mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-04 21:30:49 +00:00
db3faa64ee
1. Make all the operators use uppercase 2. Rename APIntRoundToDouble method just RoundToDouble, the APInt is redundant. 3. Turn the class on for compilation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34253 91177308-0d34-0410-b5e6-96231b3b80d8
1178 lines
38 KiB
C++
1178 lines
38 KiB
C++
//===-- APInt.cpp - Implement APInt class ---------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Sheng Zhou and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a class to represent arbitrary precision integral
|
|
// constant values.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/APInt.h"
|
|
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <cstring>
|
|
#include <cstdlib>
|
|
using namespace llvm;
|
|
|
|
/// mul_1 - This function performs the multiplication operation on a
|
|
/// large integer (represented as an integer array) and a uint64_t integer.
|
|
/// @returns the carry of the multiplication.
|
|
static uint64_t mul_1(uint64_t dest[], uint64_t x[],
|
|
unsigned len, uint64_t y) {
|
|
// Split y into high 32-bit part and low 32-bit part.
|
|
uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
|
|
uint64_t carry = 0, lx, hx;
|
|
for (unsigned i = 0; i < len; ++i) {
|
|
lx = x[i] & 0xffffffffULL;
|
|
hx = x[i] >> 32;
|
|
// hasCarry - A flag to indicate if has carry.
|
|
// hasCarry == 0, no carry
|
|
// hasCarry == 1, has carry
|
|
// hasCarry == 2, no carry and the calculation result == 0.
|
|
uint8_t hasCarry = 0;
|
|
dest[i] = carry + lx * ly;
|
|
// Determine if the add above introduces carry.
|
|
hasCarry = (dest[i] < carry) ? 1 : 0;
|
|
carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
|
|
// The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
|
|
// (2^32 - 1) + 2^32 = 2^64.
|
|
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
|
|
|
|
carry += (lx * hy) & 0xffffffffULL;
|
|
dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
|
|
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
|
|
(carry >> 32) + ((lx * hy) >> 32) + hx * hy;
|
|
}
|
|
|
|
return carry;
|
|
}
|
|
|
|
/// mul - This function multiplies integer array x[] by integer array y[] and
|
|
/// stores the result into integer array dest[].
|
|
/// Note the array dest[]'s size should no less than xlen + ylen.
|
|
static void mul(uint64_t dest[], uint64_t x[], unsigned xlen,
|
|
uint64_t y[], unsigned ylen) {
|
|
dest[xlen] = mul_1(dest, x, xlen, y[0]);
|
|
|
|
for (unsigned i = 1; i < ylen; ++i) {
|
|
uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
|
|
uint64_t carry = 0, lx, hx;
|
|
for (unsigned j = 0; j < xlen; ++j) {
|
|
lx = x[j] & 0xffffffffULL;
|
|
hx = x[j] >> 32;
|
|
// hasCarry - A flag to indicate if has carry.
|
|
// hasCarry == 0, no carry
|
|
// hasCarry == 1, has carry
|
|
// hasCarry == 2, no carry and the calculation result == 0.
|
|
uint8_t hasCarry = 0;
|
|
uint64_t resul = carry + lx * ly;
|
|
hasCarry = (resul < carry) ? 1 : 0;
|
|
carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
|
|
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
|
|
|
|
carry += (lx * hy) & 0xffffffffULL;
|
|
resul = (carry << 32) | (resul & 0xffffffffULL);
|
|
dest[i+j] += resul;
|
|
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
|
|
(carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
|
|
((lx * hy) >> 32) + hx * hy;
|
|
}
|
|
dest[i+xlen] = carry;
|
|
}
|
|
}
|
|
|
|
/// add_1 - This function adds the integer array x[] by integer y and
|
|
/// returns the carry.
|
|
/// @returns the carry of the addition.
|
|
static uint64_t add_1(uint64_t dest[], uint64_t x[],
|
|
unsigned len, uint64_t y) {
|
|
uint64_t carry = y;
|
|
|
|
for (unsigned i = 0; i < len; ++i) {
|
|
dest[i] = carry + x[i];
|
|
carry = (dest[i] < carry) ? 1 : 0;
|
|
}
|
|
return carry;
|
|
}
|
|
|
|
/// add - This function adds the integer array x[] by integer array
|
|
/// y[] and returns the carry.
|
|
static uint64_t add(uint64_t dest[], uint64_t x[],
|
|
uint64_t y[], unsigned len) {
|
|
unsigned carry = 0;
|
|
|
|
for (unsigned i = 0; i< len; ++i) {
|
|
carry += x[i];
|
|
dest[i] = carry + y[i];
|
|
carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0);
|
|
}
|
|
return carry;
|
|
}
|
|
|
|
/// sub_1 - This function subtracts the integer array x[] by
|
|
/// integer y and returns the borrow-out carry.
|
|
static uint64_t sub_1(uint64_t x[], unsigned len, uint64_t y) {
|
|
uint64_t cy = y;
|
|
|
|
for (unsigned i = 0; i < len; ++i) {
|
|
uint64_t X = x[i];
|
|
x[i] -= cy;
|
|
if (cy > X)
|
|
cy = 1;
|
|
else {
|
|
cy = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return cy;
|
|
}
|
|
|
|
/// sub - This function subtracts the integer array x[] by
|
|
/// integer array y[], and returns the borrow-out carry.
|
|
static uint64_t sub(uint64_t dest[], uint64_t x[],
|
|
uint64_t y[], unsigned len) {
|
|
// Carry indicator.
|
|
uint64_t cy = 0;
|
|
|
|
for (unsigned i = 0; i < len; ++i) {
|
|
uint64_t Y = y[i], X = x[i];
|
|
Y += cy;
|
|
|
|
cy = Y < cy ? 1 : 0;
|
|
Y = X - Y;
|
|
cy += Y > X ? 1 : 0;
|
|
dest[i] = Y;
|
|
}
|
|
return cy;
|
|
}
|
|
|
|
/// UnitDiv - This function divides N by D,
|
|
/// and returns (remainder << 32) | quotient.
|
|
/// Assumes (N >> 32) < D.
|
|
static uint64_t unitDiv(uint64_t N, unsigned D) {
|
|
uint64_t q, r; // q: quotient, r: remainder.
|
|
uint64_t a1 = N >> 32; // a1: high 32-bit part of N.
|
|
uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N
|
|
if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) {
|
|
q = N / D;
|
|
r = N % D;
|
|
}
|
|
else {
|
|
// Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d
|
|
uint64_t c = N - ((uint64_t) D << 31);
|
|
// Divide (c1*2^32 + c0) by d
|
|
q = c / D;
|
|
r = c % D;
|
|
// Add 2^31 to quotient
|
|
q += 1 << 31;
|
|
}
|
|
|
|
return (r << 32) | (q & 0xFFFFFFFFl);
|
|
}
|
|
|
|
/// subMul - This function substracts x[len-1:0] * y from
|
|
/// dest[offset+len-1:offset], and returns the most significant
|
|
/// word of the product, minus the borrow-out from the subtraction.
|
|
static unsigned subMul(unsigned dest[], unsigned offset,
|
|
unsigned x[], unsigned len, unsigned y) {
|
|
uint64_t yl = (uint64_t) y & 0xffffffffL;
|
|
unsigned carry = 0;
|
|
unsigned j = 0;
|
|
do {
|
|
uint64_t prod = ((uint64_t) x[j] & 0xffffffffL) * yl;
|
|
unsigned prod_low = (unsigned) prod;
|
|
unsigned prod_high = (unsigned) (prod >> 32);
|
|
prod_low += carry;
|
|
carry = (prod_low < carry ? 1 : 0) + prod_high;
|
|
unsigned x_j = dest[offset+j];
|
|
prod_low = x_j - prod_low;
|
|
if (prod_low > x_j) ++carry;
|
|
dest[offset+j] = prod_low;
|
|
} while (++j < len);
|
|
return carry;
|
|
}
|
|
|
|
/// div - This is basically Knuth's formulation of the classical algorithm.
|
|
/// Correspondance with Knuth's notation:
|
|
/// Knuth's u[0:m+n] == zds[nx:0].
|
|
/// Knuth's v[1:n] == y[ny-1:0]
|
|
/// Knuth's n == ny.
|
|
/// Knuth's m == nx-ny.
|
|
/// Our nx == Knuth's m+n.
|
|
/// Could be re-implemented using gmp's mpn_divrem:
|
|
/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
|
|
static void div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) {
|
|
unsigned j = nx;
|
|
do { // loop over digits of quotient
|
|
// Knuth's j == our nx-j.
|
|
// Knuth's u[j:j+n] == our zds[j:j-ny].
|
|
unsigned qhat; // treated as unsigned
|
|
if (zds[j] == y[ny-1]) qhat = -1U; // 0xffffffff
|
|
else {
|
|
uint64_t w = (((uint64_t)(zds[j])) << 32) +
|
|
((uint64_t)zds[j-1] & 0xffffffffL);
|
|
qhat = (unsigned) unitDiv(w, y[ny-1]);
|
|
}
|
|
if (qhat) {
|
|
unsigned borrow = subMul(zds, j - ny, y, ny, qhat);
|
|
unsigned save = zds[j];
|
|
uint64_t num = ((uint64_t)save&0xffffffffL) -
|
|
((uint64_t)borrow&0xffffffffL);
|
|
while (num) {
|
|
qhat--;
|
|
uint64_t carry = 0;
|
|
for (unsigned i = 0; i < ny; i++) {
|
|
carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL)
|
|
+ ((uint64_t) y[i] & 0xffffffffL);
|
|
zds[j-ny+i] = (unsigned) carry;
|
|
carry >>= 32;
|
|
}
|
|
zds[j] += carry;
|
|
num = carry - 1;
|
|
}
|
|
}
|
|
zds[j] = qhat;
|
|
} while (--j >= ny);
|
|
}
|
|
|
|
/// lshift - This function shift x[0:len-1] left by shiftAmt bits, and
|
|
/// store the len least significant words of the result in
|
|
/// dest[d_offset:d_offset+len-1]. It returns the bits shifted out from
|
|
/// the most significant digit.
|
|
static uint64_t lshift(uint64_t dest[], unsigned d_offset,
|
|
uint64_t x[], unsigned len, unsigned shiftAmt) {
|
|
unsigned count = 64 - shiftAmt;
|
|
int i = len - 1;
|
|
uint64_t high_word = x[i], retVal = high_word >> count;
|
|
++d_offset;
|
|
while (--i >= 0) {
|
|
uint64_t low_word = x[i];
|
|
dest[d_offset+i] = (high_word << shiftAmt) | (low_word >> count);
|
|
high_word = low_word;
|
|
}
|
|
dest[d_offset+i] = high_word << shiftAmt;
|
|
return retVal;
|
|
}
|
|
|
|
APInt::APInt(uint64_t val, unsigned numBits)
|
|
: BitsNum(numBits) {
|
|
assert(BitsNum >= IntegerType::MIN_INT_BITS && "bitwidth too small");
|
|
assert(BitsNum <= IntegerType::MAX_INT_BITS && "bitwidth too large");
|
|
if (isSingleWord())
|
|
VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitsNum));
|
|
else {
|
|
// Memory allocation and check if successful.
|
|
assert((pVal = new uint64_t[getNumWords()]) &&
|
|
"APInt memory allocation fails!");
|
|
memset(pVal, 0, getNumWords() * 8);
|
|
pVal[0] = val;
|
|
}
|
|
}
|
|
|
|
APInt::APInt(unsigned numBits, uint64_t bigVal[])
|
|
: BitsNum(numBits) {
|
|
assert(BitsNum >= IntegerType::MIN_INT_BITS && "bitwidth too small");
|
|
assert(BitsNum <= IntegerType::MAX_INT_BITS && "bitwidth too large");
|
|
assert(bigVal && "Null pointer detected!");
|
|
if (isSingleWord())
|
|
VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitsNum));
|
|
else {
|
|
// Memory allocation and check if successful.
|
|
assert((pVal = new uint64_t[getNumWords()]) &&
|
|
"APInt memory allocation fails!");
|
|
// Calculate the actual length of bigVal[].
|
|
unsigned n = sizeof(*bigVal) / sizeof(bigVal[0]);
|
|
unsigned maxN = std::max<unsigned>(n, getNumWords());
|
|
unsigned minN = std::min<unsigned>(n, getNumWords());
|
|
memcpy(pVal, bigVal, (minN - 1) * 8);
|
|
pVal[minN-1] = bigVal[minN-1] & (~uint64_t(0ULL) >> (64 - BitsNum % 64));
|
|
if (maxN == getNumWords())
|
|
memset(pVal+n, 0, (getNumWords() - n) * 8);
|
|
}
|
|
}
|
|
|
|
/// @brief Create a new APInt by translating the char array represented
|
|
/// integer value.
|
|
APInt::APInt(const char StrStart[], unsigned slen, uint8_t radix) {
|
|
StrToAPInt(StrStart, slen, radix);
|
|
}
|
|
|
|
/// @brief Create a new APInt by translating the string represented
|
|
/// integer value.
|
|
APInt::APInt(const std::string& Val, uint8_t radix) {
|
|
assert(!Val.empty() && "String empty?");
|
|
StrToAPInt(Val.c_str(), Val.size(), radix);
|
|
}
|
|
|
|
/// @brief Converts a char array into an integer.
|
|
void APInt::StrToAPInt(const char *StrStart, unsigned slen, uint8_t radix) {
|
|
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
|
|
"Radix should be 2, 8, 10, or 16!");
|
|
assert(StrStart && "String empty?");
|
|
unsigned size = 0;
|
|
// If the radix is a power of 2, read the input
|
|
// from most significant to least significant.
|
|
if ((radix & (radix - 1)) == 0) {
|
|
unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2;
|
|
uint64_t resDigit = 0;
|
|
BitsNum = slen * bits_per_digit;
|
|
if (getNumWords() > 1)
|
|
assert((pVal = new uint64_t[getNumWords()]) &&
|
|
"APInt memory allocation fails!");
|
|
for (int i = slen - 1; i >= 0; --i) {
|
|
uint64_t digit = StrStart[i] - 48; // '0' == 48.
|
|
resDigit |= digit << nextBitPos;
|
|
nextBitPos += bits_per_digit;
|
|
if (nextBitPos >= 64) {
|
|
if (isSingleWord()) {
|
|
VAL = resDigit;
|
|
break;
|
|
}
|
|
pVal[size++] = resDigit;
|
|
nextBitPos -= 64;
|
|
resDigit = digit >> (bits_per_digit - nextBitPos);
|
|
}
|
|
}
|
|
if (!isSingleWord() && size <= getNumWords())
|
|
pVal[size] = resDigit;
|
|
} else { // General case. The radix is not a power of 2.
|
|
// For 10-radix, the max value of 64-bit integer is 18446744073709551615,
|
|
// and its digits number is 14.
|
|
const unsigned chars_per_word = 20;
|
|
if (slen < chars_per_word ||
|
|
(slen == chars_per_word && // In case the value <= 2^64 - 1
|
|
strcmp(StrStart, "18446744073709551615") <= 0)) {
|
|
BitsNum = 64;
|
|
VAL = strtoull(StrStart, 0, 10);
|
|
} else { // In case the value > 2^64 - 1
|
|
BitsNum = (slen / chars_per_word + 1) * 64;
|
|
assert((pVal = new uint64_t[getNumWords()]) &&
|
|
"APInt memory allocation fails!");
|
|
memset(pVal, 0, getNumWords() * 8);
|
|
unsigned str_pos = 0;
|
|
while (str_pos < slen) {
|
|
unsigned chunk = slen - str_pos;
|
|
if (chunk > chars_per_word - 1)
|
|
chunk = chars_per_word - 1;
|
|
uint64_t resDigit = StrStart[str_pos++] - 48; // 48 == '0'.
|
|
uint64_t big_base = radix;
|
|
while (--chunk > 0) {
|
|
resDigit = resDigit * radix + StrStart[str_pos++] - 48;
|
|
big_base *= radix;
|
|
}
|
|
|
|
uint64_t carry;
|
|
if (!size)
|
|
carry = resDigit;
|
|
else {
|
|
carry = mul_1(pVal, pVal, size, big_base);
|
|
carry += add_1(pVal, pVal, size, resDigit);
|
|
}
|
|
|
|
if (carry) pVal[size++] = carry;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
APInt::APInt(const APInt& APIVal)
|
|
: BitsNum(APIVal.BitsNum) {
|
|
if (isSingleWord()) VAL = APIVal.VAL;
|
|
else {
|
|
// Memory allocation and check if successful.
|
|
assert((pVal = new uint64_t[getNumWords()]) &&
|
|
"APInt memory allocation fails!");
|
|
memcpy(pVal, APIVal.pVal, getNumWords() * 8);
|
|
}
|
|
}
|
|
|
|
APInt::~APInt() {
|
|
if (!isSingleWord() && pVal) delete[] pVal;
|
|
}
|
|
|
|
/// @brief Copy assignment operator. Create a new object from the given
|
|
/// APInt one by initialization.
|
|
APInt& APInt::operator=(const APInt& RHS) {
|
|
if (isSingleWord()) VAL = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
|
|
else {
|
|
unsigned minN = std::min(getNumWords(), RHS.getNumWords());
|
|
memcpy(pVal, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, minN * 8);
|
|
if (getNumWords() != minN)
|
|
memset(pVal + minN, 0, (getNumWords() - minN) * 8);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Assignment operator. Assigns a common case integer value to
|
|
/// the APInt.
|
|
APInt& APInt::operator=(uint64_t RHS) {
|
|
if (isSingleWord()) VAL = RHS;
|
|
else {
|
|
pVal[0] = RHS;
|
|
memset(pVal, 0, (getNumWords() - 1) * 8);
|
|
}
|
|
TruncToBits();
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Prefix increment operator. Increments the APInt by one.
|
|
APInt& APInt::operator++() {
|
|
if (isSingleWord()) ++VAL;
|
|
else
|
|
add_1(pVal, pVal, getNumWords(), 1);
|
|
TruncToBits();
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Prefix decrement operator. Decrements the APInt by one.
|
|
APInt& APInt::operator--() {
|
|
if (isSingleWord()) --VAL;
|
|
else
|
|
sub_1(pVal, getNumWords(), 1);
|
|
TruncToBits();
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Addition assignment operator. Adds this APInt by the given APInt&
|
|
/// RHS and assigns the result to this APInt.
|
|
APInt& APInt::operator+=(const APInt& RHS) {
|
|
if (isSingleWord()) VAL += RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
|
|
else {
|
|
if (RHS.isSingleWord()) add_1(pVal, pVal, getNumWords(), RHS.VAL);
|
|
else {
|
|
if (getNumWords() <= RHS.getNumWords())
|
|
add(pVal, pVal, RHS.pVal, getNumWords());
|
|
else {
|
|
uint64_t carry = add(pVal, pVal, RHS.pVal, RHS.getNumWords());
|
|
add_1(pVal + RHS.getNumWords(), pVal + RHS.getNumWords(),
|
|
getNumWords() - RHS.getNumWords(), carry);
|
|
}
|
|
}
|
|
}
|
|
TruncToBits();
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Subtraction assignment operator. Subtracts this APInt by the given
|
|
/// APInt &RHS and assigns the result to this APInt.
|
|
APInt& APInt::operator-=(const APInt& RHS) {
|
|
if (isSingleWord())
|
|
VAL -= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
|
|
else {
|
|
if (RHS.isSingleWord())
|
|
sub_1(pVal, getNumWords(), RHS.VAL);
|
|
else {
|
|
if (RHS.getNumWords() < getNumWords()) {
|
|
uint64_t carry = sub(pVal, pVal, RHS.pVal, RHS.getNumWords());
|
|
sub_1(pVal + RHS.getNumWords(), getNumWords() - RHS.getNumWords(), carry);
|
|
}
|
|
else
|
|
sub(pVal, pVal, RHS.pVal, getNumWords());
|
|
}
|
|
}
|
|
TruncToBits();
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Multiplication assignment operator. Multiplies this APInt by the
|
|
/// given APInt& RHS and assigns the result to this APInt.
|
|
APInt& APInt::operator*=(const APInt& RHS) {
|
|
if (isSingleWord()) VAL *= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
|
|
else {
|
|
// one-based first non-zero bit position.
|
|
unsigned first = getNumWords() * APINT_BITS_PER_WORD - CountLeadingZeros();
|
|
unsigned xlen = !first ? 0 : whichWord(first - 1) + 1;
|
|
if (!xlen)
|
|
return *this;
|
|
else if (RHS.isSingleWord())
|
|
mul_1(pVal, pVal, xlen, RHS.VAL);
|
|
else {
|
|
first = RHS.getNumWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros();
|
|
unsigned ylen = !first ? 0 : whichWord(first - 1) + 1;
|
|
if (!ylen) {
|
|
memset(pVal, 0, getNumWords() * 8);
|
|
return *this;
|
|
}
|
|
uint64_t *dest = new uint64_t[xlen+ylen];
|
|
assert(dest && "Memory Allocation Failed!");
|
|
mul(dest, pVal, xlen, RHS.pVal, ylen);
|
|
memcpy(pVal, dest, ((xlen + ylen >= getNumWords()) ?
|
|
getNumWords() : xlen + ylen) * 8);
|
|
delete[] dest;
|
|
}
|
|
}
|
|
TruncToBits();
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Bitwise AND assignment operator. Performs bitwise AND operation on
|
|
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
|
|
APInt& APInt::operator&=(const APInt& RHS) {
|
|
if (isSingleWord()) {
|
|
if (RHS.isSingleWord()) VAL &= RHS.VAL;
|
|
else VAL &= RHS.pVal[0];
|
|
} else {
|
|
if (RHS.isSingleWord()) {
|
|
memset(pVal, 0, (getNumWords() - 1) * 8);
|
|
pVal[0] &= RHS.VAL;
|
|
} else {
|
|
unsigned minwords = getNumWords() < RHS.getNumWords() ?
|
|
getNumWords() : RHS.getNumWords();
|
|
for (unsigned i = 0; i < minwords; ++i)
|
|
pVal[i] &= RHS.pVal[i];
|
|
if (getNumWords() > minwords)
|
|
memset(pVal+minwords, 0, (getNumWords() - minwords) * 8);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Bitwise OR assignment operator. Performs bitwise OR operation on
|
|
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
|
|
APInt& APInt::operator|=(const APInt& RHS) {
|
|
if (isSingleWord()) {
|
|
if (RHS.isSingleWord()) VAL |= RHS.VAL;
|
|
else VAL |= RHS.pVal[0];
|
|
} else {
|
|
if (RHS.isSingleWord()) {
|
|
pVal[0] |= RHS.VAL;
|
|
} else {
|
|
unsigned minwords = getNumWords() < RHS.getNumWords() ?
|
|
getNumWords() : RHS.getNumWords();
|
|
for (unsigned i = 0; i < minwords; ++i)
|
|
pVal[i] |= RHS.pVal[i];
|
|
}
|
|
}
|
|
TruncToBits();
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on
|
|
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
|
|
APInt& APInt::operator^=(const APInt& RHS) {
|
|
if (isSingleWord()) {
|
|
if (RHS.isSingleWord()) VAL ^= RHS.VAL;
|
|
else VAL ^= RHS.pVal[0];
|
|
} else {
|
|
if (RHS.isSingleWord()) {
|
|
for (unsigned i = 0; i < getNumWords(); ++i)
|
|
pVal[i] ^= RHS.VAL;
|
|
} else {
|
|
unsigned minwords = getNumWords() < RHS.getNumWords() ?
|
|
getNumWords() : RHS.getNumWords();
|
|
for (unsigned i = 0; i < minwords; ++i)
|
|
pVal[i] ^= RHS.pVal[i];
|
|
if (getNumWords() > minwords)
|
|
for (unsigned i = minwords; i < getNumWords(); ++i)
|
|
pVal[i] ^= 0;
|
|
}
|
|
}
|
|
TruncToBits();
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt
|
|
/// and the given APInt& RHS.
|
|
APInt APInt::operator&(const APInt& RHS) const {
|
|
APInt API(RHS);
|
|
return API &= *this;
|
|
}
|
|
|
|
/// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt
|
|
/// and the given APInt& RHS.
|
|
APInt APInt::operator|(const APInt& RHS) const {
|
|
APInt API(RHS);
|
|
API |= *this;
|
|
API.TruncToBits();
|
|
return API;
|
|
}
|
|
|
|
/// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt
|
|
/// and the given APInt& RHS.
|
|
APInt APInt::operator^(const APInt& RHS) const {
|
|
APInt API(RHS);
|
|
API ^= *this;
|
|
API.TruncToBits();
|
|
return API;
|
|
}
|
|
|
|
/// @brief Logical AND operator. Performs logical AND operation on this APInt
|
|
/// and the given APInt& RHS.
|
|
bool APInt::operator&&(const APInt& RHS) const {
|
|
if (isSingleWord())
|
|
return RHS.isSingleWord() ? VAL && RHS.VAL : VAL && RHS.pVal[0];
|
|
else if (RHS.isSingleWord())
|
|
return RHS.VAL && pVal[0];
|
|
else {
|
|
unsigned minN = std::min(getNumWords(), RHS.getNumWords());
|
|
for (unsigned i = 0; i < minN; ++i)
|
|
if (pVal[i] && RHS.pVal[i])
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// @brief Logical OR operator. Performs logical OR operation on this APInt
|
|
/// and the given APInt& RHS.
|
|
bool APInt::operator||(const APInt& RHS) const {
|
|
if (isSingleWord())
|
|
return RHS.isSingleWord() ? VAL || RHS.VAL : VAL || RHS.pVal[0];
|
|
else if (RHS.isSingleWord())
|
|
return RHS.VAL || pVal[0];
|
|
else {
|
|
unsigned minN = std::min(getNumWords(), RHS.getNumWords());
|
|
for (unsigned i = 0; i < minN; ++i)
|
|
if (pVal[i] || RHS.pVal[i])
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// @brief Logical negation operator. Performs logical negation operation on
|
|
/// this APInt.
|
|
bool APInt::operator !() const {
|
|
if (isSingleWord())
|
|
return !VAL;
|
|
else
|
|
for (unsigned i = 0; i < getNumWords(); ++i)
|
|
if (pVal[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// @brief Multiplication operator. Multiplies this APInt by the given APInt&
|
|
/// RHS.
|
|
APInt APInt::operator*(const APInt& RHS) const {
|
|
APInt API(RHS);
|
|
API *= *this;
|
|
API.TruncToBits();
|
|
return API;
|
|
}
|
|
|
|
/// @brief Addition operator. Adds this APInt by the given APInt& RHS.
|
|
APInt APInt::operator+(const APInt& RHS) const {
|
|
APInt API(*this);
|
|
API += RHS;
|
|
API.TruncToBits();
|
|
return API;
|
|
}
|
|
|
|
/// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS
|
|
APInt APInt::operator-(const APInt& RHS) const {
|
|
APInt API(*this);
|
|
API -= RHS;
|
|
return API;
|
|
}
|
|
|
|
/// @brief Array-indexing support.
|
|
bool APInt::operator[](unsigned bitPosition) const {
|
|
return (maskBit(bitPosition) & (isSingleWord() ?
|
|
VAL : pVal[whichWord(bitPosition)])) != 0;
|
|
}
|
|
|
|
/// @brief Equality operator. Compare this APInt with the given APInt& RHS
|
|
/// for the validity of the equality relationship.
|
|
bool APInt::operator==(const APInt& RHS) const {
|
|
unsigned n1 = getNumWords() * APINT_BITS_PER_WORD - CountLeadingZeros(),
|
|
n2 = RHS.getNumWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros();
|
|
if (n1 != n2) return false;
|
|
else if (isSingleWord())
|
|
return VAL == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
|
|
else {
|
|
if (n1 <= 64)
|
|
return pVal[0] == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
|
|
for (int i = whichWord(n1 - 1); i >= 0; --i)
|
|
if (pVal[i] != RHS.pVal[i]) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// @brief Equality operator. Compare this APInt with the given uint64_t value
|
|
/// for the validity of the equality relationship.
|
|
bool APInt::operator==(uint64_t Val) const {
|
|
if (isSingleWord())
|
|
return VAL == Val;
|
|
else {
|
|
unsigned n = getNumWords() * APINT_BITS_PER_WORD - CountLeadingZeros();
|
|
if (n <= 64)
|
|
return pVal[0] == Val;
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// @brief Less-than operator. Compare this APInt with the given APInt& RHS
|
|
/// for the validity of the less-than relationship.
|
|
bool APInt::operator <(const APInt& RHS) const {
|
|
unsigned n1 = getNumWords() * 64 - CountLeadingZeros(),
|
|
n2 = RHS.getNumWords() * 64 - RHS.CountLeadingZeros();
|
|
if (n1 < n2) return true;
|
|
else if (n1 > n2) return false;
|
|
else if (isSingleWord())
|
|
return VAL < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
|
|
else {
|
|
if (n1 <= 64)
|
|
return pVal[0] < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
|
|
for (int i = whichWord(n1 - 1); i >= 0; --i) {
|
|
if (pVal[i] > RHS.pVal[i]) return false;
|
|
else if (pVal[i] < RHS.pVal[i]) return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// @brief Less-than-or-equal operator. Compare this APInt with the given
|
|
/// APInt& RHS for the validity of the less-than-or-equal relationship.
|
|
bool APInt::operator<=(const APInt& RHS) const {
|
|
return (*this) == RHS || (*this) < RHS;
|
|
}
|
|
|
|
/// @brief Greater-than operator. Compare this APInt with the given APInt& RHS
|
|
/// for the validity of the greater-than relationship.
|
|
bool APInt::operator >(const APInt& RHS) const {
|
|
return !((*this) <= RHS);
|
|
}
|
|
|
|
/// @brief Greater-than-or-equal operator. Compare this APInt with the given
|
|
/// APInt& RHS for the validity of the greater-than-or-equal relationship.
|
|
bool APInt::operator>=(const APInt& RHS) const {
|
|
return !((*this) < RHS);
|
|
}
|
|
|
|
/// Set the given bit to 1 whose poition is given as "bitPosition".
|
|
/// @brief Set a given bit to 1.
|
|
APInt& APInt::set(unsigned bitPosition) {
|
|
if (isSingleWord()) VAL |= maskBit(bitPosition);
|
|
else pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Set every bit to 1.
|
|
APInt& APInt::set() {
|
|
if (isSingleWord()) VAL = -1ULL;
|
|
else
|
|
for (unsigned i = 0; i < getNumWords(); ++i)
|
|
pVal[i] = -1ULL;
|
|
return *this;
|
|
}
|
|
|
|
/// Set the given bit to 0 whose position is given as "bitPosition".
|
|
/// @brief Set a given bit to 0.
|
|
APInt& APInt::clear(unsigned bitPosition) {
|
|
if (isSingleWord()) VAL &= ~maskBit(bitPosition);
|
|
else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Set every bit to 0.
|
|
APInt& APInt::clear() {
|
|
if (isSingleWord()) VAL = 0;
|
|
else
|
|
memset(pVal, 0, getNumWords() * 8);
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
|
|
/// this APInt.
|
|
APInt APInt::operator~() const {
|
|
APInt API(*this);
|
|
API.flip();
|
|
return API;
|
|
}
|
|
|
|
/// @brief Toggle every bit to its opposite value.
|
|
APInt& APInt::flip() {
|
|
if (isSingleWord()) VAL = (~(VAL << (64 - BitsNum))) >> (64 - BitsNum);
|
|
else {
|
|
unsigned i = 0;
|
|
for (; i < getNumWords() - 1; ++i)
|
|
pVal[i] = ~pVal[i];
|
|
unsigned offset = 64 - (BitsNum - 64 * (i - 1));
|
|
pVal[i] = (~(pVal[i] << offset)) >> offset;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// Toggle a given bit to its opposite value whose position is given
|
|
/// as "bitPosition".
|
|
/// @brief Toggles a given bit to its opposite value.
|
|
APInt& APInt::flip(unsigned bitPosition) {
|
|
assert(bitPosition < BitsNum && "Out of the bit-width range!");
|
|
if ((*this)[bitPosition]) clear(bitPosition);
|
|
else set(bitPosition);
|
|
return *this;
|
|
}
|
|
|
|
/// to_string - This function translates the APInt into a string.
|
|
std::string APInt::to_string(uint8_t radix) const {
|
|
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
|
|
"Radix should be 2, 8, 10, or 16!");
|
|
char *buf = 0;
|
|
unsigned n = getNumWords() * 64 - CountLeadingZeros();
|
|
std::string format = radix == 8 ?
|
|
"%0*llo" : (radix == 10 ? "%0*llu" : "%0*llx");
|
|
// If the radix is a power of 2, set the format of ostringstream,
|
|
// and output the value into buf.
|
|
if ((radix & (radix - 1)) == 0) {
|
|
assert((buf = new char[n / Log2_32(radix) + 2]) &&
|
|
"Memory allocation failed");
|
|
if (isSingleWord())
|
|
sprintf(buf, format.c_str(), 0, VAL);
|
|
else {
|
|
unsigned offset = sprintf(buf, format.c_str(), 0, pVal[whichWord(n-1)]);
|
|
for (int i = whichWord(n-1) - 1; i >= 0; --i)
|
|
offset += sprintf(buf + offset, format.c_str(),
|
|
64 / Log2_32(radix) + (64 % Log2_32(radix) ? 1 : 0), pVal[i]);
|
|
}
|
|
}
|
|
else { // If the radix = 10, need to translate the value into a
|
|
// string.
|
|
assert((buf = new char[(n / 64 + 1) * 20]) && "Memory allocation failed");
|
|
if (isSingleWord())
|
|
sprintf(buf, format.c_str(), 0, VAL);
|
|
else {
|
|
// FIXME: To be supported.
|
|
}
|
|
}
|
|
std::string retStr(buf);
|
|
delete[] buf;
|
|
return retStr;
|
|
}
|
|
|
|
/// getMaxValue - This function returns the largest value
|
|
/// for an APInt of the specified bit-width and if isSign == true,
|
|
/// it should be largest signed value, otherwise unsigned value.
|
|
APInt APInt::getMaxValue(unsigned numBits, bool isSign) {
|
|
APInt APIVal(numBits, 1);
|
|
APIVal.set();
|
|
return isSign ? APIVal.clear(numBits) : APIVal;
|
|
}
|
|
|
|
/// getMinValue - This function returns the smallest value for
|
|
/// an APInt of the given bit-width and if isSign == true,
|
|
/// it should be smallest signed value, otherwise zero.
|
|
APInt APInt::getMinValue(unsigned numBits, bool isSign) {
|
|
APInt APIVal(0, numBits);
|
|
return isSign ? APIVal : APIVal.set(numBits);
|
|
}
|
|
|
|
/// getAllOnesValue - This function returns an all-ones value for
|
|
/// an APInt of the specified bit-width.
|
|
APInt APInt::getAllOnesValue(unsigned numBits) {
|
|
return getMaxValue(numBits, false);
|
|
}
|
|
|
|
/// getNullValue - This function creates an '0' value for an
|
|
/// APInt of the specified bit-width.
|
|
APInt APInt::getNullValue(unsigned numBits) {
|
|
return getMinValue(numBits, true);
|
|
}
|
|
|
|
/// HiBits - This function returns the high "numBits" bits of this APInt.
|
|
APInt APInt::HiBits(unsigned numBits) const {
|
|
return APIntOps::LShr(*this, BitsNum - numBits);
|
|
}
|
|
|
|
/// LoBits - This function returns the low "numBits" bits of this APInt.
|
|
APInt APInt::LoBits(unsigned numBits) const {
|
|
return APIntOps::LShr(APIntOps::Shl(*this, BitsNum - numBits),
|
|
BitsNum - numBits);
|
|
}
|
|
|
|
/// CountLeadingZeros - This function is a APInt version corresponding to
|
|
/// llvm/include/llvm/Support/MathExtras.h's function
|
|
/// CountLeadingZeros_{32, 64}. It performs platform optimal form of counting
|
|
/// the number of zeros from the most significant bit to the first one bit.
|
|
/// @returns numWord() * 64 if the value is zero.
|
|
unsigned APInt::CountLeadingZeros() const {
|
|
if (isSingleWord())
|
|
return CountLeadingZeros_64(VAL);
|
|
unsigned Count = 0;
|
|
for (int i = getNumWords() - 1; i >= 0; --i) {
|
|
unsigned tmp = CountLeadingZeros_64(pVal[i]);
|
|
Count += tmp;
|
|
if (tmp != 64)
|
|
break;
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
/// CountTrailingZero - This function is a APInt version corresponding to
|
|
/// llvm/include/llvm/Support/MathExtras.h's function
|
|
/// CountTrailingZeros_{32, 64}. It performs platform optimal form of counting
|
|
/// the number of zeros from the least significant bit to the first one bit.
|
|
/// @returns numWord() * 64 if the value is zero.
|
|
unsigned APInt::CountTrailingZeros() const {
|
|
if (isSingleWord())
|
|
return CountTrailingZeros_64(~VAL & (VAL - 1));
|
|
APInt Tmp = ~(*this) & ((*this) - 1);
|
|
return getNumWords() * 64 - Tmp.CountLeadingZeros();
|
|
}
|
|
|
|
/// CountPopulation - This function is a APInt version corresponding to
|
|
/// llvm/include/llvm/Support/MathExtras.h's function
|
|
/// CountPopulation_{32, 64}. It counts the number of set bits in a value.
|
|
/// @returns 0 if the value is zero.
|
|
unsigned APInt::CountPopulation() const {
|
|
if (isSingleWord())
|
|
return CountPopulation_64(VAL);
|
|
unsigned Count = 0;
|
|
for (unsigned i = 0; i < getNumWords(); ++i)
|
|
Count += CountPopulation_64(pVal[i]);
|
|
return Count;
|
|
}
|
|
|
|
|
|
/// ByteSwap - This function returns a byte-swapped representation of the
|
|
/// this APInt.
|
|
APInt APInt::ByteSwap() const {
|
|
if (BitsNum <= 32)
|
|
return APInt(BitsNum, ByteSwap_32(unsigned(VAL)));
|
|
else if (BitsNum <= 64)
|
|
return APInt(BitsNum, ByteSwap_64(VAL));
|
|
else
|
|
return *this;
|
|
}
|
|
|
|
/// GreatestCommonDivisor - This function returns the greatest common
|
|
/// divisor of the two APInt values using Enclid's algorithm.
|
|
APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
|
|
const APInt& API2) {
|
|
APInt A = API1, B = API2;
|
|
while (!!B) {
|
|
APInt T = B;
|
|
B = APIntOps::URem(A, B);
|
|
A = T;
|
|
}
|
|
return A;
|
|
}
|
|
|
|
/// DoubleRoundToAPInt - This function convert a double value to
|
|
/// a APInt value.
|
|
APInt llvm::APIntOps::DoubleRoundToAPInt(double Double) {
|
|
union {
|
|
double D;
|
|
uint64_t I;
|
|
} T;
|
|
T.D = Double;
|
|
bool isNeg = T.I >> 63;
|
|
int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
|
|
if (exp < 0)
|
|
return APInt(0);
|
|
uint64_t mantissa = ((T.I << 12) >> 12) | (1ULL << 52);
|
|
if (exp < 52)
|
|
return isNeg ? -APInt(mantissa >> (52 - exp)) :
|
|
APInt(mantissa >> (52 - exp));
|
|
APInt Tmp(mantissa, exp + 1);
|
|
Tmp = Tmp.Shl(exp - 52);
|
|
return isNeg ? -Tmp : Tmp;
|
|
}
|
|
|
|
/// RoundToDouble - This function convert this APInt to a double.
|
|
/// The layout for double is as following (IEEE Standard 754):
|
|
/// --------------------------------------
|
|
/// | Sign Exponent Fraction Bias |
|
|
/// |-------------------------------------- |
|
|
/// | 1[63] 11[62-52] 52[51-00] 1023 |
|
|
/// --------------------------------------
|
|
double APInt::RoundToDouble(bool isSigned) const {
|
|
bool isNeg = isSigned ? (*this)[BitsNum-1] : false;
|
|
APInt Tmp(isNeg ? -(*this) : (*this));
|
|
if (Tmp.isSingleWord())
|
|
return isSigned ? double(int64_t(Tmp.VAL)) : double(Tmp.VAL);
|
|
unsigned n = Tmp.getNumWords() * 64 - Tmp.CountLeadingZeros();
|
|
if (n <= 64)
|
|
return isSigned ? double(int64_t(Tmp.pVal[0])) : double(Tmp.pVal[0]);
|
|
// Exponent when normalized to have decimal point directly after
|
|
// leading one. This is stored excess 1023 in the exponent bit field.
|
|
uint64_t exp = n - 1;
|
|
|
|
// Gross overflow.
|
|
assert(exp <= 1023 && "Infinity value!");
|
|
|
|
// Number of bits in mantissa including the leading one
|
|
// equals to 53.
|
|
uint64_t mantissa;
|
|
if (n % 64 >= 53)
|
|
mantissa = Tmp.pVal[whichWord(n - 1)] >> (n % 64 - 53);
|
|
else
|
|
mantissa = (Tmp.pVal[whichWord(n - 1)] << (53 - n % 64)) |
|
|
(Tmp.pVal[whichWord(n - 1) - 1] >> (11 + n % 64));
|
|
// The leading bit of mantissa is implicit, so get rid of it.
|
|
mantissa &= ~(1ULL << 52);
|
|
uint64_t sign = isNeg ? (1ULL << 63) : 0;
|
|
exp += 1023;
|
|
union {
|
|
double D;
|
|
uint64_t I;
|
|
} T;
|
|
T.I = sign | (exp << 52) | mantissa;
|
|
return T.D;
|
|
}
|
|
|
|
/// Arithmetic right-shift this APInt by shiftAmt.
|
|
/// @brief Arithmetic right-shift function.
|
|
APInt APInt::AShr(unsigned shiftAmt) const {
|
|
APInt API(*this);
|
|
if (API.isSingleWord())
|
|
API.VAL = (((int64_t(API.VAL) << (64 - API.BitsNum)) >> (64 - API.BitsNum))
|
|
>> shiftAmt) & (~uint64_t(0UL) >> (64 - API.BitsNum));
|
|
else {
|
|
if (shiftAmt >= API.BitsNum) {
|
|
memset(API.pVal, API[API.BitsNum-1] ? 1 : 0, (API.getNumWords()-1) * 8);
|
|
API.pVal[API.getNumWords() - 1] = ~uint64_t(0UL) >>
|
|
(64 - API.BitsNum % 64);
|
|
} else {
|
|
unsigned i = 0;
|
|
for (; i < API.BitsNum - shiftAmt; ++i)
|
|
if (API[i+shiftAmt])
|
|
API.set(i);
|
|
else
|
|
API.clear(i);
|
|
for (; i < API.BitsNum; ++i)
|
|
API[API.BitsNum-1] ? API.set(i) : API.clear(i);
|
|
}
|
|
}
|
|
return API;
|
|
}
|
|
|
|
/// Logical right-shift this APInt by shiftAmt.
|
|
/// @brief Logical right-shift function.
|
|
APInt APInt::LShr(unsigned shiftAmt) const {
|
|
APInt API(*this);
|
|
if (API.isSingleWord())
|
|
API.VAL >>= shiftAmt;
|
|
else {
|
|
if (shiftAmt >= API.BitsNum)
|
|
memset(API.pVal, 0, API.getNumWords() * 8);
|
|
unsigned i = 0;
|
|
for (i = 0; i < API.BitsNum - shiftAmt; ++i)
|
|
if (API[i+shiftAmt]) API.set(i);
|
|
else API.clear(i);
|
|
for (; i < API.BitsNum; ++i)
|
|
API.clear(i);
|
|
}
|
|
return API;
|
|
}
|
|
|
|
/// Left-shift this APInt by shiftAmt.
|
|
/// @brief Left-shift function.
|
|
APInt APInt::Shl(unsigned shiftAmt) const {
|
|
APInt API(*this);
|
|
if (API.isSingleWord())
|
|
API.VAL <<= shiftAmt;
|
|
else if (shiftAmt >= API.BitsNum)
|
|
memset(API.pVal, 0, API.getNumWords() * 8);
|
|
else {
|
|
if (unsigned offset = shiftAmt / 64) {
|
|
for (unsigned i = API.getNumWords() - 1; i > offset - 1; --i)
|
|
API.pVal[i] = API.pVal[i-offset];
|
|
memset(API.pVal, 0, offset * 8);
|
|
}
|
|
shiftAmt %= 64;
|
|
unsigned i;
|
|
for (i = API.getNumWords() - 1; i > 0; --i)
|
|
API.pVal[i] = (API.pVal[i] << shiftAmt) |
|
|
(API.pVal[i-1] >> (64-shiftAmt));
|
|
API.pVal[i] <<= shiftAmt;
|
|
}
|
|
return API;
|
|
}
|
|
|
|
/// Unsigned divide this APInt by APInt RHS.
|
|
/// @brief Unsigned division function for APInt.
|
|
APInt APInt::UDiv(const APInt& RHS) const {
|
|
APInt API(*this);
|
|
unsigned first = RHS.getNumWords() * APInt::APINT_BITS_PER_WORD -
|
|
RHS.CountLeadingZeros();
|
|
unsigned ylen = !first ? 0 : APInt::whichWord(first - 1) + 1;
|
|
assert(ylen && "Divided by zero???");
|
|
if (API.isSingleWord()) {
|
|
API.VAL = RHS.isSingleWord() ? (API.VAL / RHS.VAL) :
|
|
(ylen > 1 ? 0 : API.VAL / RHS.pVal[0]);
|
|
} else {
|
|
unsigned first2 = API.getNumWords() * APInt::APINT_BITS_PER_WORD -
|
|
API.CountLeadingZeros();
|
|
unsigned xlen = !first2 ? 0 : APInt::whichWord(first2 - 1) + 1;
|
|
if (!xlen)
|
|
return API;
|
|
else if (API < RHS)
|
|
memset(API.pVal, 0, API.getNumWords() * 8);
|
|
else if (API == RHS) {
|
|
memset(API.pVal, 0, API.getNumWords() * 8);
|
|
API.pVal[0] = 1;
|
|
} else if (xlen == 1)
|
|
API.pVal[0] /= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
|
|
else {
|
|
uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen];
|
|
assert(xwords && ywords && "Memory Allocation Failed!");
|
|
memcpy(xwords, API.pVal, xlen * 8);
|
|
xwords[xlen] = 0;
|
|
memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8);
|
|
if (unsigned nshift = 63 - (first - 1) % 64) {
|
|
lshift(ywords, 0, ywords, ylen, nshift);
|
|
unsigned xlentmp = xlen;
|
|
xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift);
|
|
}
|
|
div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2);
|
|
memset(API.pVal, 0, API.getNumWords() * 8);
|
|
memcpy(API.pVal, xwords + ylen, (xlen - ylen) * 8);
|
|
delete[] xwords;
|
|
delete[] ywords;
|
|
}
|
|
}
|
|
return API;
|
|
}
|
|
|
|
/// Unsigned remainder operation on APInt.
|
|
/// @brief Function for unsigned remainder operation.
|
|
APInt APInt::URem(const APInt& RHS) const {
|
|
APInt API(*this);
|
|
unsigned first = RHS.getNumWords() * APInt::APINT_BITS_PER_WORD -
|
|
RHS.CountLeadingZeros();
|
|
unsigned ylen = !first ? 0 : APInt::whichWord(first - 1) + 1;
|
|
assert(ylen && "Performing remainder operation by zero ???");
|
|
if (API.isSingleWord()) {
|
|
API.VAL = RHS.isSingleWord() ? (API.VAL % RHS.VAL) :
|
|
(ylen > 1 ? API.VAL : API.VAL % RHS.pVal[0]);
|
|
} else {
|
|
unsigned first2 = API.getNumWords() * APInt::APINT_BITS_PER_WORD -
|
|
API.CountLeadingZeros();
|
|
unsigned xlen = !first2 ? 0 : API.whichWord(first2 - 1) + 1;
|
|
if (!xlen || API < RHS)
|
|
return API;
|
|
else if (API == RHS)
|
|
memset(API.pVal, 0, API.getNumWords() * 8);
|
|
else if (xlen == 1)
|
|
API.pVal[0] %= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
|
|
else {
|
|
uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen];
|
|
assert(xwords && ywords && "Memory Allocation Failed!");
|
|
memcpy(xwords, API.pVal, xlen * 8);
|
|
xwords[xlen] = 0;
|
|
memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8);
|
|
unsigned nshift = 63 - (first - 1) % 64;
|
|
if (nshift) {
|
|
lshift(ywords, 0, ywords, ylen, nshift);
|
|
unsigned xlentmp = xlen;
|
|
xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift);
|
|
}
|
|
div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2);
|
|
memset(API.pVal, 0, API.getNumWords() * 8);
|
|
for (unsigned i = 0; i < ylen-1; ++i)
|
|
API.pVal[i] = (xwords[i] >> nshift) | (xwords[i+1] << (64 - nshift));
|
|
API.pVal[ylen-1] = xwords[ylen-1] >> nshift;
|
|
delete[] xwords;
|
|
delete[] ywords;
|
|
}
|
|
}
|
|
return API;
|
|
}
|