduling should be done before coalescing.
 | 
						|
void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
 | 
						|
  const MachineInstr *MI = SU->getInstr();
 | 
						|
  unsigned Reg = MI->getOperand(OperIdx).getReg();
 | 
						|
 | 
						|
  // Singly defined vregs do not have output/anti dependencies.
 | 
						|
  // The current operand is a def, so we have at least one.
 | 
						|
  // Check here if there are any others...
 | 
						|
  if (MRI.hasOneDef(Reg))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Add output dependence to the next nearest def of this vreg.
 | 
						|
  //
 | 
						|
  // Unless this definition is dead, the output dependence should be
 | 
						|
  // transitively redundant with antidependencies from this definition's
 | 
						|
  // uses. We're conservative for now until we have a way to guarantee the uses
 | 
						|
  // are not eliminated sometime during scheduling. The output dependence edge
 | 
						|
  // is also useful if output latency exceeds def-use latency.
 | 
						|
  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
 | 
						|
  if (DefI == VRegDefs.end())
 | 
						|
    VRegDefs.insert(VReg2SUnit(Reg, SU));
 | 
						|
  else {
 | 
						|
    SUnit *DefSU = DefI->SU;
 | 
						|
    if (DefSU != SU && DefSU != &ExitSU) {
 | 
						|
      unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
 | 
						|
                                                  DefSU->getInstr());
 | 
						|
      DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
 | 
						|
    }
 | 
						|
    DefI->SU = SU;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// addVRegUseDeps - Add a register data dependency if the instruction that
 | 
						|
/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
 | 
						|
/// register antidependency from this SUnit to instructions that occur later in
 | 
						|
/// the same scheduling region if they write the virtual register.
 | 
						|
///
 | 
						|
/// TODO: Handle ExitSU "uses" properly.
 | 
						|
void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
 | 
						|
  MachineInstr *MI = SU->getInstr();
 | 
						|
  unsigned Reg = MI->getOperand(OperIdx).getReg();
 | 
						|
 | 
						|
  // Lookup this operand's reaching definition.
 | 
						|
  assert(LIS && "vreg dependencies requires LiveIntervals");
 | 
						|
  LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
 | 
						|
  VNInfo *VNI = LRQ.valueIn();
 | 
						|
 | 
						|
  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
 | 
						|
  assert(VNI && "No value to read by operand");
 | 
						|
  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
 | 
						|
  // Phis and other noninstructions (after coalescing) have a NULL Def.
 | 
						|
  if (Def) {
 | 
						|
    SUnit *DefSU = getSUnit(Def);
 | 
						|
    if (DefSU) {
 | 
						|
      // The reaching Def lives within this scheduling region.
 | 
						|
      // Create a data dependence.
 | 
						|
      //
 | 
						|
      // TODO: Handle "special" address latencies cleanly.
 | 
						|
      SDep dep(DefSU, SDep::Data, DefSU->Latency, Reg);
 | 
						|
      if (!UnitLatencies) {
 | 
						|
        // Adjust the dependence latency using operand def/use information, then
 | 
						|
        // allow the target to perform its own adjustments.
 | 
						|
        int DefOp = Def->findRegisterDefOperandIdx(Reg);
 | 
						|
        unsigned Latency =
 | 
						|
          TII->computeOperandLatency(InstrItins, Def, DefOp, MI, OperIdx);
 | 
						|
        dep.setLatency(Latency);
 | 
						|
        unsigned MinLatency =
 | 
						|
          TII->computeOperandLatency(InstrItins, Def, DefOp, MI, OperIdx,
 | 
						|
                                     /*FindMin=*/true);
 | 
						|
        dep.setMinLatency(MinLatency);
 | 
						|
 | 
						|
        const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
 | 
						|
        ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
 | 
						|
      }
 | 
						|
      SU->addPred(dep);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add antidependence to the following def of the vreg it uses.
 | 
						|
  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
 | 
						|
  if (DefI != VRegDefs.end() && DefI->SU != SU)
 | 
						|
    DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg));
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if MI is an instruction we are unable to reason about
 | 
						|
/// (like a call or something with unmodeled side effects).
 | 
						|
static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
 | 
						|
  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
 | 
						|
      (MI->hasOrderedMemoryRef() &&
 | 
						|
       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// This MI might have either incomplete info, or known to be unsafe
 | 
						|
// to deal with (i.e. volatile object).
 | 
						|
static inline bool isUnsafeMemoryObject(MachineInstr *MI,
 | 
						|
                                        const MachineFrameInfo *MFI) {
 | 
						|
  if (!MI || MI->memoperands_empty())
 | 
						|
    return true;
 | 
						|
  // We purposefully do no check for hasOneMemOperand() here
 | 
						|
  // in hope to trigger an assert downstream in order to
 | 
						|
  // finish implementation.
 | 
						|
  if ((*MI->memoperands_begin())->isVolatile() ||
 | 
						|
       MI->hasUnmodeledSideEffects())
 | 
						|
    return true;
 | 
						|
 | 
						|
  const Value *V = (*MI->memoperands_begin())->getValue();
 | 
						|
  if (!V)
 | 
						|
    return true;
 | 
						|
 | 
						|
  V = getUnderlyingObject(V);
 | 
						|
  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
 | 
						|
    // Similarly to getUnderlyingObjectForInstr:
 | 
						|
    // For now, ignore PseudoSourceValues which may alias LLVM IR values
 | 
						|
    // because the code that uses this function has no way to cope with
 | 
						|
    // such aliases.
 | 
						|
    if (PSV->isAliased(MFI))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  // Does this pointer refer to a distinct and identifiable object?
 | 
						|
  if (!isIdentifiedObject(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// This returns true if the two MIs need a chain edge betwee them.
 | 
						|
/// If these are not even memory operations, we still may need
 | 
						|
/// chain deps between them. The question really is - could
 | 
						|
/// these two MIs be reordered during scheduling from memory dependency
 | 
						|
/// point of view.
 | 
						|
static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
 | 
						|
                             MachineInstr *MIa,
 | 
						|
                             MachineInstr *MIb) {
 | 
						|
  // Cover a trivial case - no edge is need to itself.
 | 
						|
  if (MIa == MIb)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If we are dealing with two "normal" loads, we do not need an edge
 | 
						|
  // between them - they could be reordered.
 | 
						|
  if (!MIa->mayStore() && !MIb->mayStore())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // To this point analysis is generic. From here on we do need AA.
 | 
						|
  if (!AA)
 | 
						|
    return true;
 | 
						|
 | 
						|
  MachineMemOperand *MMOa = *MIa->memoperands_begin();
 | 
						|
  MachineMemOperand *MMOb = *MIb->memoperands_begin();
 | 
						|
 | 
						|
  // FIXME: Need to handle multiple memory operands to support all targets.
 | 
						|
  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
 | 
						|
    llvm_unreachable("Multiple memory operands.");
 | 
						|
 | 
						|
  // The following interface to AA is fashioned after DAGCombiner::isAlias
 | 
						|
  // and operates with MachineMemOperand offset with some important
 | 
						|
  // assumptions:
 | 
						|
  //   - LLVM fundamentally assumes flat address spaces.
 | 
						|
  //   - MachineOperand offset can *only* result from legalization and
 | 
						|
  //     cannot affect queries other than the trivial case of overlap
 | 
						|
  //     checking.
 | 
						|
  //   - These offsets never wrap and never step outside
 | 
						|
  //     of allocated objects.
 | 
						|
  //   - There should never be any negative offsets here.
 | 
						|
  //
 | 
						|
  // FIXME: Modify API to hide this math from "user"
 | 
						|
  // FIXME: Even before we go to AA we can reason locally about some
 | 
						|
  // memory objects. It can save compile time, and possibly catch some
 | 
						|
  // corner cases not currently covered.
 | 
						|
 | 
						|
  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
 | 
						|
  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
 | 
						|
 | 
						|
  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
 | 
						|
  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
 | 
						|
  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
 | 
						|
 | 
						|
  AliasAnalysis::AliasResult AAResult = AA->alias(
 | 
						|
  AliasAnalysis::Location(MMOa->getValue(), Overlapa,
 | 
						|
                          MMOa->getTBAAInfo()),
 | 
						|
  AliasAnalysis::Location(MMOb->getValue(), Overlapb,
 | 
						|
                          MMOb->getTBAAInfo()));
 | 
						|
 | 
						|
  return (AAResult != AliasAnalysis::NoAlias);
 | 
						|
}
 | 
						|
 | 
						|
/// This recursive function iterates over chain deps of SUb looking for
 | 
						|
/// "latest" node that needs a chain edge to SUa.
 | 
						|
static unsigned
 | 
						|
iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
 | 
						|
                 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
 | 
						|
                 SmallPtrSet<const SUnit*, 16> &Visited) {
 | 
						|
  if (!SUa || !SUb || SUb == ExitSU)
 | 
						|
    return *Depth;
 | 
						|
 | 
						|
  // Remember visited nodes.
 | 
						|
  if (!Visited.insert(SUb))
 | 
						|
      return *Depth;
 | 
						|
  // If there is _some_ dependency already in place, do not
 | 
						|
  // descend any further.
 | 
						|
  // TODO: Need to make sure that if that dependency got eliminated or ignored
 | 
						|
  // for any reason in the future, we would not violate DAG topology.
 | 
						|
  // Currently it does not happen, but makes an implicit assumption about
 | 
						|
  // future implementation.
 | 
						|
  //
 | 
						|
  // Independently, if we encounter node that is some sort of global
 | 
						|
  // object (like a call) we already have full set of dependencies to it
 | 
						|
  // and we can stop descending.
 | 
						|
  if (SUa->isSucc(SUb) ||
 | 
						|
      isGlobalMemoryObject(AA, SUb->getInstr()))
 | 
						|
    return *Depth;
 | 
						|
 | 
						|
  // If we do need an edge, or we have exceeded depth budget,
 | 
						|
  // add that edge to the predecessors chain of SUb,
 | 
						|
  // and stop descending.
 | 
						|
  if (*Depth > 200 ||
 | 
						|
      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
 | 
						|
    SUb->addPred(SDep(SUa, SDep::Order, /*Latency=*/0, /*Reg=*/0,
 | 
						|
                      /*isNormalMemory=*/true));
 | 
						|
    return *Depth;
 | 
						|
  }
 | 
						|
  // Track current depth.
 | 
						|
  (*Depth)++;
 | 
						|
  // Iterate over chain dependencies only.
 | 
						|
  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (I->isCtrl())
 | 
						|
      iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
 | 
						|
  return *Depth;
 | 
						|
}
 | 
						|
 | 
						|
/// This function assumes that "downward" from SU there exist
 | 
						|
/// tail/leaf of already constructed DAG. It iterates downward and
 | 
						|
/// checks whether SU can be aliasing any node dominated
 | 
						|
/// by it.
 | 
						|
static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
 | 
						|
                            SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
 | 
						|
                            unsigned LatencyToLoad) {
 | 
						|
  if (!SU)
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallPtrSet<const SUnit*, 16> Visited;
 | 
						|
  unsigned Depth = 0;
 | 
						|
 | 
						|
  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
 | 
						|
       I != IE; ++I) {
 | 
						|
    if (SU == *I)
 | 
						|
      continue;
 | 
						|
    if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
 | 
						|
      unsigned Latency = ((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0;
 | 
						|
      (*I)->addPred(SDep(SU, SDep::Order, Latency, /*Reg=*/0,
 | 
						|
                         /*isNormalMemory=*/true));
 | 
						|
    }
 | 
						|
    // Now go through all the chain successors and iterate from them.
 | 
						|
    // Keep track of visited nodes.
 | 
						|
    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
 | 
						|
         JE = (*I)->Succs.end(); J != JE; ++J)
 | 
						|
      if (J->isCtrl())
 | 
						|
        iterateChainSucc (AA, MFI, SU, J->getSUnit(),
 | 
						|
                          ExitSU, &Depth, Visited);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether two objects need a chain edge, if so, add it
 | 
						|
/// otherwise remember the rejected SU.
 | 
						|
static inline
 | 
						|
void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
 | 
						|
                         SUnit *SUa, SUnit *SUb,
 | 
						|
                         std::set<SUnit *> &RejectList,
 | 
						|
                         unsigned TrueMemOrderLatency = 0,
 | 
						|
                         bool isNormalMemory = false) {
 | 
						|
  // If this is a false dependency,
 | 
						|
  // do not add the edge, but rememeber the rejected node.
 | 
						|
  if (!EnableAASchedMI ||
 | 
						|
      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr()))
 | 
						|
    SUb->addPred(SDep(SUa, SDep::Order, TrueMemOrderLatency, /*Reg=*/0,
 | 
						|
                      isNormalMemory));
 | 
						|
  else {
 | 
						|
    // Duplicate entries should be ignored.
 | 
						|
    RejectList.insert(SUb);
 | 
						|
    DEBUG(dbgs() << "\tReject chain dep between SU("
 | 
						|
          << SUa->NodeNum << ") and SU("
 | 
						|
          << SUb->NodeNum << ")\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Create an SUnit for each real instruction, numbered in top-down toplological
 | 
						|
/// order. The instruction order A < B, implies that no edge exists from B to A.
 | 
						|
///
 | 
						|
/// Map each real instruction to its SUnit.
 | 
						|
///
 | 
						|
/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
 | 
						|
/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
 | 
						|
/// instead of pointers.
 | 
						|
///
 | 
						|
/// MachineScheduler relies on initSUnits numbering the nodes by their order in
 | 
						|
/// the original instruction list.
 | 
						|
void ScheduleDAGInstrs::initSUnits() {
 | 
						|
  // We'll be allocating one SUnit for each real instruction in the region,
 | 
						|
  // which is contained within a basic block.
 | 
						|
  SUnits.reserve(BB->size());
 | 
						|
 | 
						|
  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
 | 
						|
    MachineInstr *MI = I;
 | 
						|
    if (MI->isDebugValue())
 | 
						|
      continue;
 | 
						|
 | 
						|
    SUnit *SU = newSUnit(MI);
 | 
						|
    MISUnitMap[MI] = SU;
 | 
						|
 | 
						|
    SU->isCall = MI->isCall();
 | 
						|
    SU->isCommutable = MI->isCommutable();
 | 
						|
 | 
						|
    // Assign the Latency field of SU using target-provided information.
 | 
						|
    if (UnitLatencies)
 | 
						|
      SU->Latency = 1;
 | 
						|
    else
 | 
						|
      computeLatency(SU);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If RegPressure is non null, compute register pressure as a side effect. The
 | 
						|
/// DAG builder is an efficient place to do it because it already visits
 | 
						|
/// operands.
 | 
						|
void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
 | 
						|
                                        RegPressureTracker *RPTracker) {
 | 
						|
  // Create an SUnit for each real instruction.
 | 
						|
  initSUnits();
 | 
						|
 | 
						|
  // We build scheduling units by walking a block's instruction list from bottom
 | 
						|
  // to top.
 | 
						|
 | 
						|
  // Remember where a generic side-effecting instruction is as we procede.
 | 
						|
  SUnit *BarrierChain = 0, *AliasChain = 0;
 | 
						|
 | 
						|
  // Memory references to specific known memory locations are tracked
 | 
						|
  // so that they can be given more precise dependencies. We track
 | 
						|
  // separately the known memory locations that may alias and those
 | 
						|
  // that are known not to alias
 | 
						|
  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
 | 
						|
  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
 | 
						|
  std::set<SUnit*> RejectMemNodes;
 | 
						|
 | 
						|
  // Remove any stale debug info; sometimes BuildSchedGraph is called again
 | 
						|
  // without emitting the info from the previous call.
 | 
						|
  DbgValues.clear();
 | 
						|
  FirstDbgValue = NULL;
 | 
						|
 | 
						|
  assert(Defs.empty() && Uses.empty() &&
 | 
						|
         "Only BuildGraph should update Defs/Uses");
 | 
						|
  Defs.setRegLimit(TRI->getNumRegs());
 | 
						|
  Uses.setRegLimit(TRI->getNumRegs());
 | 
						|
 | 
						|
  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
 | 
						|
  // FIXME: Allow SparseSet to reserve space for the creation of virtual
 | 
						|
  // registers during scheduling. Don't artificially inflate the Universe
 | 
						|
  // because we want to assert that vregs are not created during DAG building.
 | 
						|
  VRegDefs.setUniverse(MRI.getNumVirtRegs());
 | 
						|
 | 
						|
  // Model data dependencies between instructions being scheduled and the
 | 
						|
  // ExitSU.
 | 
						|
  addSchedBarrierDeps();
 | 
						|
 | 
						|
  // Walk the list of instructions, from bottom moving up.
 | 
						|
  MachineInstr *PrevMI = NULL;
 | 
						|
  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
 | 
						|
       MII != MIE; --MII) {
 | 
						|
    MachineInstr *MI = prior(MII);
 | 
						|
    if (MI && PrevMI) {
 | 
						|
      DbgValues.push_back(std::make_pair(PrevMI, MI));
 | 
						|
      PrevMI = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (MI->isDebugValue()) {
 | 
						|
      PrevMI = MI;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (RPTracker) {
 | 
						|
      RPTracker->recede();
 | 
						|
      assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
 | 
						|
    }
 | 
						|
 | 
						|
    assert((!MI->isTerminator() || CanHandleTerminators) && !MI->isLabel() &&
 | 
						|
           "Cannot schedule terminators or labels!");
 | 
						|
 | 
						|
    SUnit *SU = MISUnitMap[MI];
 | 
						|
    assert(SU && "No SUnit mapped to this MI");
 | 
						|
 | 
						|
    // Add register-based dependencies (data, anti, and output).
 | 
						|
    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
 | 
						|
      const MachineOperand &MO = MI->getOperand(j);
 | 
						|
      if (!MO.isReg()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (Reg == 0) continue;
 | 
						|
 | 
						|
      if (TRI->isPhysicalRegister(Reg))
 | 
						|
        addPhysRegDeps(SU, j);
 | 
						|
      else {
 | 
						|
        assert(!IsPostRA && "Virtual register encountered!");
 | 
						|
        if (MO.isDef())
 | 
						|
          addVRegDefDeps(SU, j);
 | 
						|
        else if (MO.readsReg()) // ignore undef operands
 | 
						|
          addVRegUseDeps(SU, j);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Add chain dependencies.
 | 
						|
    // Chain dependencies used to enforce memory order should have
 | 
						|
    // latency of 0 (except for true dependency of Store followed by
 | 
						|
    // aliased Load... we estimate that with a single cycle of latency
 | 
						|
    // assuming the hardware will bypass)
 | 
						|
    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
 | 
						|
    // after stack slots are lowered to actual addresses.
 | 
						|
    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
 | 
						|
    // produce more precise dependence information.
 | 
						|
    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
 | 
						|
    if (isGlobalMemoryObject(AA, MI)) {
 | 
						|
      // Be conservative with these and add dependencies on all memory
 | 
						|
      // references, even those that are known to not alias.
 | 
						|
      for (std::map<const Value *, SUnit *>::iterator I =
 | 
						|
             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
 | 
						|
        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | 
						|
      }
 | 
						|
      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
 | 
						|
             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
 | 
						|
        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
 | 
						|
          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
 | 
						|
      }
 | 
						|
      // Add SU to the barrier chain.
 | 
						|
      if (BarrierChain)
 | 
						|
        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | 
						|
      BarrierChain = SU;
 | 
						|
      // This is a barrier event that acts as a pivotal node in the DAG,
 | 
						|
      // so it is safe to clear list of exposed nodes.
 | 
						|
      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
 | 
						|
                      TrueMemOrderLatency);
 | 
						|
      RejectMemNodes.clear();
 | 
						|
      NonAliasMemDefs.clear();
 | 
						|
      NonAliasMemUses.clear();
 | 
						|
 | 
						|
      // fall-through
 | 
						|
    new_alias_chain:
 | 
						|
      // Chain all possibly aliasing memory references though SU.
 | 
						|
      if (AliasChain) {
 | 
						|
        unsigned ChainLatency = 0;
 | 
						|
        if (AliasChain->getInstr()->mayLoad())
 | 
						|
          ChainLatency = TrueMemOrderLatency;
 | 
						|
        addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes,
 | 
						|
                           ChainLatency);
 | 
						|
      }
 | 
						|
      AliasChain = SU;
 | 
						|
      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
 | 
						|
        addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
 | 
						|
                           TrueMemOrderLatency);
 | 
						|
      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
 | 
						|
           E = AliasMemDefs.end(); I != E; ++I)
 | 
						|
        addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
 | 
						|
      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
 | 
						|
           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
 | 
						|
        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
 | 
						|
          addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
 | 
						|
                             TrueMemOrderLatency);
 | 
						|
      }
 | 
						|
      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
 | 
						|
                      TrueMemOrderLatency);
 | 
						|
      PendingLoads.clear();
 | 
						|
      AliasMemDefs.clear();
 | 
						|
      AliasMemUses.clear();
 | 
						|
    } else if (MI->mayStore()) {
 | 
						|
      bool MayAlias = true;
 | 
						|
      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
 | 
						|
        // A store to a specific PseudoSourceValue. Add precise dependencies.
 | 
						|
        // Record the def in MemDefs, first adding a dep if there is
 | 
						|
        // an existing def.
 | 
						|
        std::map<const Value *, SUnit *>::iterator I =
 | 
						|
          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
 | 
						|
        std::map<const Value *, SUnit *>::iterator IE =
 | 
						|
          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
 | 
						|
        if (I != IE) {
 | 
						|
          addChainDependency(AA, MFI, SU, I->second, RejectMemNodes,
 | 
						|
                             0, true);
 | 
						|
          I->second = SU;
 | 
						|
        } else {
 | 
						|
          if (MayAlias)
 | 
						|
            AliasMemDefs[V] = SU;
 | 
						|
          else
 | 
						|
            NonAliasMemDefs[V] = SU;
 | 
						|
        }
 | 
						|
        // Handle the uses in MemUses, if there are any.
 | 
						|
        std::map<const Value *, std::vector<SUnit *> >::iterator J =
 | 
						|
          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
 | 
						|
        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
 | 
						|
          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
 | 
						|
        if (J != JE) {
 | 
						|
          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
 | 
						|
            addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
 | 
						|
                               TrueMemOrderLatency, true);
 | 
						|
          J->second.clear();
 | 
						|
        }
 | 
						|
        if (MayAlias) {
 | 
						|
          // Add dependencies from all the PendingLoads, i.e. loads
 | 
						|
          // with no underlying object.
 | 
						|
          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
 | 
						|
            addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
 | 
						|
                               TrueMemOrderLatency);
 | 
						|
          // Add dependence on alias chain, if needed.
 | 
						|
          if (AliasChain)
 | 
						|
            addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
 | 
						|
          // But we also should check dependent instructions for the
 | 
						|
          // SU in question.
 | 
						|
          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
 | 
						|
                          TrueMemOrderLatency);
 | 
						|
        }
 | 
						|
        // Add dependence on barrier chain, if needed.
 | 
						|
        // There is no point to check aliasing on barrier event. Even if
 | 
						|
        // SU and barrier _could_ be reordered, they should not. In addition,
 | 
						|
        // we have lost all RejectMemNodes below barrier.
 | 
						|
        if (BarrierChain)
 | 
						|
          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | 
						|
      } else {
 | 
						|
        // Treat all other stores conservatively.
 | 
						|
        goto new_alias_chain;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!ExitSU.isPred(SU))
 | 
						|
        // Push store's up a bit to avoid them getting in between cmp
 | 
						|
        // and branches.
 | 
						|
        ExitSU.addPred(SDep(SU, SDep::Order, 0,
 | 
						|
                            /*Reg=*/0, /*isNormalMemory=*/false,
 | 
						|
                            /*isMustAlias=*/false,
 | 
						|
                            /*isArtificial=*/true));
 | 
						|
    } else if (MI->mayLoad()) {
 | 
						|
      bool MayAlias = true;
 | 
						|
      if (MI->isInvariantLoad(AA)) {
 | 
						|
        // Invariant load, no chain dependencies needed!
 | 
						|
      } else {
 | 
						|
        if (const Value *V =
 | 
						|
            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
 | 
						|
          // A load from a specific PseudoSourceValue. Add precise dependencies.
 | 
						|
          std::map<const Value *, SUnit *>::iterator I =
 | 
						|
            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
 | 
						|
          std::map<const Value *, SUnit *>::iterator IE =
 | 
						|
            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
 | 
						|
          if (I != IE)
 | 
						|
            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
 | 
						|
          if (MayAlias)
 | 
						|
            AliasMemUses[V].push_back(SU);
 | 
						|
          else
 | 
						|
            NonAliasMemUses[V].push_back(SU);
 | 
						|
        } else {
 | 
						|
          // A load with no underlying object. Depend on all
 | 
						|
          // potentially aliasing stores.
 | 
						|
          for (std::map<const Value *, SUnit *>::iterator I =
 | 
						|
                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
 | 
						|
            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
 | 
						|
 | 
						|
          PendingLoads.push_back(SU);
 | 
						|
          MayAlias = true;
 | 
						|
        }
 | 
						|
        if (MayAlias)
 | 
						|
          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
 | 
						|
        // Add dependencies on alias and barrier chains, if needed.
 | 
						|
        if (MayAlias && AliasChain)
 | 
						|
          addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
 | 
						|
        if (BarrierChain)
 | 
						|
          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (PrevMI)
 | 
						|
    FirstDbgValue = PrevMI;
 | 
						|
 | 
						|
  Defs.clear();
 | 
						|
  Uses.clear();
 | 
						|
  VRegDefs.clear();
 | 
						|
  PendingLoads.clear();
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::computeLatency(SUnit *SU) {
 | 
						|
  // Compute the latency for the node. We only provide a default for missing
 | 
						|
  // itineraries. Empty itineraries still have latency properties.
 | 
						|
  if (!InstrItins) {
 | 
						|
    SU->Latency = 1;
 | 
						|
 | 
						|
    // Simplistic target-independent heuristic: assume that loads take
 | 
						|
    // extra time.
 | 
						|
    if (SU->getInstr()->mayLoad())
 | 
						|
      SU->Latency += 2;
 | 
						|
  } else {
 | 
						|
    SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
 | 
						|
  SU->getInstr()->dump();
 | 
						|
}
 | 
						|
 | 
						|
std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
 | 
						|
  std::string s;
 | 
						|
  raw_string_ostream oss(s);
 | 
						|
  if (SU == &EntrySU)
 | 
						|
    oss << "<entry>";
 | 
						|
  else if (SU == &ExitSU)
 | 
						|
    oss << "<exit>";
 | 
						|
  else
 | 
						|
    SU->getInstr()->print(oss);
 | 
						|
  return oss.str();
 | 
						|
}
 | 
						|
 | 
						|
/// Return the basic block label. It is not necessarilly unique because a block
 | 
						|
/// contains multiple scheduling regions. But it is fine for visualization.
 | 
						|
std::string ScheduleDAGInstrs::getDAGName() const {
 | 
						|
  return "dag." + BB->getFullName();
 | 
						|
}
 |