mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228326 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1544 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1544 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass identifies loops where we can generate the Hexagon hardware
 | 
						|
// loop instruction.  The hardware loop can perform loop branches with a
 | 
						|
// zero-cycle overhead.
 | 
						|
//
 | 
						|
// The pattern that defines the induction variable can changed depending on
 | 
						|
// prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
 | 
						|
// normalizes induction variables, and the Loop Strength Reduction pass
 | 
						|
// run by 'llc' may also make changes to the induction variable.
 | 
						|
// The pattern detected by this phase is due to running Strength Reduction.
 | 
						|
//
 | 
						|
// Criteria for hardware loops:
 | 
						|
//  - Countable loops (w/ ind. var for a trip count)
 | 
						|
//  - Assumes loops are normalized by IndVarSimplify
 | 
						|
//  - Try inner-most loops first
 | 
						|
//  - No nested hardware loops.
 | 
						|
//  - No function calls in loops.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "Hexagon.h"
 | 
						|
#include "HexagonSubtarget.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/PassSupport.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "hwloops"
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden, cl::init(-1));
 | 
						|
#endif
 | 
						|
 | 
						|
STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  void initializeHexagonHardwareLoopsPass(PassRegistry&);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  class CountValue;
 | 
						|
  struct HexagonHardwareLoops : public MachineFunctionPass {
 | 
						|
    MachineLoopInfo            *MLI;
 | 
						|
    MachineRegisterInfo        *MRI;
 | 
						|
    MachineDominatorTree       *MDT;
 | 
						|
    const HexagonInstrInfo     *TII;
 | 
						|
#ifndef NDEBUG
 | 
						|
    static int Counter;
 | 
						|
#endif
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
 | 
						|
    HexagonHardwareLoops() : MachineFunctionPass(ID) {
 | 
						|
      initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
    const char *getPassName() const override { return "Hexagon Hardware Loops"; }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addRequired<MachineDominatorTree>();
 | 
						|
      AU.addRequired<MachineLoopInfo>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    /// Kinds of comparisons in the compare instructions.
 | 
						|
    struct Comparison {
 | 
						|
      enum Kind {
 | 
						|
        EQ  = 0x01,
 | 
						|
        NE  = 0x02,
 | 
						|
        L   = 0x04, // Less-than property.
 | 
						|
        G   = 0x08, // Greater-than property.
 | 
						|
        U   = 0x40, // Unsigned property.
 | 
						|
        LTs = L,
 | 
						|
        LEs = L | EQ,
 | 
						|
        GTs = G,
 | 
						|
        GEs = G | EQ,
 | 
						|
        LTu = L      | U,
 | 
						|
        LEu = L | EQ | U,
 | 
						|
        GTu = G      | U,
 | 
						|
        GEu = G | EQ | U
 | 
						|
      };
 | 
						|
 | 
						|
      static Kind getSwappedComparison(Kind Cmp) {
 | 
						|
        assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
 | 
						|
        if ((Cmp & L) || (Cmp & G))
 | 
						|
          return (Kind)(Cmp ^ (L|G));
 | 
						|
        return Cmp;
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    /// \brief Find the register that contains the loop controlling
 | 
						|
    /// induction variable.
 | 
						|
    /// If successful, it will return true and set the \p Reg, \p IVBump
 | 
						|
    /// and \p IVOp arguments.  Otherwise it will return false.
 | 
						|
    /// The returned induction register is the register R that follows the
 | 
						|
    /// following induction pattern:
 | 
						|
    /// loop:
 | 
						|
    ///   R = phi ..., [ R.next, LatchBlock ]
 | 
						|
    ///   R.next = R + #bump
 | 
						|
    ///   if (R.next < #N) goto loop
 | 
						|
    /// IVBump is the immediate value added to R, and IVOp is the instruction
 | 
						|
    /// "R.next = R + #bump".
 | 
						|
    bool findInductionRegister(MachineLoop *L, unsigned &Reg,
 | 
						|
                               int64_t &IVBump, MachineInstr *&IVOp) const;
 | 
						|
 | 
						|
    /// \brief Analyze the statements in a loop to determine if the loop
 | 
						|
    /// has a computable trip count and, if so, return a value that represents
 | 
						|
    /// the trip count expression.
 | 
						|
    CountValue *getLoopTripCount(MachineLoop *L,
 | 
						|
                                 SmallVectorImpl<MachineInstr *> &OldInsts);
 | 
						|
 | 
						|
    /// \brief Return the expression that represents the number of times
 | 
						|
    /// a loop iterates.  The function takes the operands that represent the
 | 
						|
    /// loop start value, loop end value, and induction value.  Based upon
 | 
						|
    /// these operands, the function attempts to compute the trip count.
 | 
						|
    /// If the trip count is not directly available (as an immediate value,
 | 
						|
    /// or a register), the function will attempt to insert computation of it
 | 
						|
    /// to the loop's preheader.
 | 
						|
    CountValue *computeCount(MachineLoop *Loop,
 | 
						|
                             const MachineOperand *Start,
 | 
						|
                             const MachineOperand *End,
 | 
						|
                             unsigned IVReg,
 | 
						|
                             int64_t IVBump,
 | 
						|
                             Comparison::Kind Cmp) const;
 | 
						|
 | 
						|
    /// \brief Return true if the instruction is not valid within a hardware
 | 
						|
    /// loop.
 | 
						|
    bool isInvalidLoopOperation(const MachineInstr *MI) const;
 | 
						|
 | 
						|
    /// \brief Return true if the loop contains an instruction that inhibits
 | 
						|
    /// using the hardware loop.
 | 
						|
    bool containsInvalidInstruction(MachineLoop *L) const;
 | 
						|
 | 
						|
    /// \brief Given a loop, check if we can convert it to a hardware loop.
 | 
						|
    /// If so, then perform the conversion and return true.
 | 
						|
    bool convertToHardwareLoop(MachineLoop *L);
 | 
						|
 | 
						|
    /// \brief Return true if the instruction is now dead.
 | 
						|
    bool isDead(const MachineInstr *MI,
 | 
						|
                SmallVectorImpl<MachineInstr *> &DeadPhis) const;
 | 
						|
 | 
						|
    /// \brief Remove the instruction if it is now dead.
 | 
						|
    void removeIfDead(MachineInstr *MI);
 | 
						|
 | 
						|
    /// \brief Make sure that the "bump" instruction executes before the
 | 
						|
    /// compare.  We need that for the IV fixup, so that the compare
 | 
						|
    /// instruction would not use a bumped value that has not yet been
 | 
						|
    /// defined.  If the instructions are out of order, try to reorder them.
 | 
						|
    bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
 | 
						|
 | 
						|
    /// \brief Get the instruction that loads an immediate value into \p R,
 | 
						|
    /// or 0 if such an instruction does not exist.
 | 
						|
    MachineInstr *defWithImmediate(unsigned R);
 | 
						|
 | 
						|
    /// \brief Get the immediate value referenced to by \p MO, either for
 | 
						|
    /// immediate operands, or for register operands, where the register
 | 
						|
    /// was defined with an immediate value.
 | 
						|
    int64_t getImmediate(MachineOperand &MO);
 | 
						|
 | 
						|
    /// \brief Reset the given machine operand to now refer to a new immediate
 | 
						|
    /// value.  Assumes that the operand was already referencing an immediate
 | 
						|
    /// value, either directly, or via a register.
 | 
						|
    void setImmediate(MachineOperand &MO, int64_t Val);
 | 
						|
 | 
						|
    /// \brief Fix the data flow of the induction varible.
 | 
						|
    /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
 | 
						|
    ///                                     |
 | 
						|
    ///                                     +-> back to phi
 | 
						|
    /// where "bump" is the increment of the induction variable:
 | 
						|
    ///   iv = iv + #const.
 | 
						|
    /// Due to some prior code transformations, the actual flow may look
 | 
						|
    /// like this:
 | 
						|
    ///   phi -+-> bump ---> back to phi
 | 
						|
    ///        |
 | 
						|
    ///        +-> comparison-in-latch (against upper_bound-bump),
 | 
						|
    /// i.e. the comparison that controls the loop execution may be using
 | 
						|
    /// the value of the induction variable from before the increment.
 | 
						|
    ///
 | 
						|
    /// Return true if the loop's flow is the desired one (i.e. it's
 | 
						|
    /// either been fixed, or no fixing was necessary).
 | 
						|
    /// Otherwise, return false.  This can happen if the induction variable
 | 
						|
    /// couldn't be identified, or if the value in the latch's comparison
 | 
						|
    /// cannot be adjusted to reflect the post-bump value.
 | 
						|
    bool fixupInductionVariable(MachineLoop *L);
 | 
						|
 | 
						|
    /// \brief Given a loop, if it does not have a preheader, create one.
 | 
						|
    /// Return the block that is the preheader.
 | 
						|
    MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
 | 
						|
  };
 | 
						|
 | 
						|
  char HexagonHardwareLoops::ID = 0;
 | 
						|
#ifndef NDEBUG
 | 
						|
  int HexagonHardwareLoops::Counter = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
  /// \brief Abstraction for a trip count of a loop. A smaller version
 | 
						|
  /// of the MachineOperand class without the concerns of changing the
 | 
						|
  /// operand representation.
 | 
						|
  class CountValue {
 | 
						|
  public:
 | 
						|
    enum CountValueType {
 | 
						|
      CV_Register,
 | 
						|
      CV_Immediate
 | 
						|
    };
 | 
						|
  private:
 | 
						|
    CountValueType Kind;
 | 
						|
    union Values {
 | 
						|
      struct {
 | 
						|
        unsigned Reg;
 | 
						|
        unsigned Sub;
 | 
						|
      } R;
 | 
						|
      unsigned ImmVal;
 | 
						|
    } Contents;
 | 
						|
 | 
						|
  public:
 | 
						|
    explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
 | 
						|
      Kind = t;
 | 
						|
      if (Kind == CV_Register) {
 | 
						|
        Contents.R.Reg = v;
 | 
						|
        Contents.R.Sub = u;
 | 
						|
      } else {
 | 
						|
        Contents.ImmVal = v;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    bool isReg() const { return Kind == CV_Register; }
 | 
						|
    bool isImm() const { return Kind == CV_Immediate; }
 | 
						|
 | 
						|
    unsigned getReg() const {
 | 
						|
      assert(isReg() && "Wrong CountValue accessor");
 | 
						|
      return Contents.R.Reg;
 | 
						|
    }
 | 
						|
    unsigned getSubReg() const {
 | 
						|
      assert(isReg() && "Wrong CountValue accessor");
 | 
						|
      return Contents.R.Sub;
 | 
						|
    }
 | 
						|
    unsigned getImm() const {
 | 
						|
      assert(isImm() && "Wrong CountValue accessor");
 | 
						|
      return Contents.ImmVal;
 | 
						|
    }
 | 
						|
 | 
						|
    void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
 | 
						|
      if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); }
 | 
						|
      if (isImm()) { OS << Contents.ImmVal; }
 | 
						|
    }
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
 | 
						|
                      "Hexagon Hardware Loops", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | 
						|
INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
 | 
						|
                    "Hexagon Hardware Loops", false, false)
 | 
						|
 | 
						|
 | 
						|
/// \brief Returns true if the instruction is a hardware loop instruction.
 | 
						|
static bool isHardwareLoop(const MachineInstr *MI) {
 | 
						|
  return MI->getOpcode() == Hexagon::J2_loop0r ||
 | 
						|
    MI->getOpcode() == Hexagon::J2_loop0i;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createHexagonHardwareLoops() {
 | 
						|
  return new HexagonHardwareLoops();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  MLI = &getAnalysis<MachineLoopInfo>();
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
  MDT = &getAnalysis<MachineDominatorTree>();
 | 
						|
  TII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
 | 
						|
 | 
						|
  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
 | 
						|
       I != E; ++I) {
 | 
						|
    MachineLoop *L = *I;
 | 
						|
    if (!L->getParentLoop())
 | 
						|
      Changed |= convertToHardwareLoop(L);
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
 | 
						|
                                                 unsigned &Reg,
 | 
						|
                                                 int64_t &IVBump,
 | 
						|
                                                 MachineInstr *&IVOp
 | 
						|
                                                 ) const {
 | 
						|
  MachineBasicBlock *Header = L->getHeader();
 | 
						|
  MachineBasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  MachineBasicBlock *Latch = L->getLoopLatch();
 | 
						|
  if (!Header || !Preheader || !Latch)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This pair represents an induction register together with an immediate
 | 
						|
  // value that will be added to it in each loop iteration.
 | 
						|
  typedef std::pair<unsigned,int64_t> RegisterBump;
 | 
						|
 | 
						|
  // Mapping:  R.next -> (R, bump), where R, R.next and bump are derived
 | 
						|
  // from an induction operation
 | 
						|
  //   R.next = R + bump
 | 
						|
  // where bump is an immediate value.
 | 
						|
  typedef std::map<unsigned,RegisterBump> InductionMap;
 | 
						|
 | 
						|
  InductionMap IndMap;
 | 
						|
 | 
						|
  typedef MachineBasicBlock::instr_iterator instr_iterator;
 | 
						|
  for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
 | 
						|
       I != E && I->isPHI(); ++I) {
 | 
						|
    MachineInstr *Phi = &*I;
 | 
						|
 | 
						|
    // Have a PHI instruction.  Get the operand that corresponds to the
 | 
						|
    // latch block, and see if is a result of an addition of form "reg+imm",
 | 
						|
    // where the "reg" is defined by the PHI node we are looking at.
 | 
						|
    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
 | 
						|
      if (Phi->getOperand(i+1).getMBB() != Latch)
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned PhiOpReg = Phi->getOperand(i).getReg();
 | 
						|
      MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
 | 
						|
      unsigned UpdOpc = DI->getOpcode();
 | 
						|
      bool isAdd = (UpdOpc == Hexagon::A2_addi);
 | 
						|
 | 
						|
      if (isAdd) {
 | 
						|
        // If the register operand to the add is the PHI we're
 | 
						|
        // looking at, this meets the induction pattern.
 | 
						|
        unsigned IndReg = DI->getOperand(1).getReg();
 | 
						|
        if (MRI->getVRegDef(IndReg) == Phi) {
 | 
						|
          unsigned UpdReg = DI->getOperand(0).getReg();
 | 
						|
          int64_t V = DI->getOperand(2).getImm();
 | 
						|
          IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }  // for (i)
 | 
						|
  }  // for (instr)
 | 
						|
 | 
						|
  SmallVector<MachineOperand,2> Cond;
 | 
						|
  MachineBasicBlock *TB = nullptr, *FB = nullptr;
 | 
						|
  bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
 | 
						|
  if (NotAnalyzed)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned CSz = Cond.size();
 | 
						|
  assert (CSz == 1 || CSz == 2);
 | 
						|
  unsigned PredR = Cond[CSz-1].getReg();
 | 
						|
 | 
						|
  MachineInstr *PredI = MRI->getVRegDef(PredR);
 | 
						|
  if (!PredI->isCompare())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned CmpReg1 = 0, CmpReg2 = 0;
 | 
						|
  int CmpImm = 0, CmpMask = 0;
 | 
						|
  bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2,
 | 
						|
                                         CmpMask, CmpImm);
 | 
						|
  // Fail if the compare was not analyzed, or it's not comparing a register
 | 
						|
  // with an immediate value.  Not checking the mask here, since we handle
 | 
						|
  // the individual compare opcodes (including CMPb) later on.
 | 
						|
  if (!CmpAnalyzed)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Exactly one of the input registers to the comparison should be among
 | 
						|
  // the induction registers.
 | 
						|
  InductionMap::iterator IndMapEnd = IndMap.end();
 | 
						|
  InductionMap::iterator F = IndMapEnd;
 | 
						|
  if (CmpReg1 != 0) {
 | 
						|
    InductionMap::iterator F1 = IndMap.find(CmpReg1);
 | 
						|
    if (F1 != IndMapEnd)
 | 
						|
      F = F1;
 | 
						|
  }
 | 
						|
  if (CmpReg2 != 0) {
 | 
						|
    InductionMap::iterator F2 = IndMap.find(CmpReg2);
 | 
						|
    if (F2 != IndMapEnd) {
 | 
						|
      if (F != IndMapEnd)
 | 
						|
        return false;
 | 
						|
      F = F2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (F == IndMapEnd)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Reg = F->second.first;
 | 
						|
  IVBump = F->second.second;
 | 
						|
  IVOp = MRI->getVRegDef(F->first);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// \brief Analyze the statements in a loop to determine if the loop has
 | 
						|
/// a computable trip count and, if so, return a value that represents
 | 
						|
/// the trip count expression.
 | 
						|
///
 | 
						|
/// This function iterates over the phi nodes in the loop to check for
 | 
						|
/// induction variable patterns that are used in the calculation for
 | 
						|
/// the number of time the loop is executed.
 | 
						|
CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
 | 
						|
                                    SmallVectorImpl<MachineInstr *> &OldInsts) {
 | 
						|
  MachineBasicBlock *TopMBB = L->getTopBlock();
 | 
						|
  MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
 | 
						|
  assert(PI != TopMBB->pred_end() &&
 | 
						|
         "Loop must have more than one incoming edge!");
 | 
						|
  MachineBasicBlock *Backedge = *PI++;
 | 
						|
  if (PI == TopMBB->pred_end())  // dead loop?
 | 
						|
    return nullptr;
 | 
						|
  MachineBasicBlock *Incoming = *PI++;
 | 
						|
  if (PI != TopMBB->pred_end())  // multiple backedges?
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Make sure there is one incoming and one backedge and determine which
 | 
						|
  // is which.
 | 
						|
  if (L->contains(Incoming)) {
 | 
						|
    if (L->contains(Backedge))
 | 
						|
      return nullptr;
 | 
						|
    std::swap(Incoming, Backedge);
 | 
						|
  } else if (!L->contains(Backedge))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Look for the cmp instruction to determine if we can get a useful trip
 | 
						|
  // count.  The trip count can be either a register or an immediate.  The
 | 
						|
  // location of the value depends upon the type (reg or imm).
 | 
						|
  MachineBasicBlock *Latch = L->getLoopLatch();
 | 
						|
  if (!Latch)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  unsigned IVReg = 0;
 | 
						|
  int64_t IVBump = 0;
 | 
						|
  MachineInstr *IVOp;
 | 
						|
  bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
 | 
						|
  if (!FoundIV)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  MachineBasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
 | 
						|
  MachineOperand *InitialValue = nullptr;
 | 
						|
  MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
 | 
						|
  for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
 | 
						|
    MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
 | 
						|
    if (MBB == Preheader)
 | 
						|
      InitialValue = &IV_Phi->getOperand(i);
 | 
						|
    else if (MBB == Latch)
 | 
						|
      IVReg = IV_Phi->getOperand(i).getReg();  // Want IV reg after bump.
 | 
						|
  }
 | 
						|
  if (!InitialValue)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  SmallVector<MachineOperand,2> Cond;
 | 
						|
  MachineBasicBlock *TB = nullptr, *FB = nullptr;
 | 
						|
  bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
 | 
						|
  if (NotAnalyzed)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  MachineBasicBlock *Header = L->getHeader();
 | 
						|
  // TB must be non-null.  If FB is also non-null, one of them must be
 | 
						|
  // the header.  Otherwise, branch to TB could be exiting the loop, and
 | 
						|
  // the fall through can go to the header.
 | 
						|
  assert (TB && "Latch block without a branch?");
 | 
						|
  assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
 | 
						|
  if (!TB || (FB && TB != Header && FB != Header))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch
 | 
						|
  // to put imm(0), followed by P in the vector Cond.
 | 
						|
  // If TB is not the header, it means that the "not-taken" path must lead
 | 
						|
  // to the header.
 | 
						|
  bool Negated = (Cond.size() > 1) ^ (TB != Header);
 | 
						|
  unsigned PredReg = Cond[Cond.size()-1].getReg();
 | 
						|
  MachineInstr *CondI = MRI->getVRegDef(PredReg);
 | 
						|
  unsigned CondOpc = CondI->getOpcode();
 | 
						|
 | 
						|
  unsigned CmpReg1 = 0, CmpReg2 = 0;
 | 
						|
  int Mask = 0, ImmValue = 0;
 | 
						|
  bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2,
 | 
						|
                                         Mask, ImmValue);
 | 
						|
  if (!AnalyzedCmp)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The comparison operator type determines how we compute the loop
 | 
						|
  // trip count.
 | 
						|
  OldInsts.push_back(CondI);
 | 
						|
  OldInsts.push_back(IVOp);
 | 
						|
 | 
						|
  // Sadly, the following code gets information based on the position
 | 
						|
  // of the operands in the compare instruction.  This has to be done
 | 
						|
  // this way, because the comparisons check for a specific relationship
 | 
						|
  // between the operands (e.g. is-less-than), rather than to find out
 | 
						|
  // what relationship the operands are in (as on PPC).
 | 
						|
  Comparison::Kind Cmp;
 | 
						|
  bool isSwapped = false;
 | 
						|
  const MachineOperand &Op1 = CondI->getOperand(1);
 | 
						|
  const MachineOperand &Op2 = CondI->getOperand(2);
 | 
						|
  const MachineOperand *EndValue = nullptr;
 | 
						|
 | 
						|
  if (Op1.isReg()) {
 | 
						|
    if (Op2.isImm() || Op1.getReg() == IVReg)
 | 
						|
      EndValue = &Op2;
 | 
						|
    else {
 | 
						|
      EndValue = &Op1;
 | 
						|
      isSwapped = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!EndValue)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  switch (CondOpc) {
 | 
						|
    case Hexagon::C2_cmpeqi:
 | 
						|
    case Hexagon::C2_cmpeq:
 | 
						|
      Cmp = !Negated ? Comparison::EQ : Comparison::NE;
 | 
						|
      break;
 | 
						|
    case Hexagon::C2_cmpgtui:
 | 
						|
    case Hexagon::C2_cmpgtu:
 | 
						|
      Cmp = !Negated ? Comparison::GTu : Comparison::LEu;
 | 
						|
      break;
 | 
						|
    case Hexagon::C2_cmpgti:
 | 
						|
    case Hexagon::C2_cmpgt:
 | 
						|
      Cmp = !Negated ? Comparison::GTs : Comparison::LEs;
 | 
						|
      break;
 | 
						|
    // Very limited support for byte/halfword compares.
 | 
						|
    case Hexagon::A4_cmpbeqi:
 | 
						|
    case Hexagon::A4_cmpheqi: {
 | 
						|
      if (IVBump != 1)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      int64_t InitV, EndV;
 | 
						|
      // Since the comparisons are "ri", the EndValue should be an
 | 
						|
      // immediate.  Check it just in case.
 | 
						|
      assert(EndValue->isImm() && "Unrecognized latch comparison");
 | 
						|
      EndV = EndValue->getImm();
 | 
						|
      // Allow InitialValue to be a register defined with an immediate.
 | 
						|
      if (InitialValue->isReg()) {
 | 
						|
        if (!defWithImmediate(InitialValue->getReg()))
 | 
						|
          return nullptr;
 | 
						|
        InitV = getImmediate(*InitialValue);
 | 
						|
      } else {
 | 
						|
        assert(InitialValue->isImm());
 | 
						|
        InitV = InitialValue->getImm();
 | 
						|
      }
 | 
						|
      if (InitV >= EndV)
 | 
						|
        return nullptr;
 | 
						|
      if (CondOpc == Hexagon::A4_cmpbeqi) {
 | 
						|
        if (!isInt<8>(InitV) || !isInt<8>(EndV))
 | 
						|
          return nullptr;
 | 
						|
      } else {  // Hexagon::CMPhEQri_V4
 | 
						|
        if (!isInt<16>(InitV) || !isInt<16>(EndV))
 | 
						|
          return nullptr;
 | 
						|
      }
 | 
						|
      Cmp = !Negated ? Comparison::EQ : Comparison::NE;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isSwapped)
 | 
						|
   Cmp = Comparison::getSwappedComparison(Cmp);
 | 
						|
 | 
						|
  if (InitialValue->isReg()) {
 | 
						|
    unsigned R = InitialValue->getReg();
 | 
						|
    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
 | 
						|
    if (!MDT->properlyDominates(DefBB, Header))
 | 
						|
      return nullptr;
 | 
						|
    OldInsts.push_back(MRI->getVRegDef(R));
 | 
						|
  }
 | 
						|
  if (EndValue->isReg()) {
 | 
						|
    unsigned R = EndValue->getReg();
 | 
						|
    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
 | 
						|
    if (!MDT->properlyDominates(DefBB, Header))
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper function that returns the expression that represents the
 | 
						|
/// number of times a loop iterates.  The function takes the operands that
 | 
						|
/// represent the loop start value, loop end value, and induction value.
 | 
						|
/// Based upon these operands, the function attempts to compute the trip count.
 | 
						|
CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
 | 
						|
                                               const MachineOperand *Start,
 | 
						|
                                               const MachineOperand *End,
 | 
						|
                                               unsigned IVReg,
 | 
						|
                                               int64_t IVBump,
 | 
						|
                                               Comparison::Kind Cmp) const {
 | 
						|
  // Cannot handle comparison EQ, i.e. while (A == B).
 | 
						|
  if (Cmp == Comparison::EQ)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Check if either the start or end values are an assignment of an immediate.
 | 
						|
  // If so, use the immediate value rather than the register.
 | 
						|
  if (Start->isReg()) {
 | 
						|
    const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
 | 
						|
    if (StartValInstr && StartValInstr->getOpcode() == Hexagon::A2_tfrsi)
 | 
						|
      Start = &StartValInstr->getOperand(1);
 | 
						|
  }
 | 
						|
  if (End->isReg()) {
 | 
						|
    const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
 | 
						|
    if (EndValInstr && EndValInstr->getOpcode() == Hexagon::A2_tfrsi)
 | 
						|
      End = &EndValInstr->getOperand(1);
 | 
						|
  }
 | 
						|
 | 
						|
  assert (Start->isReg() || Start->isImm());
 | 
						|
  assert (End->isReg() || End->isImm());
 | 
						|
 | 
						|
  bool CmpLess =     Cmp & Comparison::L;
 | 
						|
  bool CmpGreater =  Cmp & Comparison::G;
 | 
						|
  bool CmpHasEqual = Cmp & Comparison::EQ;
 | 
						|
 | 
						|
  // Avoid certain wrap-arounds.  This doesn't detect all wrap-arounds.
 | 
						|
  // If loop executes while iv is "less" with the iv value going down, then
 | 
						|
  // the iv must wrap.
 | 
						|
  if (CmpLess && IVBump < 0)
 | 
						|
    return nullptr;
 | 
						|
  // If loop executes while iv is "greater" with the iv value going up, then
 | 
						|
  // the iv must wrap.
 | 
						|
  if (CmpGreater && IVBump > 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Start->isImm() && End->isImm()) {
 | 
						|
    // Both, start and end are immediates.
 | 
						|
    int64_t StartV = Start->getImm();
 | 
						|
    int64_t EndV = End->getImm();
 | 
						|
    int64_t Dist = EndV - StartV;
 | 
						|
    if (Dist == 0)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    bool Exact = (Dist % IVBump) == 0;
 | 
						|
 | 
						|
    if (Cmp == Comparison::NE) {
 | 
						|
      if (!Exact)
 | 
						|
        return nullptr;
 | 
						|
      if ((Dist < 0) ^ (IVBump < 0))
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // For comparisons that include the final value (i.e. include equality
 | 
						|
    // with the final value), we need to increase the distance by 1.
 | 
						|
    if (CmpHasEqual)
 | 
						|
      Dist = Dist > 0 ? Dist+1 : Dist-1;
 | 
						|
 | 
						|
    // assert (CmpLess => Dist > 0);
 | 
						|
    assert ((!CmpLess || Dist > 0) && "Loop should never iterate!");
 | 
						|
    // assert (CmpGreater => Dist < 0);
 | 
						|
    assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!");
 | 
						|
 | 
						|
    // "Normalized" distance, i.e. with the bump set to +-1.
 | 
						|
    int64_t Dist1 = (IVBump > 0) ? (Dist +  (IVBump-1)) /   IVBump
 | 
						|
                               :  (-Dist + (-IVBump-1)) / (-IVBump);
 | 
						|
    assert (Dist1 > 0 && "Fishy thing.  Both operands have the same sign.");
 | 
						|
 | 
						|
    uint64_t Count = Dist1;
 | 
						|
 | 
						|
    if (Count > 0xFFFFFFFFULL)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    return new CountValue(CountValue::CV_Immediate, Count);
 | 
						|
  }
 | 
						|
 | 
						|
  // A general case: Start and End are some values, but the actual
 | 
						|
  // iteration count may not be available.  If it is not, insert
 | 
						|
  // a computation of it into the preheader.
 | 
						|
 | 
						|
  // If the induction variable bump is not a power of 2, quit.
 | 
						|
  // Othwerise we'd need a general integer division.
 | 
						|
  if (!isPowerOf2_64(abs64(IVBump)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  MachineBasicBlock *PH = Loop->getLoopPreheader();
 | 
						|
  assert (PH && "Should have a preheader by now");
 | 
						|
  MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
 | 
						|
  DebugLoc DL = (InsertPos != PH->end()) ? InsertPos->getDebugLoc()
 | 
						|
                                         : DebugLoc();
 | 
						|
 | 
						|
  // If Start is an immediate and End is a register, the trip count
 | 
						|
  // will be "reg - imm".  Hexagon's "subtract immediate" instruction
 | 
						|
  // is actually "reg + -imm".
 | 
						|
 | 
						|
  // If the loop IV is going downwards, i.e. if the bump is negative,
 | 
						|
  // then the iteration count (computed as End-Start) will need to be
 | 
						|
  // negated.  To avoid the negation, just swap Start and End.
 | 
						|
  if (IVBump < 0) {
 | 
						|
    std::swap(Start, End);
 | 
						|
    IVBump = -IVBump;
 | 
						|
  }
 | 
						|
  // Cmp may now have a wrong direction, e.g.  LEs may now be GEs.
 | 
						|
  // Signedness, and "including equality" are preserved.
 | 
						|
 | 
						|
  bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
 | 
						|
  bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
 | 
						|
 | 
						|
  int64_t StartV = 0, EndV = 0;
 | 
						|
  if (Start->isImm())
 | 
						|
    StartV = Start->getImm();
 | 
						|
  if (End->isImm())
 | 
						|
    EndV = End->getImm();
 | 
						|
 | 
						|
  int64_t AdjV = 0;
 | 
						|
  // To compute the iteration count, we would need this computation:
 | 
						|
  //   Count = (End - Start + (IVBump-1)) / IVBump
 | 
						|
  // or, when CmpHasEqual:
 | 
						|
  //   Count = (End - Start + (IVBump-1)+1) / IVBump
 | 
						|
  // The "IVBump-1" part is the adjustment (AdjV).  We can avoid
 | 
						|
  // generating an instruction specifically to add it if we can adjust
 | 
						|
  // the immediate values for Start or End.
 | 
						|
 | 
						|
  if (CmpHasEqual) {
 | 
						|
    // Need to add 1 to the total iteration count.
 | 
						|
    if (Start->isImm())
 | 
						|
      StartV--;
 | 
						|
    else if (End->isImm())
 | 
						|
      EndV++;
 | 
						|
    else
 | 
						|
      AdjV += 1;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Cmp != Comparison::NE) {
 | 
						|
    if (Start->isImm())
 | 
						|
      StartV -= (IVBump-1);
 | 
						|
    else if (End->isImm())
 | 
						|
      EndV += (IVBump-1);
 | 
						|
    else
 | 
						|
      AdjV += (IVBump-1);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned R = 0, SR = 0;
 | 
						|
  if (Start->isReg()) {
 | 
						|
    R = Start->getReg();
 | 
						|
    SR = Start->getSubReg();
 | 
						|
  } else {
 | 
						|
    R = End->getReg();
 | 
						|
    SR = End->getSubReg();
 | 
						|
  }
 | 
						|
  const TargetRegisterClass *RC = MRI->getRegClass(R);
 | 
						|
  // Hardware loops cannot handle 64-bit registers.  If it's a double
 | 
						|
  // register, it has to have a subregister.
 | 
						|
  if (!SR && RC == &Hexagon::DoubleRegsRegClass)
 | 
						|
    return nullptr;
 | 
						|
  const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
 | 
						|
 | 
						|
  // Compute DistR (register with the distance between Start and End).
 | 
						|
  unsigned DistR, DistSR;
 | 
						|
 | 
						|
  // Avoid special case, where the start value is an imm(0).
 | 
						|
  if (Start->isImm() && StartV == 0) {
 | 
						|
    DistR = End->getReg();
 | 
						|
    DistSR = End->getSubReg();
 | 
						|
  } else {
 | 
						|
    const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
 | 
						|
                              (RegToImm ? TII->get(Hexagon::A2_subri) :
 | 
						|
                                          TII->get(Hexagon::A2_addi));
 | 
						|
    unsigned SubR = MRI->createVirtualRegister(IntRC);
 | 
						|
    MachineInstrBuilder SubIB =
 | 
						|
      BuildMI(*PH, InsertPos, DL, SubD, SubR);
 | 
						|
 | 
						|
    if (RegToReg) {
 | 
						|
      SubIB.addReg(End->getReg(), 0, End->getSubReg())
 | 
						|
           .addReg(Start->getReg(), 0, Start->getSubReg());
 | 
						|
    } else if (RegToImm) {
 | 
						|
      SubIB.addImm(EndV)
 | 
						|
           .addReg(Start->getReg(), 0, Start->getSubReg());
 | 
						|
    } else { // ImmToReg
 | 
						|
      SubIB.addReg(End->getReg(), 0, End->getSubReg())
 | 
						|
           .addImm(-StartV);
 | 
						|
    }
 | 
						|
    DistR = SubR;
 | 
						|
    DistSR = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // From DistR, compute AdjR (register with the adjusted distance).
 | 
						|
  unsigned AdjR, AdjSR;
 | 
						|
 | 
						|
  if (AdjV == 0) {
 | 
						|
    AdjR = DistR;
 | 
						|
    AdjSR = DistSR;
 | 
						|
  } else {
 | 
						|
    // Generate CountR = ADD DistR, AdjVal
 | 
						|
    unsigned AddR = MRI->createVirtualRegister(IntRC);
 | 
						|
    MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
 | 
						|
    BuildMI(*PH, InsertPos, DL, AddD, AddR)
 | 
						|
      .addReg(DistR, 0, DistSR)
 | 
						|
      .addImm(AdjV);
 | 
						|
 | 
						|
    AdjR = AddR;
 | 
						|
    AdjSR = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // From AdjR, compute CountR (register with the final count).
 | 
						|
  unsigned CountR, CountSR;
 | 
						|
 | 
						|
  if (IVBump == 1) {
 | 
						|
    CountR = AdjR;
 | 
						|
    CountSR = AdjSR;
 | 
						|
  } else {
 | 
						|
    // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
 | 
						|
    unsigned Shift = Log2_32(IVBump);
 | 
						|
 | 
						|
    // Generate NormR = LSR DistR, Shift.
 | 
						|
    unsigned LsrR = MRI->createVirtualRegister(IntRC);
 | 
						|
    const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
 | 
						|
    BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
 | 
						|
      .addReg(AdjR, 0, AdjSR)
 | 
						|
      .addImm(Shift);
 | 
						|
 | 
						|
    CountR = LsrR;
 | 
						|
    CountSR = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return new CountValue(CountValue::CV_Register, CountR, CountSR);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// \brief Return true if the operation is invalid within hardware loop.
 | 
						|
bool HexagonHardwareLoops::isInvalidLoopOperation(
 | 
						|
      const MachineInstr *MI) const {
 | 
						|
 | 
						|
  // call is not allowed because the callee may use a hardware loop
 | 
						|
  if (MI->getDesc().isCall())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // do not allow nested hardware loops
 | 
						|
  if (isHardwareLoop(MI))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // check if the instruction defines a hardware loop register
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isReg() || !MO.isDef())
 | 
						|
      continue;
 | 
						|
    unsigned R = MO.getReg();
 | 
						|
    if (R == Hexagon::LC0 || R == Hexagon::LC1 ||
 | 
						|
        R == Hexagon::SA0 || R == Hexagon::SA1)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// \brief - Return true if the loop contains an instruction that inhibits
 | 
						|
/// the use of the hardware loop function.
 | 
						|
bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const {
 | 
						|
  const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
 | 
						|
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | 
						|
    MachineBasicBlock *MBB = Blocks[i];
 | 
						|
    for (MachineBasicBlock::iterator
 | 
						|
           MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
 | 
						|
      const MachineInstr *MI = &*MII;
 | 
						|
      if (isInvalidLoopOperation(MI))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// \brief Returns true if the instruction is dead.  This was essentially
 | 
						|
/// copied from DeadMachineInstructionElim::isDead, but with special cases
 | 
						|
/// for inline asm, physical registers and instructions with side effects
 | 
						|
/// removed.
 | 
						|
bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
 | 
						|
                              SmallVectorImpl<MachineInstr *> &DeadPhis) const {
 | 
						|
  // Examine each operand.
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isReg() || !MO.isDef())
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (MRI->use_nodbg_empty(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator;
 | 
						|
 | 
						|
    // This instruction has users, but if the only user is the phi node for the
 | 
						|
    // parent block, and the only use of that phi node is this instruction, then
 | 
						|
    // this instruction is dead: both it (and the phi node) can be removed.
 | 
						|
    use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
 | 
						|
    use_nodbg_iterator End = MRI->use_nodbg_end();
 | 
						|
    if (std::next(I) != End || !I->getParent()->isPHI())
 | 
						|
      return false;
 | 
						|
 | 
						|
    MachineInstr *OnePhi = I->getParent();
 | 
						|
    for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
 | 
						|
      const MachineOperand &OPO = OnePhi->getOperand(j);
 | 
						|
      if (!OPO.isReg() || !OPO.isDef())
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned OPReg = OPO.getReg();
 | 
						|
      use_nodbg_iterator nextJ;
 | 
						|
      for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
 | 
						|
           J != End; J = nextJ) {
 | 
						|
        nextJ = std::next(J);
 | 
						|
        MachineOperand &Use = *J;
 | 
						|
        MachineInstr *UseMI = Use.getParent();
 | 
						|
 | 
						|
        // If the phi node has a user that is not MI, bail...
 | 
						|
        if (MI != UseMI)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    DeadPhis.push_back(OnePhi);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are no defs with uses, the instruction is dead.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
 | 
						|
  // This procedure was essentially copied from DeadMachineInstructionElim.
 | 
						|
 | 
						|
  SmallVector<MachineInstr*, 1> DeadPhis;
 | 
						|
  if (isDead(MI, DeadPhis)) {
 | 
						|
    DEBUG(dbgs() << "HW looping will remove: " << *MI);
 | 
						|
 | 
						|
    // It is possible that some DBG_VALUE instructions refer to this
 | 
						|
    // instruction.  Examine each def operand for such references;
 | 
						|
    // if found, mark the DBG_VALUE as undef (but don't delete it).
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      const MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (!MO.isReg() || !MO.isDef())
 | 
						|
        continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      MachineRegisterInfo::use_iterator nextI;
 | 
						|
      for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
 | 
						|
           E = MRI->use_end(); I != E; I = nextI) {
 | 
						|
        nextI = std::next(I);  // I is invalidated by the setReg
 | 
						|
        MachineOperand &Use = *I;
 | 
						|
        MachineInstr *UseMI = I->getParent();
 | 
						|
        if (UseMI == MI)
 | 
						|
          continue;
 | 
						|
        if (Use.isDebug())
 | 
						|
          UseMI->getOperand(0).setReg(0U);
 | 
						|
        // This may also be a "instr -> phi -> instr" case which can
 | 
						|
        // be removed too.
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    MI->eraseFromParent();
 | 
						|
    for (unsigned i = 0; i < DeadPhis.size(); ++i)
 | 
						|
      DeadPhis[i]->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check if the loop is a candidate for converting to a hardware
 | 
						|
/// loop.  If so, then perform the transformation.
 | 
						|
///
 | 
						|
/// This function works on innermost loops first.  A loop can be converted
 | 
						|
/// if it is a counting loop; either a register value or an immediate.
 | 
						|
///
 | 
						|
/// The code makes several assumptions about the representation of the loop
 | 
						|
/// in llvm.
 | 
						|
bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
 | 
						|
  // This is just for sanity.
 | 
						|
  assert(L->getHeader() && "Loop without a header?");
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  // Process nested loops first.
 | 
						|
  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | 
						|
    Changed |= convertToHardwareLoop(*I);
 | 
						|
 | 
						|
  // If a nested loop has been converted, then we can't convert this loop.
 | 
						|
  if (Changed)
 | 
						|
    return Changed;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Stop trying after reaching the limit (if any).
 | 
						|
  int Limit = HWLoopLimit;
 | 
						|
  if (Limit >= 0) {
 | 
						|
    if (Counter >= HWLoopLimit)
 | 
						|
      return false;
 | 
						|
    Counter++;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // Does the loop contain any invalid instructions?
 | 
						|
  if (containsInvalidInstruction(L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Is the induction variable bump feeding the latch condition?
 | 
						|
  if (!fixupInductionVariable(L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineBasicBlock *LastMBB = L->getExitingBlock();
 | 
						|
  // Don't generate hw loop if the loop has more than one exit.
 | 
						|
  if (!LastMBB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
 | 
						|
  if (LastI == LastMBB->end())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ensure the loop has a preheader: the loop instruction will be
 | 
						|
  // placed there.
 | 
						|
  bool NewPreheader = false;
 | 
						|
  MachineBasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  if (!Preheader) {
 | 
						|
    Preheader = createPreheaderForLoop(L);
 | 
						|
    if (!Preheader)
 | 
						|
      return false;
 | 
						|
    NewPreheader = true;
 | 
						|
  }
 | 
						|
  MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
 | 
						|
 | 
						|
  SmallVector<MachineInstr*, 2> OldInsts;
 | 
						|
  // Are we able to determine the trip count for the loop?
 | 
						|
  CountValue *TripCount = getLoopTripCount(L, OldInsts);
 | 
						|
  if (!TripCount)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Is the trip count available in the preheader?
 | 
						|
  if (TripCount->isReg()) {
 | 
						|
    // There will be a use of the register inserted into the preheader,
 | 
						|
    // so make sure that the register is actually defined at that point.
 | 
						|
    MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
 | 
						|
    MachineBasicBlock *BBDef = TCDef->getParent();
 | 
						|
    if (!NewPreheader) {
 | 
						|
      if (!MDT->dominates(BBDef, Preheader))
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      // If we have just created a preheader, the dominator tree won't be
 | 
						|
      // aware of it.  Check if the definition of the register dominates
 | 
						|
      // the header, but is not the header itself.
 | 
						|
      if (!MDT->properlyDominates(BBDef, L->getHeader()))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine the loop start.
 | 
						|
  MachineBasicBlock *LoopStart = L->getTopBlock();
 | 
						|
  if (L->getLoopLatch() != LastMBB) {
 | 
						|
    // When the exit and latch are not the same, use the latch block as the
 | 
						|
    // start.
 | 
						|
    // The loop start address is used only after the 1st iteration, and the
 | 
						|
    // loop latch may contains instrs. that need to be executed after the
 | 
						|
    // first iteration.
 | 
						|
    LoopStart = L->getLoopLatch();
 | 
						|
    // Make sure the latch is a successor of the exit, otherwise it won't work.
 | 
						|
    if (!LastMBB->isSuccessor(LoopStart))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert the loop to a hardware loop.
 | 
						|
  DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
 | 
						|
  DebugLoc DL;
 | 
						|
  if (InsertPos != Preheader->end())
 | 
						|
    DL = InsertPos->getDebugLoc();
 | 
						|
 | 
						|
  if (TripCount->isReg()) {
 | 
						|
    // Create a copy of the loop count register.
 | 
						|
    unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
 | 
						|
    BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
 | 
						|
      .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
 | 
						|
    // Add the Loop instruction to the beginning of the loop.
 | 
						|
    BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0r))
 | 
						|
      .addMBB(LoopStart)
 | 
						|
      .addReg(CountReg);
 | 
						|
  } else {
 | 
						|
    assert(TripCount->isImm() && "Expecting immediate value for trip count");
 | 
						|
    // Add the Loop immediate instruction to the beginning of the loop,
 | 
						|
    // if the immediate fits in the instructions.  Otherwise, we need to
 | 
						|
    // create a new virtual register.
 | 
						|
    int64_t CountImm = TripCount->getImm();
 | 
						|
    if (!TII->isValidOffset(Hexagon::J2_loop0i, CountImm)) {
 | 
						|
      unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
 | 
						|
      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
 | 
						|
        .addImm(CountImm);
 | 
						|
      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0r))
 | 
						|
        .addMBB(LoopStart).addReg(CountReg);
 | 
						|
    } else
 | 
						|
      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0i))
 | 
						|
        .addMBB(LoopStart).addImm(CountImm);
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure the loop start always has a reference in the CFG.  We need
 | 
						|
  // to create a BlockAddress operand to get this mechanism to work both the
 | 
						|
  // MachineBasicBlock and BasicBlock objects need the flag set.
 | 
						|
  LoopStart->setHasAddressTaken();
 | 
						|
  // This line is needed to set the hasAddressTaken flag on the BasicBlock
 | 
						|
  // object.
 | 
						|
  BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
 | 
						|
 | 
						|
  // Replace the loop branch with an endloop instruction.
 | 
						|
  DebugLoc LastIDL = LastI->getDebugLoc();
 | 
						|
  BuildMI(*LastMBB, LastI, LastIDL,
 | 
						|
          TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart);
 | 
						|
 | 
						|
  // The loop ends with either:
 | 
						|
  //  - a conditional branch followed by an unconditional branch, or
 | 
						|
  //  - a conditional branch to the loop start.
 | 
						|
  if (LastI->getOpcode() == Hexagon::J2_jumpt ||
 | 
						|
      LastI->getOpcode() == Hexagon::J2_jumpf) {
 | 
						|
    // Delete one and change/add an uncond. branch to out of the loop.
 | 
						|
    MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
 | 
						|
    LastI = LastMBB->erase(LastI);
 | 
						|
    if (!L->contains(BranchTarget)) {
 | 
						|
      if (LastI != LastMBB->end())
 | 
						|
        LastI = LastMBB->erase(LastI);
 | 
						|
      SmallVector<MachineOperand, 0> Cond;
 | 
						|
      TII->InsertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Conditional branch to loop start; just delete it.
 | 
						|
    LastMBB->erase(LastI);
 | 
						|
  }
 | 
						|
  delete TripCount;
 | 
						|
 | 
						|
  // The induction operation and the comparison may now be
 | 
						|
  // unneeded. If these are unneeded, then remove them.
 | 
						|
  for (unsigned i = 0; i < OldInsts.size(); ++i)
 | 
						|
    removeIfDead(OldInsts[i]);
 | 
						|
 | 
						|
  ++NumHWLoops;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
 | 
						|
                                            MachineInstr *CmpI) {
 | 
						|
  assert (BumpI != CmpI && "Bump and compare in the same instruction?");
 | 
						|
 | 
						|
  MachineBasicBlock *BB = BumpI->getParent();
 | 
						|
  if (CmpI->getParent() != BB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  typedef MachineBasicBlock::instr_iterator instr_iterator;
 | 
						|
  // Check if things are in order to begin with.
 | 
						|
  for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I)
 | 
						|
    if (&*I == CmpI)
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Out of order.
 | 
						|
  unsigned PredR = CmpI->getOperand(0).getReg();
 | 
						|
  bool FoundBump = false;
 | 
						|
  instr_iterator CmpIt = CmpI, NextIt = std::next(CmpIt);
 | 
						|
  for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
 | 
						|
    MachineInstr *In = &*I;
 | 
						|
    for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
 | 
						|
      MachineOperand &MO = In->getOperand(i);
 | 
						|
      if (MO.isReg() && MO.isUse()) {
 | 
						|
        if (MO.getReg() == PredR)  // Found an intervening use of PredR.
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (In == BumpI) {
 | 
						|
      instr_iterator After = BumpI;
 | 
						|
      instr_iterator From = CmpI;
 | 
						|
      BB->splice(std::next(After), BB, From);
 | 
						|
      FoundBump = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert (FoundBump && "Cannot determine instruction order");
 | 
						|
  return FoundBump;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) {
 | 
						|
  MachineInstr *DI = MRI->getVRegDef(R);
 | 
						|
  unsigned DOpc = DI->getOpcode();
 | 
						|
  switch (DOpc) {
 | 
						|
    case Hexagon::A2_tfrsi:
 | 
						|
    case Hexagon::A2_tfrpi:
 | 
						|
    case Hexagon::CONST32_Int_Real:
 | 
						|
    case Hexagon::CONST64_Int_Real:
 | 
						|
      return DI;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) {
 | 
						|
  if (MO.isImm())
 | 
						|
    return MO.getImm();
 | 
						|
  assert(MO.isReg());
 | 
						|
  unsigned R = MO.getReg();
 | 
						|
  MachineInstr *DI = defWithImmediate(R);
 | 
						|
  assert(DI && "Need an immediate operand");
 | 
						|
  // All currently supported "define-with-immediate" instructions have the
 | 
						|
  // actual immediate value in the operand(1).
 | 
						|
  int64_t v = DI->getOperand(1).getImm();
 | 
						|
  return v;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
 | 
						|
  if (MO.isImm()) {
 | 
						|
    MO.setImm(Val);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(MO.isReg());
 | 
						|
  unsigned R = MO.getReg();
 | 
						|
  MachineInstr *DI = defWithImmediate(R);
 | 
						|
  if (MRI->hasOneNonDBGUse(R)) {
 | 
						|
    // If R has only one use, then just change its defining instruction to
 | 
						|
    // the new immediate value.
 | 
						|
    DI->getOperand(1).setImm(Val);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const TargetRegisterClass *RC = MRI->getRegClass(R);
 | 
						|
  unsigned NewR = MRI->createVirtualRegister(RC);
 | 
						|
  MachineBasicBlock &B = *DI->getParent();
 | 
						|
  DebugLoc DL = DI->getDebugLoc();
 | 
						|
  BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR)
 | 
						|
    .addImm(Val);
 | 
						|
  MO.setReg(NewR);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
 | 
						|
  MachineBasicBlock *Header = L->getHeader();
 | 
						|
  MachineBasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  MachineBasicBlock *Latch = L->getLoopLatch();
 | 
						|
 | 
						|
  if (!Header || !Preheader || !Latch)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // These data structures follow the same concept as the corresponding
 | 
						|
  // ones in findInductionRegister (where some comments are).
 | 
						|
  typedef std::pair<unsigned,int64_t> RegisterBump;
 | 
						|
  typedef std::pair<unsigned,RegisterBump> RegisterInduction;
 | 
						|
  typedef std::set<RegisterInduction> RegisterInductionSet;
 | 
						|
 | 
						|
  // Register candidates for induction variables, with their associated bumps.
 | 
						|
  RegisterInductionSet IndRegs;
 | 
						|
 | 
						|
  // Look for induction patterns:
 | 
						|
  //   vreg1 = PHI ..., [ latch, vreg2 ]
 | 
						|
  //   vreg2 = ADD vreg1, imm
 | 
						|
  typedef MachineBasicBlock::instr_iterator instr_iterator;
 | 
						|
  for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
 | 
						|
       I != E && I->isPHI(); ++I) {
 | 
						|
    MachineInstr *Phi = &*I;
 | 
						|
 | 
						|
    // Have a PHI instruction.
 | 
						|
    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
 | 
						|
      if (Phi->getOperand(i+1).getMBB() != Latch)
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned PhiReg = Phi->getOperand(i).getReg();
 | 
						|
      MachineInstr *DI = MRI->getVRegDef(PhiReg);
 | 
						|
      unsigned UpdOpc = DI->getOpcode();
 | 
						|
      bool isAdd = (UpdOpc == Hexagon::A2_addi);
 | 
						|
 | 
						|
      if (isAdd) {
 | 
						|
        // If the register operand to the add/sub is the PHI we are looking
 | 
						|
        // at, this meets the induction pattern.
 | 
						|
        unsigned IndReg = DI->getOperand(1).getReg();
 | 
						|
        if (MRI->getVRegDef(IndReg) == Phi) {
 | 
						|
          unsigned UpdReg = DI->getOperand(0).getReg();
 | 
						|
          int64_t V = DI->getOperand(2).getImm();
 | 
						|
          IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }  // for (i)
 | 
						|
  }  // for (instr)
 | 
						|
 | 
						|
  if (IndRegs.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineBasicBlock *TB = nullptr, *FB = nullptr;
 | 
						|
  SmallVector<MachineOperand,2> Cond;
 | 
						|
  // AnalyzeBranch returns true if it fails to analyze branch.
 | 
						|
  bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
 | 
						|
  if (NotAnalyzed)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if the latch branch is unconditional.
 | 
						|
  if (Cond.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (TB != Header && FB != Header)
 | 
						|
    // The latch does not go back to the header.  Not a latch we know and love.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Expecting a predicate register as a condition.  It won't be a hardware
 | 
						|
  // predicate register at this point yet, just a vreg.
 | 
						|
  // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0)
 | 
						|
  // into Cond, followed by the predicate register.  For non-negated branches
 | 
						|
  // it's just the register.
 | 
						|
  unsigned CSz = Cond.size();
 | 
						|
  if (CSz != 1 && CSz != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned P = Cond[CSz-1].getReg();
 | 
						|
  MachineInstr *PredDef = MRI->getVRegDef(P);
 | 
						|
 | 
						|
  if (!PredDef->isCompare())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallSet<unsigned,2> CmpRegs;
 | 
						|
  MachineOperand *CmpImmOp = nullptr;
 | 
						|
 | 
						|
  // Go over all operands to the compare and look for immediate and register
 | 
						|
  // operands.  Assume that if the compare has a single register use and a
 | 
						|
  // single immediate operand, then the register is being compared with the
 | 
						|
  // immediate value.
 | 
						|
  for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
 | 
						|
    MachineOperand &MO = PredDef->getOperand(i);
 | 
						|
    if (MO.isReg()) {
 | 
						|
      // Skip all implicit references.  In one case there was:
 | 
						|
      //   %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use>
 | 
						|
      if (MO.isImplicit())
 | 
						|
        continue;
 | 
						|
      if (MO.isUse()) {
 | 
						|
        unsigned R = MO.getReg();
 | 
						|
        if (!defWithImmediate(R)) {
 | 
						|
          CmpRegs.insert(MO.getReg());
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // Consider the register to be the "immediate" operand.
 | 
						|
        if (CmpImmOp)
 | 
						|
          return false;
 | 
						|
        CmpImmOp = &MO;
 | 
						|
      }
 | 
						|
    } else if (MO.isImm()) {
 | 
						|
      if (CmpImmOp)    // A second immediate argument?  Confusing.  Bail out.
 | 
						|
        return false;
 | 
						|
      CmpImmOp = &MO;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (CmpRegs.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if the compared register follows the order we want.  Fix if needed.
 | 
						|
  for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    // This is a success.  If the register used in the comparison is one that
 | 
						|
    // we have identified as a bumped (updated) induction register, there is
 | 
						|
    // nothing to do.
 | 
						|
    if (CmpRegs.count(I->first))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise, if the register being compared comes out of a PHI node,
 | 
						|
    // and has been recognized as following the induction pattern, and is
 | 
						|
    // compared against an immediate, we can fix it.
 | 
						|
    const RegisterBump &RB = I->second;
 | 
						|
    if (CmpRegs.count(RB.first)) {
 | 
						|
      if (!CmpImmOp)
 | 
						|
        return false;
 | 
						|
 | 
						|
      int64_t CmpImm = getImmediate(*CmpImmOp);
 | 
						|
      int64_t V = RB.second;
 | 
						|
      if (V > 0 && CmpImm+V < CmpImm)  // Overflow (64-bit).
 | 
						|
        return false;
 | 
						|
      if (V < 0 && CmpImm+V > CmpImm)  // Overflow (64-bit).
 | 
						|
        return false;
 | 
						|
      CmpImm += V;
 | 
						|
      // Some forms of cmp-immediate allow u9 and s10.  Assume the worst case
 | 
						|
      // scenario, i.e. an 8-bit value.
 | 
						|
      if (CmpImmOp->isImm() && !isInt<8>(CmpImm))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Make sure that the compare happens after the bump.  Otherwise,
 | 
						|
      // after the fixup, the compare would use a yet-undefined register.
 | 
						|
      MachineInstr *BumpI = MRI->getVRegDef(I->first);
 | 
						|
      bool Order = orderBumpCompare(BumpI, PredDef);
 | 
						|
      if (!Order)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Finally, fix the compare instruction.
 | 
						|
      setImmediate(*CmpImmOp, CmpImm);
 | 
						|
      for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
 | 
						|
        MachineOperand &MO = PredDef->getOperand(i);
 | 
						|
        if (MO.isReg() && MO.getReg() == RB.first) {
 | 
						|
          MO.setReg(I->first);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// \brief Create a preheader for a given loop.
 | 
						|
MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
 | 
						|
      MachineLoop *L) {
 | 
						|
  if (MachineBasicBlock *TmpPH = L->getLoopPreheader())
 | 
						|
    return TmpPH;
 | 
						|
 | 
						|
  MachineBasicBlock *Header = L->getHeader();
 | 
						|
  MachineBasicBlock *Latch = L->getLoopLatch();
 | 
						|
  MachineFunction *MF = Header->getParent();
 | 
						|
  DebugLoc DL;
 | 
						|
 | 
						|
  if (!Latch || Header->hasAddressTaken())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  typedef MachineBasicBlock::instr_iterator instr_iterator;
 | 
						|
 | 
						|
  // Verify that all existing predecessors have analyzable branches
 | 
						|
  // (or no branches at all).
 | 
						|
  typedef std::vector<MachineBasicBlock*> MBBVector;
 | 
						|
  MBBVector Preds(Header->pred_begin(), Header->pred_end());
 | 
						|
  SmallVector<MachineOperand,2> Tmp1;
 | 
						|
  MachineBasicBlock *TB = nullptr, *FB = nullptr;
 | 
						|
 | 
						|
  if (TII->AnalyzeBranch(*Latch, TB, FB, Tmp1, false))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
 | 
						|
    MachineBasicBlock *PB = *I;
 | 
						|
    if (PB != Latch) {
 | 
						|
      bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false);
 | 
						|
      if (NotAnalyzed)
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
 | 
						|
  MF->insert(Header, NewPH);
 | 
						|
 | 
						|
  if (Header->pred_size() > 2) {
 | 
						|
    // Ensure that the header has only two predecessors: the preheader and
 | 
						|
    // the loop latch.  Any additional predecessors of the header should
 | 
						|
    // join at the newly created preheader.  Inspect all PHI nodes from the
 | 
						|
    // header and create appropriate corresponding PHI nodes in the preheader.
 | 
						|
 | 
						|
    for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
 | 
						|
         I != E && I->isPHI(); ++I) {
 | 
						|
      MachineInstr *PN = &*I;
 | 
						|
 | 
						|
      const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
 | 
						|
      MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
 | 
						|
      NewPH->insert(NewPH->end(), NewPN);
 | 
						|
 | 
						|
      unsigned PR = PN->getOperand(0).getReg();
 | 
						|
      const TargetRegisterClass *RC = MRI->getRegClass(PR);
 | 
						|
      unsigned NewPR = MRI->createVirtualRegister(RC);
 | 
						|
      NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
 | 
						|
 | 
						|
      // Copy all non-latch operands of a header's PHI node to the newly
 | 
						|
      // created PHI node in the preheader.
 | 
						|
      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
 | 
						|
        unsigned PredR = PN->getOperand(i).getReg();
 | 
						|
        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
 | 
						|
        if (PredB == Latch)
 | 
						|
          continue;
 | 
						|
 | 
						|
        NewPN->addOperand(MachineOperand::CreateReg(PredR, false));
 | 
						|
        NewPN->addOperand(MachineOperand::CreateMBB(PredB));
 | 
						|
      }
 | 
						|
 | 
						|
      // Remove copied operands from the old PHI node and add the value
 | 
						|
      // coming from the preheader's PHI.
 | 
						|
      for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
 | 
						|
        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
 | 
						|
        if (PredB != Latch) {
 | 
						|
          PN->RemoveOperand(i+1);
 | 
						|
          PN->RemoveOperand(i);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      PN->addOperand(MachineOperand::CreateReg(NewPR, false));
 | 
						|
      PN->addOperand(MachineOperand::CreateMBB(NewPH));
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    assert(Header->pred_size() == 2);
 | 
						|
 | 
						|
    // The header has only two predecessors, but the non-latch predecessor
 | 
						|
    // is not a preheader (e.g. it has other successors, etc.)
 | 
						|
    // In such a case we don't need any extra PHI nodes in the new preheader,
 | 
						|
    // all we need is to adjust existing PHIs in the header to now refer to
 | 
						|
    // the new preheader.
 | 
						|
    for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
 | 
						|
         I != E && I->isPHI(); ++I) {
 | 
						|
      MachineInstr *PN = &*I;
 | 
						|
      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
 | 
						|
        MachineOperand &MO = PN->getOperand(i+1);
 | 
						|
        if (MO.getMBB() != Latch)
 | 
						|
          MO.setMBB(NewPH);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // "Reroute" the CFG edges to link in the new preheader.
 | 
						|
  // If any of the predecessors falls through to the header, insert a branch
 | 
						|
  // to the new preheader in that place.
 | 
						|
  SmallVector<MachineOperand,1> Tmp2;
 | 
						|
  SmallVector<MachineOperand,1> EmptyCond;
 | 
						|
 | 
						|
  TB = FB = nullptr;
 | 
						|
 | 
						|
  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
 | 
						|
    MachineBasicBlock *PB = *I;
 | 
						|
    if (PB != Latch) {
 | 
						|
      Tmp2.clear();
 | 
						|
      bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false);
 | 
						|
      (void)NotAnalyzed; // suppress compiler warning
 | 
						|
      assert (!NotAnalyzed && "Should be analyzable!");
 | 
						|
      if (TB != Header && (Tmp2.empty() || FB != Header))
 | 
						|
        TII->InsertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
 | 
						|
      PB->ReplaceUsesOfBlockWith(Header, NewPH);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // It can happen that the latch block will fall through into the header.
 | 
						|
  // Insert an unconditional branch to the header.
 | 
						|
  TB = FB = nullptr;
 | 
						|
  bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false);
 | 
						|
  (void)LatchNotAnalyzed; // suppress compiler warning
 | 
						|
  assert (!LatchNotAnalyzed && "Should be analyzable!");
 | 
						|
  if (!TB && !FB)
 | 
						|
    TII->InsertBranch(*Latch, Header, nullptr, EmptyCond, DL);
 | 
						|
 | 
						|
  // Finally, the branch from the preheader to the header.
 | 
						|
  TII->InsertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
 | 
						|
  NewPH->addSuccessor(Header);
 | 
						|
 | 
						|
  return NewPH;
 | 
						|
}
 |